SlideShare a Scribd company logo
1 of 26
Download to read offline
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Excursions	
  in	
  Combinatorial	
  in	
  Taxicab	
  Geometry	
  
Math	
  Fest	
  2015
John	
  Best
Summit	
  University	
  of	
  Pennsylvania	
  
jbest@summitu.edu
	
  
 	
  	
  
	
  
	
  	
  >	
  Points	
  –	
  The	
  coordinate	
  plane	
  ℝ!
.	
  
	
  
	
  	
  >	
  Distance	
  Function	
  –	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝑑! 𝑥!, 𝑦! , 𝑥!, 𝑦! = 𝑥! − 𝑥! + 𝑦! − 𝑦! 	
  
	
  
	
  
>	
  This	
  is	
  the	
  Taxicab	
  plane	
  –	
  denoted	
  by	
   ℝ!
, 𝑑! .	
  
	
  
>	
  Euclidean	
  plane	
  is	
  denoted	
  by	
   ℝ!
, 𝑑! 	
  
	
  
𝑑! 𝑥!, 𝑦! , 𝑥!, 𝑦! = (𝑥! − 𝑥!)! + (𝑦! − 𝑦!)!	
  
What	
  is	
  Taxicab	
  Geometry?	
  	
  
 
	
  
	
  
Fig.	
  1.	
  Unit	
  Circle	
  in	
  the	
  Taxicab	
  plane	
  
What	
  is	
  Taxicab	
  Geometry?	
  
 
	
  
Look	
  for	
  Taxicab	
  versions	
  of	
  theorems	
  from	
  	
  
	
  
combinatorial	
  Euclidean	
  Geometry.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Motivation	
  
 
Theorem	
  1	
  (Erdös-­‐Anning)	
  
	
  
If	
  an	
  infinite	
  set	
  of	
  points	
  in	
  the	
  Euclidean	
  plane	
  determines	
  
only	
  integer	
  distances,	
  then	
  all	
  the	
  points	
  lie	
  on	
  a	
  straight	
  
line.	
  
	
  
Proof	
  Reference:	
  
	
  
Ross	
  Honsberger,	
  Mathematical	
  Diamonds	
  ,	
  MAA,	
  2003	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
 
	
  
	
  
Fig.	
  2.	
  Infinitely	
  many	
  (almost	
  linear)	
  points	
  in	
  Taxicab	
  plane	
  with	
  integer	
  
distances.	
  
	
  
	
  
 
	
  
Fig.	
  3.	
  Infinitely	
  many	
  (very	
  non-­‐linear)	
  points	
  in	
  Taxicab	
  plane	
  with	
  integer	
  
distances.	
  
	
  
	
  	
  	
  There	
  seems	
  to	
  be	
  no	
  Taxicab	
  version	
  of	
  Erdös-­‐Anning.	
  
Theorem	
  2	
  	
  
	
  
a)	
  There	
  are	
  no	
  four	
  points	
  in	
  the	
  Euclidean	
  plane	
  such	
  that	
  
the	
  distance	
  between	
  each	
  pair	
  is	
  an	
  odd	
  integer.	
  
	
  
b)	
  The	
  maximum	
  number	
  of	
  odd	
  integral	
  distances	
  between	
  
𝑛	
  points	
  in	
   ℝ!
, 𝑑! 	
  is	
  
	
  
𝑛!
3
+
𝑟(𝑟 − 3)
6
	
  
	
  
where	
   𝑟 = 1, 2, 𝑜𝑟  3	
  and	
   𝑛 ≡ 𝑟  𝑚𝑜𝑑  3	
  
	
  
	
  
Proof	
  Reference:	
  
	
  
a)	
  Jiri	
  Matousek,	
  Thirty-­‐three	
  Miniatures-­‐Mathematical	
  
and	
  Algorithmic	
  Applications	
  of	
  Linear	
  Algebra,	
  American	
  
Mathematical	
  Society,	
  2012	
  
	
  
b)	
  L.	
  Piepmeyer,	
  The	
  Maximum	
  Number	
  of	
  Odd	
  Integral	
  
Distances	
  Between	
  Points	
  in	
  the	
  Plane,	
  Discrete	
  and	
  
Computational	
  Geometry	
  16	
  (1996),	
  pp.	
  113-­‐115	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
  
	
  
	
  
	
  
	
  
Fig.4.	
  Four	
  points	
  in	
  Taxicab	
  plane	
  with	
  pairwise	
  odd	
  distances.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (0,0),	
  	
  (5,0),	
  	
  (.5,	
  2.5),	
  	
  (.5,	
  -­‐8.5)	
  	
  	
  6	
  distinct	
  distance	
  
Theorem	
  2a	
  fails	
  in	
  Taxicab	
  plane	
  
Theorem	
  2T	
  
	
  
a)	
  There	
  are	
  no	
  five	
  points	
  in	
  the	
  Taxicab	
  plane	
  such	
  that	
  
the	
  distance	
  between	
  any	
  two	
  is	
  an	
  odd	
  integer.	
  
	
  
b)	
  The	
  maximum	
  number	
  of	
  odd	
  integral	
  distances	
  between	
  
𝑛	
  points	
  in	
   ℝ!
, 𝑑! 	
  is	
  	
  
	
  
3𝑛!
8
+
𝑟(𝑟 − 4)
8
	
  
	
  
where	
   𝑟 = 1, 2, 3, 𝑜𝑟  4	
  and	
  	
   𝑛 ≡ 𝑟  𝑚𝑜𝑑  4.	
  
	
  
	
  
Proof:	
  	
  
	
  
John	
  Best,	
  Odd	
  Distances	
  in	
  the	
  Taxicab	
  Plane,	
  In	
  
Preparation.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
  
Def.	
  1:	
  A	
  graph	
  is	
  an	
  ordered	
  pair	
  G=(V,	
  E)	
  consisting	
  of	
  a	
  
nonempty	
  set	
  V	
  of	
  vertices	
  together	
  with	
  a	
  set	
  E	
  of	
  
unordered	
  pairs	
  of	
  distinct	
  vertices	
  called	
  edges.	
  
	
  
A	
  complete	
  graph	
  on	
  |V	
  |=m	
  vertices	
  is	
  a	
  graph	
  in	
  which	
  
every	
  pair	
  of	
  distinct	
  vertices	
  is	
  connected	
  by	
  a	
  unique	
  
edge.	
  A	
  complete	
  graph	
  is	
  denoted	
  by	
  K	
  m.	
  
	
  
	
  
	
  
	
  
	
  
A	
  Little	
  Graph	
  Theory	
  
 
Def.	
  2:	
  A	
  complete	
  bipartite	
  graph	
  is	
  a	
  graph	
  whose	
  
vertices	
  can	
  be	
  partitioned	
  into	
  two	
  subsets	
  V	
  and	
  W	
  such	
  
that	
  no	
  edge	
  has	
  both	
  endpoints	
  in	
  the	
  same	
  subset,	
  and	
  
every	
  possible	
  edge	
  that	
  could	
  connect	
  vertices	
  in	
  
different	
  subsets	
  is	
  part	
  of	
  the	
  graph.	
  
	
  
If	
  |V|=m	
  and	
  |W|=n,	
  we	
  denote	
  the	
  graph	
  by	
  K	
  m,n.	
  
	
  
	
  
Def.	
  3:	
  A	
  unit	
  distance	
  graph	
  is	
  a	
  set	
  of	
  points	
  V	
  in	
  a	
  
metric	
  space	
  with	
  an	
  edge	
  connecting	
  two	
  vertices	
  iff	
  the	
  
distance	
  between	
  the	
  points	
  equals	
  1.	
  
	
  
A	
  Little	
  Graph	
  Theory	
  
Theorem	
  3	
  
	
  
The	
  complete	
  graph	
  K4	
  and	
  the	
  complete	
  bipartite	
  graph	
  
K2,3	
  are	
  not	
  unit	
  distance	
  graphs	
  in	
   ℝ!
, 𝑑! .	
  
	
  
Proof:	
  That	
  K2,3	
  is	
  not	
  a	
  unit	
  distance	
  graph	
  in	
   ℝ!
, 𝑑! 	
  is	
  a	
  
consequence	
  of	
  that	
  fact	
  that	
  two	
  distinct	
  unit	
  circles	
  can	
  
intersect	
  in	
  at	
  most	
  two	
  points.	
  
	
  
To	
  see	
  that	
  K4	
  is	
  not,	
  consider	
  an	
  equilateral	
  triangle	
  of	
  
side	
  length	
  1,	
  and	
  show	
  that	
  there	
  cannot	
  be	
  a	
  4th	
  point	
  at	
  
distance	
  1	
  from	
  the	
  three	
  vertices.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ∎	
  
	
  
Theorem	
  3T	
  
The	
  complete	
  graph	
  K4	
  and	
  the	
  complete	
  bipartite	
  
graph	
  K2,3	
  are	
  	
  unit	
  distance	
  graphs	
  in	
   ℝ!
, 𝑑! .	
  The	
  
complete	
  graph	
  K5	
  is	
  not	
  a	
  unit	
  distance	
  graph	
  in	
  
ℝ!
, 𝑑! .	
  
	
  
Proof:	
  The	
  set	
  of	
  points	
   0,0 , 1,0 ,
!
!
,
!
!
,
!
!
,
!!
!
	
  
show	
  that	
  K4	
  is	
  a	
  unit	
  distance	
  graph	
  in	
  the	
  Taxicab	
  
plane.	
  
	
  
	
  
To	
  see	
  that	
  K2,3	
  is	
  a	
  unit	
  distance	
  graph	
  in	
   ℝ!
, 𝑑! 	
  
consider	
  the	
  sets	
  
	
  
𝑉 = 0,0 , 1,1 	
  
	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝑊 =
!
!
,
!
!
,
!
!
,
!
!
,
!
!
,
!
!
	
  
	
  
Calculations	
  show	
  that	
  the	
  Taxicab	
  distance	
  from	
  any	
  
point	
  in	
  V	
  to	
  any	
  point	
  in	
  W	
  equals	
  1,	
  and	
  the	
  Taxicab	
  
distance	
  between	
  points	
  in	
  V	
  and	
  W	
  is	
  not	
  1.	
  
	
  
The	
  last	
  assertion	
  follows	
  from	
  Theorem	
  2T.	
  	
  ∎	
  
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
  
Fig.	
  5.	
  Unit-­‐Distance	
  K2,3	
  in	
  Taxicab	
  plane	
  (black	
  edges,	
  green	
  &	
  red	
  vertices).	
  	
  
Def.	
  4:	
  Let	
  S	
  be	
  a	
  bounded	
  set	
  of	
  points	
  in	
  either	
   ℝ!
, 𝑑! 	
  
or	
   ℝ!
, 𝑑! .	
  The	
  diameter	
  of	
  S	
  is	
  the	
  number	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝛿 = 𝑠𝑢𝑝 𝑑!(𝑎, 𝑏) 𝑎, 𝑏   ∈ 𝑆   	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Theorem	
  4	
  (Jung’s	
  Theorem)	
  
	
  
Every	
  finite	
  set	
  of	
  points	
  in	
   ℝ!
, 𝑑! 	
  with	
  diameter	
   𝛿	
  can	
  be	
  
enclosed	
  in	
  a	
  circle	
  with	
  radius	
   𝑟 ≤
!
!
.	
  
	
  
Proof	
  Reference:	
  
	
  
	
  Hans	
  Rademacher	
  and	
  Otto	
  Toeplitz,	
  The	
  Enjoyment	
  of	
  
Mathematics,	
  Dover	
  Publications,	
  1990	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Theorem	
  4T	
  	
  
	
  
Every	
  finite	
  set	
  of	
  points	
  in	
   ℝ!
, 𝑑! 	
  with	
  diameter	
   𝛿	
  can	
  be	
  
enclosed	
  in	
  a	
  Taxicab	
  circle	
  with	
  radius	
   𝑟 ≤
!
!
.	
  
	
  
Proof	
  Reference:	
  
	
  
V.	
  Boltyanski	
  and	
  H.	
  Martini,	
  Jung’s	
  Theorem	
  for	
  a	
  pair	
  of	
  
Minkowski	
  Spaces,	
  Adv.	
  Geom.	
  6	
  (2006),	
  pp.	
  645-­‐650	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
Let	
  F	
  be	
  a	
  plane	
  figure	
  with	
  diameter	
   𝛿	
  .	
  The	
  Borsuk	
  
Conjecture	
  in	
  the	
  plane	
  asks	
  for	
  the	
  fewest	
  number	
  of	
  
pieces	
  F	
  can	
  be	
  cut	
  into	
  so	
  that	
  each	
  piece	
  has	
  diameter	
  
less	
  than	
   𝛿	
  .	
  We	
  denote	
  this	
  number	
  by	
  a(F)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Borsuk	
  Conjecture	
  in	
  the	
  Plane	
  
Theorem	
  5	
  (Borsuk)	
  
	
  
For	
  any	
  figure	
  F	
  in	
   ℝ!
, 𝑑! ,	
  with	
  diameter	
   𝛿,	
  
	
  
𝑎(𝐹) ≤ 3	
  
	
  
	
  
Proof	
  Reference:	
  
	
  
V.	
  Boltyanski	
  and	
  I.	
  Gohberg,	
  The	
  Decomposition	
  of	
  Figures	
  
into	
  Smaller	
  Parts,	
  The	
  University	
  of	
  Chicago	
  Press,	
  1980.	
  
	
  
	
  
	
  
	
  
Theorem	
  5T	
  	
  
	
  
For	
  any	
  figure	
  F	
  in	
   ℝ!
, 𝑑! ,	
  with	
  diameter	
   𝛿,	
  
	
  
𝑎(𝐹) ≤ 4	
  
	
  
Equality	
  is	
  obtained	
  iff	
  the	
  convex	
  hull	
  of	
  F	
  is	
  a	
  dilation	
  of	
  
the	
  Taxi	
  unit	
  circle	
  by	
  a	
  factor	
  of	
  	
  
!
!
	
  (and	
  possibly	
  a	
  
translation.)	
  
	
  
	
  
Proof	
  Reference:	
  Same	
  as	
  Theorem	
  5.	
  
	
  
	
  
	
  
	
  
	
  
 
	
  
	
  
	
  
Fig.6.	
  Borsuk	
  decomposition	
  of	
  Taxi	
  Unit	
  circle.	
  Four	
  parts	
  of	
  diameter	
  1.	
  
	
  
 
1.	
  Investigate	
  these,	
  and	
  other	
  Euclidean	
  theorems,	
  in	
  
higher	
  Taxi	
  dimensions	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ℝ!
, 𝑑! ,  𝑛 ≥ 3.	
  
	
  
	
  
2.	
  Investigate	
  these,	
  and	
  other	
  Euclidean	
  theorems,	
  in	
  
other	
  metrics,	
  such	
  as	
  Chinese	
  Checker	
  Metric,	
  
Generalized	
  Absolute	
  Value	
  Metric,	
  etc.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Future	
  Research	
  

More Related Content

Viewers also liked

Toilets Of The World
Toilets Of The WorldToilets Of The World
Toilets Of The Worldnuria32
 
PMA Publishers Statement 2015
PMA Publishers Statement 2015PMA Publishers Statement 2015
PMA Publishers Statement 2015Melissa Blakeley
 
Distorsiones del Mercado de Trabajo
Distorsiones del Mercado de TrabajoDistorsiones del Mercado de Trabajo
Distorsiones del Mercado de Trabajoapinoh
 
My educational technology
My educational technologyMy educational technology
My educational technologyronalynlanip
 
Creacion de un usb live
Creacion de un usb liveCreacion de un usb live
Creacion de un usb livegilberto30
 
An Unexpected Visitor
An Unexpected VisitorAn Unexpected Visitor
An Unexpected VisitorAnna *
 
Curriculum Vita - Dr. John Best
Curriculum Vita - Dr. John BestCurriculum Vita - Dr. John Best
Curriculum Vita - Dr. John BestJohn Best
 
六閤彩图库开奖
六閤彩图库开奖六閤彩图库开奖
六閤彩图库开奖clc1234
 
Kevin Byrne’s Study: ESRI Extension Research, 2009
Kevin Byrne’s Study: ESRI Extension Research, 2009Kevin Byrne’s Study: ESRI Extension Research, 2009
Kevin Byrne’s Study: ESRI Extension Research, 2009J. Kevin Byrne
 
Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...
Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...
Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...J. Kevin Byrne
 

Viewers also liked (16)

Toilets Of The World
Toilets Of The WorldToilets Of The World
Toilets Of The World
 
PMA Publishers Statement 2015
PMA Publishers Statement 2015PMA Publishers Statement 2015
PMA Publishers Statement 2015
 
Interview Crystal Renn
Interview Crystal RennInterview Crystal Renn
Interview Crystal Renn
 
Distorsiones del Mercado de Trabajo
Distorsiones del Mercado de TrabajoDistorsiones del Mercado de Trabajo
Distorsiones del Mercado de Trabajo
 
GR12043GRP_027
GR12043GRP_027GR12043GRP_027
GR12043GRP_027
 
My educational technology
My educational technologyMy educational technology
My educational technology
 
Creacion de un usb live
Creacion de un usb liveCreacion de un usb live
Creacion de un usb live
 
An Unexpected Visitor
An Unexpected VisitorAn Unexpected Visitor
An Unexpected Visitor
 
Ple2012
Ple2012Ple2012
Ple2012
 
Presentation_NEW.PPTX
Presentation_NEW.PPTXPresentation_NEW.PPTX
Presentation_NEW.PPTX
 
Curriculum Vita - Dr. John Best
Curriculum Vita - Dr. John BestCurriculum Vita - Dr. John Best
Curriculum Vita - Dr. John Best
 
六閤彩图库开奖
六閤彩图库开奖六閤彩图库开奖
六閤彩图库开奖
 
Eat Street
Eat StreetEat Street
Eat Street
 
Kevin Byrne’s Study: ESRI Extension Research, 2009
Kevin Byrne’s Study: ESRI Extension Research, 2009Kevin Byrne’s Study: ESRI Extension Research, 2009
Kevin Byrne’s Study: ESRI Extension Research, 2009
 
Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...
Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...
Kevin Byrne’s Study: Visualizing a New Rain Garden via Geodesy and Animation,...
 
Waterfalls
WaterfallsWaterfalls
Waterfalls
 

Similar to Excursions in Combinatorial Taxicab Geometry-MathFest 2015

ch-3 coordinate geometry.pptx
ch-3 coordinate geometry.pptxch-3 coordinate geometry.pptx
ch-3 coordinate geometry.pptxGauravPahal1
 
Honors precalc warm ups
Honors precalc warm upsHonors precalc warm ups
Honors precalc warm upsKristen Fouss
 
Section 1.3 -- The Coordinate Plane
Section 1.3 -- The Coordinate PlaneSection 1.3 -- The Coordinate Plane
Section 1.3 -- The Coordinate PlaneRob Poodiack
 
Final Report
Final ReportFinal Report
Final ReportCan Liu
 
Opt. Maths for SEE appearing students DATE: 2077/01/17
Opt. Maths  for SEE appearing students   DATE: 2077/01/17Opt. Maths  for SEE appearing students   DATE: 2077/01/17
Opt. Maths for SEE appearing students DATE: 2077/01/17IndramaniGyawali
 
Term Paper Coordinate Geometry
Term Paper Coordinate GeometryTerm Paper Coordinate Geometry
Term Paper Coordinate GeometryDurgesh singh
 
Coordinate geometry 9 grade
Coordinate geometry 9 gradeCoordinate geometry 9 grade
Coordinate geometry 9 gradeSiddu Lingesh
 
Compiled and solved problems in geometry and trigonometry,F.Smaradanhe
Compiled and solved problems in geometry and trigonometry,F.SmaradanheCompiled and solved problems in geometry and trigonometry,F.Smaradanhe
Compiled and solved problems in geometry and trigonometry,F.SmaradanheΘανάσης Δρούγας
 
Graph Theory,Graph Terminologies,Planar Graph & Graph Colouring
Graph Theory,Graph Terminologies,Planar Graph & Graph ColouringGraph Theory,Graph Terminologies,Planar Graph & Graph Colouring
Graph Theory,Graph Terminologies,Planar Graph & Graph ColouringSaurabh Kaushik
 
4 ESO Academics - UNIT 08 - VECTORS AND LINES.
4 ESO Academics - UNIT 08 - VECTORS AND LINES.4 ESO Academics - UNIT 08 - VECTORS AND LINES.
4 ESO Academics - UNIT 08 - VECTORS AND LINES.Gogely The Great
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabolaJean Leano
 

Similar to Excursions in Combinatorial Taxicab Geometry-MathFest 2015 (20)

Precalc warm ups
Precalc warm upsPrecalc warm ups
Precalc warm ups
 
ch-3 coordinate geometry.pptx
ch-3 coordinate geometry.pptxch-3 coordinate geometry.pptx
ch-3 coordinate geometry.pptx
 
Honors precalc warm ups
Honors precalc warm upsHonors precalc warm ups
Honors precalc warm ups
 
Section 1.3 -- The Coordinate Plane
Section 1.3 -- The Coordinate PlaneSection 1.3 -- The Coordinate Plane
Section 1.3 -- The Coordinate Plane
 
Final Report
Final ReportFinal Report
Final Report
 
RO Q3 M4 MATH9 pdf.pdf
RO Q3 M4 MATH9 pdf.pdfRO Q3 M4 MATH9 pdf.pdf
RO Q3 M4 MATH9 pdf.pdf
 
Opt. Maths for SEE appearing students DATE: 2077/01/17
Opt. Maths  for SEE appearing students   DATE: 2077/01/17Opt. Maths  for SEE appearing students   DATE: 2077/01/17
Opt. Maths for SEE appearing students DATE: 2077/01/17
 
Term Paper Coordinate Geometry
Term Paper Coordinate GeometryTerm Paper Coordinate Geometry
Term Paper Coordinate Geometry
 
space-time diagram(final)
space-time diagram(final)space-time diagram(final)
space-time diagram(final)
 
Coordinate geometry 9 grade
Coordinate geometry 9 gradeCoordinate geometry 9 grade
Coordinate geometry 9 grade
 
Compiled and solved problems in geometry and trigonometry,F.Smaradanhe
Compiled and solved problems in geometry and trigonometry,F.SmaradanheCompiled and solved problems in geometry and trigonometry,F.Smaradanhe
Compiled and solved problems in geometry and trigonometry,F.Smaradanhe
 
Entropy based measures for graphs
Entropy based measures for graphsEntropy based measures for graphs
Entropy based measures for graphs
 
R lecture co2_math 21-1
R lecture co2_math 21-1R lecture co2_math 21-1
R lecture co2_math 21-1
 
Graph Theory,Graph Terminologies,Planar Graph & Graph Colouring
Graph Theory,Graph Terminologies,Planar Graph & Graph ColouringGraph Theory,Graph Terminologies,Planar Graph & Graph Colouring
Graph Theory,Graph Terminologies,Planar Graph & Graph Colouring
 
Ijetr011921
Ijetr011921Ijetr011921
Ijetr011921
 
Logistics Management Assignment Help
Logistics Management Assignment Help Logistics Management Assignment Help
Logistics Management Assignment Help
 
4 ESO Academics - UNIT 08 - VECTORS AND LINES.
4 ESO Academics - UNIT 08 - VECTORS AND LINES.4 ESO Academics - UNIT 08 - VECTORS AND LINES.
4 ESO Academics - UNIT 08 - VECTORS AND LINES.
 
ANECDOTAL RECORDS.pptx
ANECDOTAL RECORDS.pptxANECDOTAL RECORDS.pptx
ANECDOTAL RECORDS.pptx
 
Math14 lesson 1
Math14 lesson 1Math14 lesson 1
Math14 lesson 1
 
Lesson 8 conic sections - parabola
Lesson 8    conic sections - parabolaLesson 8    conic sections - parabola
Lesson 8 conic sections - parabola
 

Excursions in Combinatorial Taxicab Geometry-MathFest 2015

  • 1.                                                             Excursions  in  Combinatorial  in  Taxicab  Geometry   Math  Fest  2015 John  Best Summit  University  of  Pennsylvania   jbest@summitu.edu  
  • 2.            >  Points  –  The  coordinate  plane  ℝ! .        >  Distance  Function  –                               𝑑! 𝑥!, 𝑦! , 𝑥!, 𝑦! = 𝑥! − 𝑥! + 𝑦! − 𝑦!       >  This  is  the  Taxicab  plane  –  denoted  by   ℝ! , 𝑑! .     >  Euclidean  plane  is  denoted  by   ℝ! , 𝑑!     𝑑! 𝑥!, 𝑦! , 𝑥!, 𝑦! = (𝑥! − 𝑥!)! + (𝑦! − 𝑦!)!   What  is  Taxicab  Geometry?    
  • 3.       Fig.  1.  Unit  Circle  in  the  Taxicab  plane   What  is  Taxicab  Geometry?  
  • 4.     Look  for  Taxicab  versions  of  theorems  from       combinatorial  Euclidean  Geometry.                                 Motivation  
  • 5.   Theorem  1  (Erdös-­‐Anning)     If  an  infinite  set  of  points  in  the  Euclidean  plane  determines   only  integer  distances,  then  all  the  points  lie  on  a  straight   line.     Proof  Reference:     Ross  Honsberger,  Mathematical  Diamonds  ,  MAA,  2003                                                                                                                            
  • 6.       Fig.  2.  Infinitely  many  (almost  linear)  points  in  Taxicab  plane  with  integer   distances.      
  • 7.     Fig.  3.  Infinitely  many  (very  non-­‐linear)  points  in  Taxicab  plane  with  integer   distances.          There  seems  to  be  no  Taxicab  version  of  Erdös-­‐Anning.  
  • 8. Theorem  2       a)  There  are  no  four  points  in  the  Euclidean  plane  such  that   the  distance  between  each  pair  is  an  odd  integer.     b)  The  maximum  number  of  odd  integral  distances  between   𝑛  points  in   ℝ! , 𝑑!  is     𝑛! 3 + 𝑟(𝑟 − 3) 6     where   𝑟 = 1, 2, 𝑜𝑟  3  and   𝑛 ≡ 𝑟  𝑚𝑜𝑑  3      
  • 9. Proof  Reference:     a)  Jiri  Matousek,  Thirty-­‐three  Miniatures-­‐Mathematical   and  Algorithmic  Applications  of  Linear  Algebra,  American   Mathematical  Society,  2012     b)  L.  Piepmeyer,  The  Maximum  Number  of  Odd  Integral   Distances  Between  Points  in  the  Plane,  Discrete  and   Computational  Geometry  16  (1996),  pp.  113-­‐115                        
  • 10.             Fig.4.  Four  points  in  Taxicab  plane  with  pairwise  odd  distances.                                                                                                            (0,0),    (5,0),    (.5,  2.5),    (.5,  -­‐8.5)      6  distinct  distance   Theorem  2a  fails  in  Taxicab  plane  
  • 11. Theorem  2T     a)  There  are  no  five  points  in  the  Taxicab  plane  such  that   the  distance  between  any  two  is  an  odd  integer.     b)  The  maximum  number  of  odd  integral  distances  between   𝑛  points  in   ℝ! , 𝑑!  is       3𝑛! 8 + 𝑟(𝑟 − 4) 8     where   𝑟 = 1, 2, 3, 𝑜𝑟  4  and     𝑛 ≡ 𝑟  𝑚𝑜𝑑  4.      
  • 12. Proof:       John  Best,  Odd  Distances  in  the  Taxicab  Plane,  In   Preparation.                                                
  • 13.     Def.  1:  A  graph  is  an  ordered  pair  G=(V,  E)  consisting  of  a   nonempty  set  V  of  vertices  together  with  a  set  E  of   unordered  pairs  of  distinct  vertices  called  edges.     A  complete  graph  on  |V  |=m  vertices  is  a  graph  in  which   every  pair  of  distinct  vertices  is  connected  by  a  unique   edge.  A  complete  graph  is  denoted  by  K  m.             A  Little  Graph  Theory  
  • 14.   Def.  2:  A  complete  bipartite  graph  is  a  graph  whose   vertices  can  be  partitioned  into  two  subsets  V  and  W  such   that  no  edge  has  both  endpoints  in  the  same  subset,  and   every  possible  edge  that  could  connect  vertices  in   different  subsets  is  part  of  the  graph.     If  |V|=m  and  |W|=n,  we  denote  the  graph  by  K  m,n.       Def.  3:  A  unit  distance  graph  is  a  set  of  points  V  in  a   metric  space  with  an  edge  connecting  two  vertices  iff  the   distance  between  the  points  equals  1.     A  Little  Graph  Theory  
  • 15. Theorem  3     The  complete  graph  K4  and  the  complete  bipartite  graph   K2,3  are  not  unit  distance  graphs  in   ℝ! , 𝑑! .     Proof:  That  K2,3  is  not  a  unit  distance  graph  in   ℝ! , 𝑑!  is  a   consequence  of  that  fact  that  two  distinct  unit  circles  can   intersect  in  at  most  two  points.     To  see  that  K4  is  not,  consider  an  equilateral  triangle  of   side  length  1,  and  show  that  there  cannot  be  a  4th  point  at   distance  1  from  the  three  vertices.                                                                                                                                                                                              ∎    
  • 16. Theorem  3T   The  complete  graph  K4  and  the  complete  bipartite   graph  K2,3  are    unit  distance  graphs  in   ℝ! , 𝑑! .  The   complete  graph  K5  is  not  a  unit  distance  graph  in   ℝ! , 𝑑! .     Proof:  The  set  of  points   0,0 , 1,0 , ! ! , ! ! , ! ! , !! !   show  that  K4  is  a  unit  distance  graph  in  the  Taxicab   plane.      
  • 17. To  see  that  K2,3  is  a  unit  distance  graph  in   ℝ! , 𝑑!   consider  the  sets     𝑉 = 0,0 , 1,1     and                                                         𝑊 = ! ! , ! ! , ! ! , ! ! , ! ! , ! !     Calculations  show  that  the  Taxicab  distance  from  any   point  in  V  to  any  point  in  W  equals  1,  and  the  Taxicab   distance  between  points  in  V  and  W  is  not  1.     The  last  assertion  follows  from  Theorem  2T.    ∎  
  • 18.                                                                                                                                                                                                                 Fig.  5.  Unit-­‐Distance  K2,3  in  Taxicab  plane  (black  edges,  green  &  red  vertices).    
  • 19. Def.  4:  Let  S  be  a  bounded  set  of  points  in  either   ℝ! , 𝑑!   or   ℝ! , 𝑑! .  The  diameter  of  S  is  the  number                                                               𝛿 = 𝑠𝑢𝑝 𝑑!(𝑎, 𝑏) 𝑎, 𝑏   ∈ 𝑆                        
  • 20. Theorem  4  (Jung’s  Theorem)     Every  finite  set  of  points  in   ℝ! , 𝑑!  with  diameter   𝛿  can  be   enclosed  in  a  circle  with  radius   𝑟 ≤ ! ! .     Proof  Reference:      Hans  Rademacher  and  Otto  Toeplitz,  The  Enjoyment  of   Mathematics,  Dover  Publications,  1990                    
  • 21. Theorem  4T       Every  finite  set  of  points  in   ℝ! , 𝑑!  with  diameter   𝛿  can  be   enclosed  in  a  Taxicab  circle  with  radius   𝑟 ≤ ! ! .     Proof  Reference:     V.  Boltyanski  and  H.  Martini,  Jung’s  Theorem  for  a  pair  of   Minkowski  Spaces,  Adv.  Geom.  6  (2006),  pp.  645-­‐650              
  • 22.   Let  F  be  a  plane  figure  with  diameter   𝛿  .  The  Borsuk   Conjecture  in  the  plane  asks  for  the  fewest  number  of   pieces  F  can  be  cut  into  so  that  each  piece  has  diameter   less  than   𝛿  .  We  denote  this  number  by  a(F)                     Borsuk  Conjecture  in  the  Plane  
  • 23. Theorem  5  (Borsuk)     For  any  figure  F  in   ℝ! , 𝑑! ,  with  diameter   𝛿,     𝑎(𝐹) ≤ 3       Proof  Reference:     V.  Boltyanski  and  I.  Gohberg,  The  Decomposition  of  Figures   into  Smaller  Parts,  The  University  of  Chicago  Press,  1980.          
  • 24. Theorem  5T       For  any  figure  F  in   ℝ! , 𝑑! ,  with  diameter   𝛿,     𝑎(𝐹) ≤ 4     Equality  is  obtained  iff  the  convex  hull  of  F  is  a  dilation  of   the  Taxi  unit  circle  by  a  factor  of     ! !  (and  possibly  a   translation.)       Proof  Reference:  Same  as  Theorem  5.            
  • 25.         Fig.6.  Borsuk  decomposition  of  Taxi  Unit  circle.  Four  parts  of  diameter  1.    
  • 26.   1.  Investigate  these,  and  other  Euclidean  theorems,  in   higher  Taxi  dimensions                                                                                                       ℝ! , 𝑑! ,  𝑛 ≥ 3.       2.  Investigate  these,  and  other  Euclidean  theorems,  in   other  metrics,  such  as  Chinese  Checker  Metric,   Generalized  Absolute  Value  Metric,  etc.                     Future  Research