SlideShare a Scribd company logo
1 of 5
Download to read offline
International Journal Of Mathematics And Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
Www.Ijmsi.org || Volume 3 Issue 1 || January. 2015 || PP-33-37
www.ijmsi.org 33 | P a g e
Steady Flow in Pipes of Rectangular Cross-Section Through
Porous Medium
Dr. Anand Swrup Sharma
Associate Professor, Dept. of Applied Sciences, Ideal Institute of Technology, Ghaziabad (U. P.)
Email: Sharma.as09@gmail.com
ABSTRACT : In this paper we have investigated the steady flow in pipes of rectangular cross-section through
porous medium. We have investigated the velocity, flux and vortex line.
KEY WORDS: Steady flow, rectangular cross-section, incompressible fluid and porous medium.
NOMENCLATURE
u = velocity component along x – axis
v = velocity component along y – axis
w (x , y) = velocity in x-y plane
t = the time
 = the density of fluid
P = the fluid pressure
K= the thermal conductivity of the fluid
 = Coefficient of viscosity
 = Kinematic viscosity
Q = the volumetric flow
x
 = Vorticity component in x – direction
y
 = Vorticity component in y – direction
z
 = Vorticity component in z - direction
I. INTRODUCTION
We have investigated the steady flow in pipes of rectangular cross-section through porous medium.
Attempts have been made by several researchers D. Chittibabu and D.R.V. Prasada Rao [1] Sort effect on
convective flow of heat & mass transfer through a Porous medium in a horizontal wavy dilated channel with
radiation. D.K. Das and U. Barman [2] Slow steady flow of a viscous incompressible fluid between two
infinite co-axial circular cylinders with axial roughness. D.K. Das and U. Barman [3] to study the boundary
layer for MHD stratified fluid through a Porous medium. Dong – Yong Shui, Grassia Pau and Brian Derby [4]
oscillatory in Compressible fluid flow in Tapered Tube with a free surface in an inkjet print Head. P.G. Drazin
[5] on the stability of Parallel flow of an incompressible fluid of variable density and viscosity. L. E.
Ericken and L. T. Fant [6] heat and mass transfer on a moving continuous flat plate with suction or
Injection Ind. A. T. Eswar and B. C. Bommiah [7] the affect of variable viscosity on Laminar flow due to a
point shrik. M. A. Al-Nimr, M. Alkam and M. Hamdan [8] on forced convection in channels partially filled with
porous substrates. M. A. Al-Nimr and M. Alkam [9] unsteady Non-Darcian forced convection analysis in an
annulus partially filled with a porous material. M.A. Al-Nimr and M. Alkam [10] unsteady Non-Darcian fluid
flow in parallel plates channels partially filled with porous material. R. A. Alpher [11] on forced convection in
channels partially filled with porous substrates. In this paper we have investigated the velocity, flux and vortex
line.
II. FORMULATION OF THE PROBLEM
Let z-axis be taken the direction of flow along the axis of the pipe. Then u = 0, v = 0 for steady and
incompressible fluid the velocity component is independent of z.
The equation of continuity.
0 ..................(1)
u v w
x y z
  
  
  
 0, 0 , 0 , .......(2 )
w
B u t u v w w x y
z

    

i.e. w is independent of z
The Navier-Stokes equations of motion in the absence of body forces.
Steady Flow In Pipes Of Rectangular…
www.ijmsi.org 34 | P a g e
= 0 ..............(3)
P
x



= 0.........(4)
P
y



2 2
2 2
0 ................(5)
P w w w
z x y K



   
      
   
21
let B
K

It is clear from (3) & (4) P is independent of x & y i.e. p is the Function of z
III. SOLUTION OF THE PROBLEM
p = p (z) , C o n stan t P
p d p
z d z

   

2 2 2 2
2 2
2 2 2 2
.................(6 )
w w d p w w P
B w B w
x y d z x y


    
        
    
 2 2 2
'
P
D D B w

   
'
. . n nh x h y
nC F a e

   Where hn & h'n are related by
2 2 2
' 0n n
h h B  
2 2 2 2
1
and . .
'
P P
P I
D D B B 
 
   
   
2
2 ' 2
2
1
' 1
w (x , y) = W h eren n n
n
n nh x h y
a e P h h B
B 



  
Case - I: ( , ) 0 ( , ), ( , ) 0 ( , )w x y a t a b w x y a t a b  
2 2
1 1
' '
0 0n n
n n
a a
n n n nh h b h h bP P
a e a n d a e
B B 
 
 
 
    
2
'
1
................( )
a
n n
n
n
h h bP
a e a
B



   
2
'
1
................( )
a
n n
n
n
h h bP
a e b
B



  
'
0n n
h h B   
y- axis
x- axis
z
A B
CD
(-a , b)
(-a , -b) (a , -b)
(a , b)
(0, 0)
o
x=a
x=-a
Steady Flow In Pipes Of Rectangular…
www.ijmsi.org 35 | P a g e
2
( )
12 2 2 2 2
1 1
, ( , )
P
a B a B a B x B B x aB
n n
n n
P P P P P
e a a e e w x y e e e
B B B B B

    
  
    
 
           
Case -II: ( , ) 0 ( , ) & ( , )w x y a t a b a b   
2 2 2 2 2
( )
( , )
a B x B B x aP P P P
w x y e e e
B B B B   

     
Case - III: ( , ) 0 ( , ) & ( , )w x y a t a b a b 
( )
3 2 2 2 2
( , )
b B y B B y bP P P P
w x y e e e
B B B B   
  
     
Case - IV:
( )
4 2 2
( , ) 0 ( , ) & ( , ) , ( , )
B y bP P
w x y a t a b a b w x y e
B B 

      
2
( , ) 1 2 2 .............. (7 )
a B b BP
w x y e C o sh x B e C o sh y B
B
   
 
In particular case: In the case of square i.e. a = b
 2
( , ) 1 2 ............. (8)
a BP
w x y e C o sh x B C o sh y B
B
   
 
Flux Q of the fluid over an area of rectangular cross-section if given by
 2
( , ) 1 2 2
b Ba B
a b a b
x a y b a b
P
Q w x y d x d y e C o sh x B e C o sh y B d x d y
B     
      
   2 20
2 2 1
1 2 2 1 2 2
a B b B a B b B
a b a
a a
P P
e C osh x B e C osh y B dy dx e C osh x B b e Sinh b B dx
B B B  
  
       
  
  
 2 20
0
4 2 4 2 2
1 2
a B b B a B b B
a
a
P P a
b e C o sh x B e S in h b B d x b x e S in h x B e S in h b B
B B B B B 
    
         
     

2
4 2 2a B b BP a
b a e Sinh a B e Sinh b B
B B B
  
    
  
 2
4 2
............ (9 )
a B b BP
Q a b b e S in h a B a e S in h b B
B B
 
  
 
 
In particular case: In the case of square a = b
2
24 4
............. (1 0 )
a BP a
Q a e S in h a B
B B
 
 
 
 
Steady Flow In Pipes Of Rectangular…
www.ijmsi.org 36 | P a g e
2
( , ) 1 2 2
a B b BP
w x y e C o sh x B e C o sh y B
B
   
 

2
1 2 2
a B b BP
q u i vj w k e C o sh x B e C o sh y B k
B
      
 
Let , &x y z
   are vorticity components
2
2
2
b Bb B
x
w v P P
B e S in h y B e S in h y B
y z B B 
 
       
  
2
2
2 , 0
a B a B
y z
u w P P
B e S in h x B e S in h x B
z x B B 
 
         
  
The equation of vortex line:
x y z
d x d y d z
 
  
2 2 0b B a B
d x d y d z
P P
e S in h y B e S in h x B
B B 
  

0d z z B  
1
a B b B
a Bb B
d x d y
A g a in e S in h x B d x e S in h y B d y C
e S in h x Be S in h y B
   

 
11
1 1
,
b B a Ba B b B
e C o sh x B e C o sh y B C e C o sh x B e C o sh y B C B A
B B
    
 The vortex lines:
& Z = B ..................... (1 1 )
a B b B
e C o sh x B e C o sh y B A 
Clearly the flow is Rotational in pipe.
In particular case: In the case of square a = b
  & Z = B ............. (1 2 )
a B
e C o sh x B C o sh y B A 
Table for velocity:
 
1 1
, .5, 1, , ,
4
L et P a b are sam e B and x y are change
K


    
Steady Flow In Pipes Of Rectangular…
www.ijmsi.org 37 | P a g e
Table- 1 (for velocity)
 ,x y
(.1, .1) (.2, .3) (.3, .4) (.4, .5) (.5, .6) (.6, .7) (.7, .8)
1
1
K
  ,w x y
-4.964 -5.114 -5.28 -5.504 -5.788 -6.134 -6.547
1 1
2K
  ,w x y
-11.21 -11.297 -11.396 -11.529 -11.696 -11.897 -12.133
1 1
3K
  ,w x y
-20.635 -20.712 -20.796 -20.908 -21.048 -21.216 -21.414
1 1
4K
  ,w x y
-33.102 -33.172 -33.249 -33.352 -33.481 -33.636 -33.816
1 1
6K
  ,w x y
-67.07 -67.135 -67.21 -67.3 -67.419 -67.56 -67.73
IV. CONCLUSION AND DISCUSSION
In this paper we have investigated the velocity by the table- 1 of equations (7) between velocity and
point ,x y . It is clear that the velocity of fluid increases uniformly with negative sign in the interval
     .1 , .1 , .7 , .8x y  at different values of
1
K
again velocity increases uniformly in the interval
     .1 , .1 , .7 , .8x y  when
1
K
decreases from
1
1 to
6
. Negative sign of velocity shows that
direction of flow is opposite to the direction of motion of fluid. We have investigated vortex lines and the
volumetric flow of elliptic and circle by equations. (8), (9), (10), (11) and (12) respectively.
REFERENCES
[1]. Chittibabu D. And D. R. V. Prasada Rao, Sort effect on convective flow of heat & mass transfer through a Porous medium in a
horizontal wavy dilated channel with radiation. Acta ciencia Indica, Vol. XXXIV M, No. 4, pp 2135, (2008).
[2]. Das D. K. and U. Barman, Slow steady flow of a viscous incompressible fluid between two infinite co-axial circular cylinders
with axial roughness. Acta ciencia Indica, Vol. XXXIV M, No. 4, pp 1625, (2008).
[3]. Das D. K. and U. Barman, to study the boundary layer for MHD stratified fluid through a Porous medium. Acta ciencia Indica, Vol.
XXXIV M, No. 4, pp 1739, (2008).
[4]. Dong –Y. S. & Paul Grassia and B. D., in Compressible fluid flow in Tapered Tube with a free surface in an inkjet print Head. J. of
fluid Engineering, Vol. 127, pp 98-109, (2005).
[5]. Drazin P. G., on the stability of Parallel flow of an incompressible fluid of variable density and viscosity. Proc. Camb. Phill.
Soc., Vol. 58, pp 646, (1962).
[6]. Ericken L. E., Fant L. T. & Fox V. G., heat and mass transfer on a moving continuous flat plate with suction or Injection Ind.
Engg. Chem. Fundam, pp 5-19, (1966).
[7]. Eswar A. T. and Bommiah B. C., the affect of variable viscosity on Laminar flow due to a point shrik. Indian J. Pure appl. Math.,
Vol. 35(6), pp 811–815, (2004).
[8]. Al-Nimr M. A., Alkam M. & Hamdan M., on forced convection in channels partially filled with porous substrates. Heat and Mass
Transfer, Vol. 38(4-5) pp 337-342, (2002).
[9]. Al-Nimr M. A., Alkam M. K., unsteady Non-Darcian forced convection analysis in an annulus partially filled with a porous material.
ASME Heat Transfer, Vol. 119, pp 799-785, (1997).
[10]. Al-Nimr M. A. & Alkam M.K., unsteady Non-Darcian fluid flow in parallel plates channels partially filled with porous material.
Heat Mass Transfer, Vol. 33, pp 315-318, (1998).
[11]. Alpher R. A., on forced convection in channels partially filled with porous substrates. Int. J. of Heat and Mass Transfer, Vol. 3, pp
108, (1961).

More Related Content

Similar to Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium

Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Alexander Dubynin
 
Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models
Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block ModelsPhase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models
Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models
Nobutaka Shimizu
 

Similar to Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium (20)

Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A TubeEffect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
Effect Of Elasticity On Herschel - Bulkley Fluid Flow In A Tube
 
Non- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vesselsNon- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vessels
 
Convective Heat And Mass Transfer Flow Of A Micropolar Fluid In A Rectangular...
Convective Heat And Mass Transfer Flow Of A Micropolar Fluid In A Rectangular...Convective Heat And Mass Transfer Flow Of A Micropolar Fluid In A Rectangular...
Convective Heat And Mass Transfer Flow Of A Micropolar Fluid In A Rectangular...
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
 
G04444146
G04444146G04444146
G04444146
 
Fl35967977
Fl35967977Fl35967977
Fl35967977
 
Second Law Analysis of Fluid Flow and Heat Transfer through Porous Channel wi...
Second Law Analysis of Fluid Flow and Heat Transfer through Porous Channel wi...Second Law Analysis of Fluid Flow and Heat Transfer through Porous Channel wi...
Second Law Analysis of Fluid Flow and Heat Transfer through Porous Channel wi...
 
Effects of wall properties and heat transfer on the peristaltic
Effects of wall properties and heat transfer on the peristalticEffects of wall properties and heat transfer on the peristaltic
Effects of wall properties and heat transfer on the peristaltic
 
http://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdf
http://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdfhttp://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdf
http://www.ijmer.com/papers/Vol4_Issue1/AW41187193.pdf
 
Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...
Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...
Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...
 
Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...
Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...
Heat and Mass Transfer Hydromagnetic Radiative Casson Fluid Flow over an Expo...
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
 
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
E0731929
E0731929E0731929
E0731929
 
bioexpo_poster
bioexpo_posterbioexpo_poster
bioexpo_poster
 
K044046872
K044046872K044046872
K044046872
 
Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models
Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block ModelsPhase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models
Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models
 
Af03101880194
Af03101880194Af03101880194
Af03101880194
 

Recently uploaded

Recently uploaded (20)

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 

Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium

  • 1. International Journal Of Mathematics And Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 Www.Ijmsi.org || Volume 3 Issue 1 || January. 2015 || PP-33-37 www.ijmsi.org 33 | P a g e Steady Flow in Pipes of Rectangular Cross-Section Through Porous Medium Dr. Anand Swrup Sharma Associate Professor, Dept. of Applied Sciences, Ideal Institute of Technology, Ghaziabad (U. P.) Email: Sharma.as09@gmail.com ABSTRACT : In this paper we have investigated the steady flow in pipes of rectangular cross-section through porous medium. We have investigated the velocity, flux and vortex line. KEY WORDS: Steady flow, rectangular cross-section, incompressible fluid and porous medium. NOMENCLATURE u = velocity component along x – axis v = velocity component along y – axis w (x , y) = velocity in x-y plane t = the time  = the density of fluid P = the fluid pressure K= the thermal conductivity of the fluid  = Coefficient of viscosity  = Kinematic viscosity Q = the volumetric flow x  = Vorticity component in x – direction y  = Vorticity component in y – direction z  = Vorticity component in z - direction I. INTRODUCTION We have investigated the steady flow in pipes of rectangular cross-section through porous medium. Attempts have been made by several researchers D. Chittibabu and D.R.V. Prasada Rao [1] Sort effect on convective flow of heat & mass transfer through a Porous medium in a horizontal wavy dilated channel with radiation. D.K. Das and U. Barman [2] Slow steady flow of a viscous incompressible fluid between two infinite co-axial circular cylinders with axial roughness. D.K. Das and U. Barman [3] to study the boundary layer for MHD stratified fluid through a Porous medium. Dong – Yong Shui, Grassia Pau and Brian Derby [4] oscillatory in Compressible fluid flow in Tapered Tube with a free surface in an inkjet print Head. P.G. Drazin [5] on the stability of Parallel flow of an incompressible fluid of variable density and viscosity. L. E. Ericken and L. T. Fant [6] heat and mass transfer on a moving continuous flat plate with suction or Injection Ind. A. T. Eswar and B. C. Bommiah [7] the affect of variable viscosity on Laminar flow due to a point shrik. M. A. Al-Nimr, M. Alkam and M. Hamdan [8] on forced convection in channels partially filled with porous substrates. M. A. Al-Nimr and M. Alkam [9] unsteady Non-Darcian forced convection analysis in an annulus partially filled with a porous material. M.A. Al-Nimr and M. Alkam [10] unsteady Non-Darcian fluid flow in parallel plates channels partially filled with porous material. R. A. Alpher [11] on forced convection in channels partially filled with porous substrates. In this paper we have investigated the velocity, flux and vortex line. II. FORMULATION OF THE PROBLEM Let z-axis be taken the direction of flow along the axis of the pipe. Then u = 0, v = 0 for steady and incompressible fluid the velocity component is independent of z. The equation of continuity. 0 ..................(1) u v w x y z           0, 0 , 0 , .......(2 ) w B u t u v w w x y z        i.e. w is independent of z The Navier-Stokes equations of motion in the absence of body forces.
  • 2. Steady Flow In Pipes Of Rectangular… www.ijmsi.org 34 | P a g e = 0 ..............(3) P x    = 0.........(4) P y    2 2 2 2 0 ................(5) P w w w z x y K                   21 let B K  It is clear from (3) & (4) P is independent of x & y i.e. p is the Function of z III. SOLUTION OF THE PROBLEM p = p (z) , C o n stan t P p d p z d z       2 2 2 2 2 2 2 2 2 2 .................(6 ) w w d p w w P B w B w x y d z x y                       2 2 2 ' P D D B w      ' . . n nh x h y nC F a e     Where hn & h'n are related by 2 2 2 ' 0n n h h B   2 2 2 2 1 and . . ' P P P I D D B B            2 2 ' 2 2 1 ' 1 w (x , y) = W h eren n n n n nh x h y a e P h h B B        Case - I: ( , ) 0 ( , ), ( , ) 0 ( , )w x y a t a b w x y a t a b   2 2 1 1 ' ' 0 0n n n n a a n n n nh h b h h bP P a e a n d a e B B             2 ' 1 ................( ) a n n n n h h bP a e a B        2 ' 1 ................( ) a n n n n h h bP a e b B       ' 0n n h h B    y- axis x- axis z A B CD (-a , b) (-a , -b) (a , -b) (a , b) (0, 0) o x=a x=-a
  • 3. Steady Flow In Pipes Of Rectangular… www.ijmsi.org 35 | P a g e 2 ( ) 12 2 2 2 2 1 1 , ( , ) P a B a B a B x B B x aB n n n n P P P P P e a a e e w x y e e e B B B B B                             Case -II: ( , ) 0 ( , ) & ( , )w x y a t a b a b    2 2 2 2 2 ( ) ( , ) a B x B B x aP P P P w x y e e e B B B B           Case - III: ( , ) 0 ( , ) & ( , )w x y a t a b a b  ( ) 3 2 2 2 2 ( , ) b B y B B y bP P P P w x y e e e B B B B             Case - IV: ( ) 4 2 2 ( , ) 0 ( , ) & ( , ) , ( , ) B y bP P w x y a t a b a b w x y e B B          2 ( , ) 1 2 2 .............. (7 ) a B b BP w x y e C o sh x B e C o sh y B B       In particular case: In the case of square i.e. a = b  2 ( , ) 1 2 ............. (8) a BP w x y e C o sh x B C o sh y B B       Flux Q of the fluid over an area of rectangular cross-section if given by  2 ( , ) 1 2 2 b Ba B a b a b x a y b a b P Q w x y d x d y e C o sh x B e C o sh y B d x d y B                2 20 2 2 1 1 2 2 1 2 2 a B b B a B b B a b a a a P P e C osh x B e C osh y B dy dx e C osh x B b e Sinh b B dx B B B                     2 20 0 4 2 4 2 2 1 2 a B b B a B b B a a P P a b e C o sh x B e S in h b B d x b x e S in h x B e S in h b B B B B B B                        2 4 2 2a B b BP a b a e Sinh a B e Sinh b B B B B             2 4 2 ............ (9 ) a B b BP Q a b b e S in h a B a e S in h b B B B          In particular case: In the case of square a = b 2 24 4 ............. (1 0 ) a BP a Q a e S in h a B B B        
  • 4. Steady Flow In Pipes Of Rectangular… www.ijmsi.org 36 | P a g e 2 ( , ) 1 2 2 a B b BP w x y e C o sh x B e C o sh y B B        2 1 2 2 a B b BP q u i vj w k e C o sh x B e C o sh y B k B          Let , &x y z    are vorticity components 2 2 2 b Bb B x w v P P B e S in h y B e S in h y B y z B B               2 2 2 , 0 a B a B y z u w P P B e S in h x B e S in h x B z x B B                 The equation of vortex line: x y z d x d y d z      2 2 0b B a B d x d y d z P P e S in h y B e S in h x B B B      0d z z B   1 a B b B a Bb B d x d y A g a in e S in h x B d x e S in h y B d y C e S in h x Be S in h y B        11 1 1 , b B a Ba B b B e C o sh x B e C o sh y B C e C o sh x B e C o sh y B C B A B B       The vortex lines: & Z = B ..................... (1 1 ) a B b B e C o sh x B e C o sh y B A  Clearly the flow is Rotational in pipe. In particular case: In the case of square a = b   & Z = B ............. (1 2 ) a B e C o sh x B C o sh y B A  Table for velocity:   1 1 , .5, 1, , , 4 L et P a b are sam e B and x y are change K       
  • 5. Steady Flow In Pipes Of Rectangular… www.ijmsi.org 37 | P a g e Table- 1 (for velocity)  ,x y (.1, .1) (.2, .3) (.3, .4) (.4, .5) (.5, .6) (.6, .7) (.7, .8) 1 1 K   ,w x y -4.964 -5.114 -5.28 -5.504 -5.788 -6.134 -6.547 1 1 2K   ,w x y -11.21 -11.297 -11.396 -11.529 -11.696 -11.897 -12.133 1 1 3K   ,w x y -20.635 -20.712 -20.796 -20.908 -21.048 -21.216 -21.414 1 1 4K   ,w x y -33.102 -33.172 -33.249 -33.352 -33.481 -33.636 -33.816 1 1 6K   ,w x y -67.07 -67.135 -67.21 -67.3 -67.419 -67.56 -67.73 IV. CONCLUSION AND DISCUSSION In this paper we have investigated the velocity by the table- 1 of equations (7) between velocity and point ,x y . It is clear that the velocity of fluid increases uniformly with negative sign in the interval      .1 , .1 , .7 , .8x y  at different values of 1 K again velocity increases uniformly in the interval      .1 , .1 , .7 , .8x y  when 1 K decreases from 1 1 to 6 . Negative sign of velocity shows that direction of flow is opposite to the direction of motion of fluid. We have investigated vortex lines and the volumetric flow of elliptic and circle by equations. (8), (9), (10), (11) and (12) respectively. REFERENCES [1]. Chittibabu D. And D. R. V. Prasada Rao, Sort effect on convective flow of heat & mass transfer through a Porous medium in a horizontal wavy dilated channel with radiation. Acta ciencia Indica, Vol. XXXIV M, No. 4, pp 2135, (2008). [2]. Das D. K. and U. Barman, Slow steady flow of a viscous incompressible fluid between two infinite co-axial circular cylinders with axial roughness. Acta ciencia Indica, Vol. XXXIV M, No. 4, pp 1625, (2008). [3]. Das D. K. and U. Barman, to study the boundary layer for MHD stratified fluid through a Porous medium. Acta ciencia Indica, Vol. XXXIV M, No. 4, pp 1739, (2008). [4]. Dong –Y. S. & Paul Grassia and B. D., in Compressible fluid flow in Tapered Tube with a free surface in an inkjet print Head. J. of fluid Engineering, Vol. 127, pp 98-109, (2005). [5]. Drazin P. G., on the stability of Parallel flow of an incompressible fluid of variable density and viscosity. Proc. Camb. Phill. Soc., Vol. 58, pp 646, (1962). [6]. Ericken L. E., Fant L. T. & Fox V. G., heat and mass transfer on a moving continuous flat plate with suction or Injection Ind. Engg. Chem. Fundam, pp 5-19, (1966). [7]. Eswar A. T. and Bommiah B. C., the affect of variable viscosity on Laminar flow due to a point shrik. Indian J. Pure appl. Math., Vol. 35(6), pp 811–815, (2004). [8]. Al-Nimr M. A., Alkam M. & Hamdan M., on forced convection in channels partially filled with porous substrates. Heat and Mass Transfer, Vol. 38(4-5) pp 337-342, (2002). [9]. Al-Nimr M. A., Alkam M. K., unsteady Non-Darcian forced convection analysis in an annulus partially filled with a porous material. ASME Heat Transfer, Vol. 119, pp 799-785, (1997). [10]. Al-Nimr M. A. & Alkam M.K., unsteady Non-Darcian fluid flow in parallel plates channels partially filled with porous material. Heat Mass Transfer, Vol. 33, pp 315-318, (1998). [11]. Alpher R. A., on forced convection in channels partially filled with porous substrates. Int. J. of Heat and Mass Transfer, Vol. 3, pp 108, (1961).