SlideShare a Scribd company logo
1 of 8
Download to read offline
SECTION 3.4

MATRIX OPERATIONS
The objective of this section is simple to state. It is not merely knowledge of, but complete mastery
of matrix addition and multiplication (particularly the latter). Matrix multiplication must be
practiced until it is carried out not only accurately but quickly and with confidence — until you can
hardly look at two matrices A and B without thinking of "pouring" the ith row of A down the jth
column of B.

          3 −5       −1 0   9 −15  −4 0        5 −15
1.      3       + 4  3 −4 =  6 21  + 12 −16 = 18 5 
         2 7                                        

          2 0 − 3  − 2 3 1     10 0 −15  6 −9 −3   16 −9 −18
2.      5         − 3  7 1 5 =  −5 25 30  +  −21 −3 −15 =  −26 22 15 
          −1 5 6                                                     

           5 0       −4 5    −10 0   −16 20     −26 20 
3.         0 7  + 4  3 2  =  0 −14 +  12
        −2                                     8  =  12 −6
                                                         
            3 −1
                     7 4
                               −6
                                     2   28 16 
                                                     22 18 
                                                               

          2 −1 0      6 −3 − 4 
4.        4 0 −3 + 5 5 2 −1
        7                      
          5 −2 7 
                     0 7 9 
                                 
                14 −7     0  30 −15 −20     44 −22 −20 
                 28 0 −21 +  25 10
              =                       −5  =  53 10 −26 
                                                         
                35 −14 49   0 35 45 
                                           35 21 94 
                                                           

         2 −1  −4 2    −9 1                 −4 2   2 −1   −2 8 
5.       3 2   1 3  =  −10 12  ;            1 3   3 2  =  11 5
                                                               

         1 0 −3   7 −4 3   7 −13 −24 
6.       3 2 4  1 5 −2  =  23 10  41 
                                     
         2 −3 5  0 3 9 
                          11 −8 57 
                                         

         7 −4 3   1 0 −3   1 −17 −22 
        1 5 −2  3 2 4  = 12 16     7 
                                     
         0 3 9   2 −3 5 
                           27 −21 57 
                                         
 3                 3           3 6 9 
7.    [1 2 3]  4 = [26];
               
                                    4  1 2 3 =  4 8 12 
                                    [       ]          
              6
                                 6 
                                                5 10 15
                                                         

                  3 0                      3 0              3   0   9
      1 0 3               21 15         −1 4  1 0 3  =  7 −20 13 
8.     2 −5 4   −1 4  = 
                                  ;               2 −5 4            
                6 5     35 0           6 5            16 −25 38
                                                                      

       0 −2          4                          0 −2 
       3 1   3  =  7  but the product  3   3 1  is not defined.
9.            −2                       −2        
       −4 5        −22                   −4 5 
                                                     

            2 1   −1 0 4    1 −2 13
10.   AB =        3 −2 5  = 5 −6 31 but the product BA is not defined.
            4 3                    

                   2 7 5 6
11.   AB = [3 −5]           = [11 1 5 3] but the product BA is not defined.
                   −1 4 2 3

12.   Neither product matrix AB or BA is defined.

               3 1    2 5  0 1       3 1  10 17    32 51 
13.   A(BC) =          −3 1  2 3  =  −1 4  2 0  =  −2 −17 
               −1 4                                       
                 3 1   2 5   0 1      3 16   0 1     32 51 
      ( AB)C =          −3 1   2 3 =  −14 −1  2 3 =  −2 −17 
                 −1 4                                       

                          2 5  6               −13
14.   A ( BC ) = [2 −1]          −5  = [2 −1]  −23 = [−3]
                          −3 1                    
                            2 5   6           6
      ( AB ) C   =  [2 −1]         −5 = [7 9]  −5 = [−3]
                            −3 1               

                               2 0 
                 3                     3         12 15 
15.   A ( BC ) =    [1 −1 2] 0 3   =   [4 5] = 
                                                            
                 2           1 4     2          8 10 
                                   
2 0               2 0 
                     3              =  3 −3 6  0 3  = 12 15
        ( AB ) C =    [1 −1 2] 0 3                     8 10 
                     2         1 4     2 −2 4   1 4         
                                                          

                   2       0
                   0           1 −1 1 0 −1 2  
16.     A ( BC ) =         3  
                              3 −2  3 2 0 1  
                   1
                           4  
                             
                                                

                   2       0                   −4 −4 −2 2 
                 = 0          −2 −2 −1 1  =  −9 −12 −9 12 
                            3 
                                −3 −4 −3 4                    
                            4 
                   1                           −14 −18 −13 17 
                                                              

                    2      0          
                              1 −1  1        0 −1 2 
        ( AB ) C =  0      3 
                                 3 −2   3      2 0 1
                    1
                           4 
                              
                                       
                                         
                                                          

                   2        −2                        −4 −4 −2 2 
                                  1 0 −1         2
                 = 9        −6                    =  −9 −12 −9 12 
                                3 2 0           1                   
                             −9  
                   13                                 −14 −18 −13 17 
                                                                     

Each of the homogeneous linear systems in Problems 17-22 is already in echelon form, so it
remains only to write (by back substitution) the solution, first in parametric form and then in
vector form.

17.     x3 = s,       x4 = t ,     x1 = 5s − 4t ,      x2 = − 2 s + 7t

        x = s (5, −2,1, 0 ) + t ( −4, 7, 0,1)

18.     x2 = s,       x4 = t ,     x1 = 3s − 6t ,      x3 = − 9t

        x = s (3,1, 0, 0 ) + t ( −6, 0, −9,1)

19.     x4 = s,       x5 = t ,     x1 = − 3s + t ,     x2 = 2 s − 6t ,   x3 = − s + 8t

        x = s ( −3, 2, −1,1, 0 ) + t (1, −6,8, 0,1)

20.     x2 = s,       x5 = t ,     x1 = 3s − 7t ,      x3 = 2t ,    x4 = 10t

        x = s (3,1, 0, 0, 0 ) + t ( −7, 0, 2,10, 0 )
21.   x3 = r ,      x4 = s,       x5 = t ,     x1 = r − 2 s − 7t ,        x2 = − 2r + 3s − 4t

      x = r (1, −2,1, 0, 0 ) + s ( −2,3, 0,1, 0 ) + t ( −7, −4, 0, 0,1)

22.   x2 = r ,      x4 = s,       x5 = t ,      x1 = r − 7 s − 3t ,       x3 = s + 2t

      x = r (1,1, 0, 0,0 ) + s ( −7, 0,1,1, 0 ) + t ( −3, 0, 2, 0,1)

                           2 1   a b  1 0 
23.   The matrix equation            =     entails the four scalar equations
                           3 2   c d  0 1 

                        2a + c = 1              2b + d = 0
                        3a + 2c = 0             3b + 2d = 1

      that we readily solve for a = 2, b = −1, c = −3, d = 2. Hence the apparent inverse
                                                2 −1
      matrix of A, such that AB = I, is B =             . Indeed, we find that BA = I
                                                −3 2 
      as well.

                          3 4   a b  1 0 
24.   The matrix equation           =      entails the four scalar equations
                          5 7   c d   0 1 

                        3a + 4c = 1              3b + 4d = 0
                        5a + 7c = 0              5b + 7 d = 1

      that we readily solve for a = 7, b = −4, c = −5, d = 3. Hence the apparent inverse
                                                7 −4 
      matrix of A, such that AB = I, is B =             . Indeed, we find that BA = I
                                                −5 3 
      as well.

                           5 7   a b  1 0 
25.   The matrix equation            =     entails the four scalar equations
                           2 3   c d  0 1 

                        5a + 7c = 1              5b + 7 d = 0
                        2a + 3c = 0              2b + 3d = 1

      that we readily solve for a = 3, b = −7, c = −2, d = 5. Hence the apparent inverse
                                                3 −7 
      matrix of A, such that AB = I, is B =             . Indeed, we find that BA = I
                                                −2 5 
      as well.
 1 −2   a b  1 0 
26.   The matrix equation             =      entails the four scalar equations
                           −2 4   c d   0 1 

                           a − 2c = 1              b − 2d = 0
                         −2a + 4c = 0           − 2b + 4d = 1.

      But the two equations in a and c obviously are inconsistent, because ( −1)(1) ≠ 0, and
      the two equations in b and d are similarly inconsistent. Therefore the given matrix A
      has no inverse matrix.

       a1   0      0     0     b1 0    0      0    a1b1 0            0       0 
      0     a2     0     0     0 b     0      0   0 ab              0       0 
                                    2                      2 2                        
27.   0     0      a3    0     0 0     b3     0 =  0    0           a3b3     0 
                                                                                     
                                                                    
      0
            0      0     an 
                                 0 0
                                          0          
                                                  bn   0
                                                              0            0       anbn 
                                                                                          

      Thus the product of two diagonal matrices of the same size is obtained simply by
      multiplying corresponding diagonal elements. Then the commutativity of scalar
      multiplication immediately implies that AB = BA for diagonal matrices.

28.   The matrix power A n is simply the product AAA  A of n copies of A. It follows
      (by associativity) that parentheses don't matter:

                  A r A s = ( AAA  A) ( AAA  A) = ( AAA  A) = A r + s ,
                              r copies     s copies        r + s copies


      the product of r + s copies of A in either case.

                                          a b                 1 0 
29.   (a + d ) A − (ad − bc )I = (a + d )       − (ad − bc ) 0 1 
                                          c d                      
                  (a + ad ) − (ad − bc)
                     2
                                                   ab + bd            a 2 + bc   ab + bd 
               =                                                   =                     
                          ac + cd          (ad + d 2 ) − (ad − bc)   ac + cd    bc + d 2 
                 a b  a b 
               =        c d  = A
                                       2

                 c d          

               2 1
30.   If A =         then a + d = 4 and ad − bc = 3. Hence
               1 2
                           2 1  1 0     5 4
       A 2 = 4 A − 3I = 4       −3    =      ;
                          1 2 0 1        4 5
5 4 2 1         14 13
      A 3 = 4 A 2 − 3A = 4      − 3 1 2  = 13 14  ;
                           4 5                   
                           14 13  5 4          41 40 
      A 4 = 4A3 − 3A 2 = 4        − 3  4 5  =  40 41 ;
                           13 14                     
                          41 40  14 13        122 121
      A5 = 4A5 − 3A3 = 4         − 3 13 14  = 121 122  .
                          40 41                       

                     2 −1          1 5 
31.   (a)    If A =        and B = 3 7  then
                     −4 3              
                                          3 4   1 −6        −25 −34 
                    ( A + B )( A − B ) =          −7 −4  =  −71 −34 
                                          −1 10                     
      but
                                8 −5  16 40          −8 −45
                    A 2 − B2 =          −  24 64  =  −44 −51 .
                                −20 13                      
      (b)    If AB = BA then
                    ( A + B )( A − B ) = A ( A − B) + B( A − B)
                                      = A 2 − AB + BA − B 2 = A 2 − B 2 .

                     2 −1          1 5 
32.   (a)    If A =        and B = 3 7  then
                     −4 3              
                                 3 4  3 4        5 52 
                    ( A + B)2 =         −1 10 =  −13 96
                                 −1 10                 
      but
                                 8 −5         2 −1 1 5  16 40 
             A 2 + 2 AB + B 2 =          + 2  −4 3  3 7  +  24 64 
                                 −20 13                           
                                 8 −5         −1 3 16 40   22 41
                              =          + 2  5 1 +  24 64  = 14 79  .
                                 −20 13                             
      (b)    If AB = BA then
                    ( A + B )( A − B ) = A ( A − B) + B( A − B)
                                      = A 2 − AB + BA − B 2 = A 2 − B 2 .
33.   Four different 2 × 2 matrices A with A2 = I are

             1 0   −1 0  1 0            −1 0 
             0 1  ,  0 1  , 0 −1 , and  0 −1 .
                                             
1 −1
      If A =       ≠ 0 then A 2 = (0) A − (0)I = 0.
              1 −1
34.
                 

              2 −1
35.   If A =       ≠ 0 then A = (1) A − (0)I = A.
                               2

              2 −1

             0 1
      If A =       ≠ 0 then A 2 = (0) A − ( −1)I = I.
               1 0
36.
                 

              0 1
37.   If A =        ≠ 0 then A = (0) A − (1)I = − I.
                                2

              −1 0 

               0 1                                           0 1
38.   If A =        ≠ 0 is the matrix of Problem 36 and B =  −1 0  ≠ 0 is the matrix
               1 0                                                
      of Problem 37, then A + B = (I ) + (−I ) = 0.
                           2     2




39.   If Ax1 = Ax2 = 0, then

             A ( c1x1 + c2 x 2 ) = c1 ( Ax1 ) + c2 ( Ax 2 ) = c1 (0 ) + c2 ( 0 ) = 0.

40.   (a)    If Ax0 = 0 and Ax1 = b, then A ( x 0 + x1 ) = Ax0 + Ax1 = 0 + b = b.

      (b)    If Ax1 = b and Ax2 = b, then A ( x1 − x 2 ) = Ax1 − Ax 2 = b − b = 0.


41.   If AB = BA then

             (A + B)
                      3
                                                                        (
                          = ( A + B )( A + B ) = ( A + B ) A 2 + 2AB + B 2
                                                    2
                                                                                                )
                                  (           ) (
                          = A A 2 + 2AB + B 2 + B A 2 + 2AB + B 2                    )
                          =   ( A + 2A B + AB ) + ( A B + 2AB
                                      3       2         2           2       2
                                                                                +B   3
                                                                                         )
                          = A + 3A B + 3AB + B .
                                  3       2             2       3




                   (A + B)                      ( A + B ) = ( A + B )( A + B )
                              4                             4                        3
      To compute                  , write                                                    and proceed similarly,
                                              ( A + B ) just obtained.
                                                       3
      substituting the expansion of
0 0 4           0 0 0 
42.   (a)                                   20 0 0  and N3 = 0 0 0  .
             Matrix multiplication gives N =                       
                                             0 0 0 
                                                             0 0 0 
                                                                     

                               1 0 0      0 2 0  0 0 4      1 4 4
      (b)       2             20 1 0 + 2  0 0 2  + 0 0 0  =  0 1 4 
              A = I + 2N + N =                                     
                               0 0 1
                                         0 0 0  0 0 0
                                                              0 0 1 
                                                                         

                                1 0 0      0 2 0       0 0 4    1 6 12 
                3                0 1 0 + 3  0 0 2  + 3 0 0 0  =  0 1 6 
              A = I + 3N + 3N =  2
                                                                        
                                0 0 1 
                                           0 0 0 
                                                         0 0 0 
                                                                    0 0 1 
                                                                             

                                1 0 0     0 2 0       0 0 4     1 8 24
                4               0 1 0 + 4  0 0 2  + 6  0 0 0  = 0 1 8 
              A = I + 4N + 6N =  2
                                                                       
                                0 0 1 
                                          0 0 0 
                                                        0 0 0 
                                                                    0 0 1 
                                                                            

                                              2 −1 −1    6 −3 −3 
43.                                     2     −1 2 −1 =  −3 6 −3 = 3A. Then
      First, matrix multiplication gives A =                     
                                              −1 −1 2 
                                                         −3 −3 6 
                                                                   
              A 3 = A 2 ⋅ A = 3A ⋅ A = 3A 2 = 3 ⋅ 3A = 9 A,
              A 4 = A 3 ⋅ A = 9 A ⋅ A = 9 A 2 = 9 ⋅ 3A = 27 A,
      and so forth.

More Related Content

What's hot

Polynomial Derivation from Data
Polynomial Derivation from DataPolynomial Derivation from Data
Polynomial Derivation from DataDream Realizations
 
To mat diknas 1112 02
To mat diknas 1112 02To mat diknas 1112 02
To mat diknas 1112 02Tri Bagus
 
Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5Educación
 
Intermediate algebra 8th edition tobey solutions manual
Intermediate algebra 8th edition tobey solutions manualIntermediate algebra 8th edition tobey solutions manual
Intermediate algebra 8th edition tobey solutions manualdisney0087
 
POTENCIAS Y RADICALES
POTENCIAS Y RADICALESPOTENCIAS Y RADICALES
POTENCIAS Y RADICALESEducación
 
Intermediate Algebra 7th Edition Tobey Solutions Manual
Intermediate Algebra 7th Edition Tobey Solutions ManualIntermediate Algebra 7th Edition Tobey Solutions Manual
Intermediate Algebra 7th Edition Tobey Solutions Manualryqakul
 
7 วิชา คณิต the brain
7 วิชา คณิต   the brain7 วิชา คณิต   the brain
7 วิชา คณิต the brainJamescoolboy
 
ejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoIvan Lobato Baltazar
 
Valor numerico de un termino algebraico
Valor numerico de un termino algebraicoValor numerico de un termino algebraico
Valor numerico de un termino algebraicoRamiro Muñoz
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15silvio_sas
 
To mat diknas 1112 01
To mat diknas 1112 01To mat diknas 1112 01
To mat diknas 1112 01Tri Bagus
 

What's hot (18)

V2.0
V2.0V2.0
V2.0
 
Polynomial Derivation from Data
Polynomial Derivation from DataPolynomial Derivation from Data
Polynomial Derivation from Data
 
Examens math
Examens mathExamens math
Examens math
 
To mat diknas 1112 02
To mat diknas 1112 02To mat diknas 1112 02
To mat diknas 1112 02
 
Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5
 
Intermediate algebra 8th edition tobey solutions manual
Intermediate algebra 8th edition tobey solutions manualIntermediate algebra 8th edition tobey solutions manual
Intermediate algebra 8th edition tobey solutions manual
 
Los atomos-t4
Los atomos-t4Los atomos-t4
Los atomos-t4
 
POTENCIAS Y RADICALES
POTENCIAS Y RADICALESPOTENCIAS Y RADICALES
POTENCIAS Y RADICALES
 
Intermediate Algebra 7th Edition Tobey Solutions Manual
Intermediate Algebra 7th Edition Tobey Solutions ManualIntermediate Algebra 7th Edition Tobey Solutions Manual
Intermediate Algebra 7th Edition Tobey Solutions Manual
 
Homework packet
Homework packetHomework packet
Homework packet
 
7 วิชา คณิต the brain
7 วิชา คณิต   the brain7 วิชา คณิต   the brain
7 วิชา คณิต the brain
 
ejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resuelto
 
Sect3 5
Sect3 5Sect3 5
Sect3 5
 
Valor numerico de un termino algebraico
Valor numerico de un termino algebraicoValor numerico de un termino algebraico
Valor numerico de un termino algebraico
 
Ejercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldorEjercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldor
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
 
To mat diknas 1112 01
To mat diknas 1112 01To mat diknas 1112 01
To mat diknas 1112 01
 
008 math a-net
008 math a-net008 math a-net
008 math a-net
 

Viewers also liked

A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...
A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...
A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...inventionjournals
 
Math 1300: Section 4-5 Inverse of a Square Matrix
Math 1300: Section 4-5 Inverse of a Square MatrixMath 1300: Section 4-5 Inverse of a Square Matrix
Math 1300: Section 4-5 Inverse of a Square MatrixJason Aubrey
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinantsitutor
 
Math 1300: Section 8-3 Conditional Probability, Intersection, and Independence
Math 1300: Section 8-3 Conditional Probability, Intersection, and IndependenceMath 1300: Section 8-3 Conditional Probability, Intersection, and Independence
Math 1300: Section 8-3 Conditional Probability, Intersection, and IndependenceJason Aubrey
 

Viewers also liked (7)

Pc 8.3 notes
Pc 8.3 notesPc 8.3 notes
Pc 8.3 notes
 
A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...
A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...
A New Method to Compute the Adjoint and Inverse of a 3 × 3 non – singular Mat...
 
4.7
4.74.7
4.7
 
Math 1300: Section 4-5 Inverse of a Square Matrix
Math 1300: Section 4-5 Inverse of a Square MatrixMath 1300: Section 4-5 Inverse of a Square Matrix
Math 1300: Section 4-5 Inverse of a Square Matrix
 
Inverse matrix
Inverse matrixInverse matrix
Inverse matrix
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
 
Math 1300: Section 8-3 Conditional Probability, Intersection, and Independence
Math 1300: Section 8-3 Conditional Probability, Intersection, and IndependenceMath 1300: Section 8-3 Conditional Probability, Intersection, and Independence
Math 1300: Section 8-3 Conditional Probability, Intersection, and Independence
 

Similar to Sect3 4

Reducing fractions
Reducing fractionsReducing fractions
Reducing fractionsalmasmarin
 
Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiroAntonio Carneiro
 
Matematik Tambahan Skema set 1
Matematik Tambahan Skema set 1Matematik Tambahan Skema set 1
Matematik Tambahan Skema set 1Pauling Chia
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคkrookay2012
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Jhonatan Minchán
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaLuis Perez Anampa
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0José Encalada
 
Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiroAntonio Carneiro
 
College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2jeanperryshields
 
Math practice Paper 7 Answer Key
Math practice Paper 7 Answer KeyMath practice Paper 7 Answer Key
Math practice Paper 7 Answer Keylizsaid
 
Texto de matemática y lógica
Texto de matemática y lógicaTexto de matemática y lógica
Texto de matemática y lógicaodinzapatacruz
 
matrices y determinantes 3x3.pptx
matrices y determinantes 3x3.pptxmatrices y determinantes 3x3.pptx
matrices y determinantes 3x3.pptxGustavo Alfaro
 

Similar to Sect3 4 (20)

07 números relativos
07 números relativos07 números relativos
07 números relativos
 
Latihan 3.3
Latihan 3.3Latihan 3.3
Latihan 3.3
 
Reducing fractions
Reducing fractionsReducing fractions
Reducing fractions
 
Espressioni
EspressioniEspressioni
Espressioni
 
Ejercicios 7
Ejercicios 7Ejercicios 7
Ejercicios 7
 
Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiro
 
Matrix opt
Matrix optMatrix opt
Matrix opt
 
Matematik Tambahan Skema set 1
Matematik Tambahan Skema set 1Matematik Tambahan Skema set 1
Matematik Tambahan Skema set 1
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เค
 
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Solucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economiaSolucionario de matemáticas para administación y economia
Solucionario de matemáticas para administación y economia
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
 
Equção de 2º grau completa autor professor antonio carneiro
Equção de 2º grau completa  autor professor antonio carneiroEqução de 2º grau completa  autor professor antonio carneiro
Equção de 2º grau completa autor professor antonio carneiro
 
College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2College Algebra Chapters 1 and 2
College Algebra Chapters 1 and 2
 
Math practice Paper 7 Answer Key
Math practice Paper 7 Answer KeyMath practice Paper 7 Answer Key
Math practice Paper 7 Answer Key
 
Texto de matemática y lógica
Texto de matemática y lógicaTexto de matemática y lógica
Texto de matemática y lógica
 
Ch02 13
Ch02 13Ch02 13
Ch02 13
 
matrices y determinantes 3x3.pptx
matrices y determinantes 3x3.pptxmatrices y determinantes 3x3.pptx
matrices y determinantes 3x3.pptx
 
MTK BAB 3 MATRIKS
MTK BAB 3 MATRIKSMTK BAB 3 MATRIKS
MTK BAB 3 MATRIKS
 

More from inKFUPM (20)

Tb10
Tb10Tb10
Tb10
 
Tb18
Tb18Tb18
Tb18
 
Tb14
Tb14Tb14
Tb14
 
Tb13
Tb13Tb13
Tb13
 
Tb17
Tb17Tb17
Tb17
 
Tb16
Tb16Tb16
Tb16
 
Tb15
Tb15Tb15
Tb15
 
Tb12
Tb12Tb12
Tb12
 
Tb11
Tb11Tb11
Tb11
 
Tb09
Tb09Tb09
Tb09
 
Tb05
Tb05Tb05
Tb05
 
Tb07
Tb07Tb07
Tb07
 
Tb04
Tb04Tb04
Tb04
 
Tb02
Tb02Tb02
Tb02
 
Tb03
Tb03Tb03
Tb03
 
Tb06
Tb06Tb06
Tb06
 
Tb01
Tb01Tb01
Tb01
 
Tb08
Tb08Tb08
Tb08
 
21221
2122121221
21221
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 

Recently uploaded

04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 

Recently uploaded (20)

04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

Sect3 4

  • 1. SECTION 3.4 MATRIX OPERATIONS The objective of this section is simple to state. It is not merely knowledge of, but complete mastery of matrix addition and multiplication (particularly the latter). Matrix multiplication must be practiced until it is carried out not only accurately but quickly and with confidence — until you can hardly look at two matrices A and B without thinking of "pouring" the ith row of A down the jth column of B.  3 −5   −1 0  9 −15  −4 0   5 −15 1. 3  + 4  3 −4 =  6 21  + 12 −16 = 18 5  2 7           2 0 − 3  − 2 3 1  10 0 −15  6 −9 −3   16 −9 −18 2. 5  − 3  7 1 5 =  −5 25 30  +  −21 −3 −15 =  −26 22 15   −1 5 6          5 0   −4 5   −10 0   −16 20   −26 20  3. 0 7  + 4  3 2  =  0 −14 +  12 −2  8  =  12 −6          3 −1    7 4    −6  2   28 16      22 18     2 −1 0   6 −3 − 4  4.  4 0 −3 + 5 5 2 −1 7     5 −2 7    0 7 9    14 −7 0  30 −15 −20   44 −22 −20   28 0 −21 +  25 10 =  −5  =  53 10 −26      35 −14 49   0 35 45      35 21 94     2 −1  −4 2   −9 1   −4 2   2 −1  −2 8  5.  3 2   1 3  =  −10 12  ;  1 3   3 2  =  11 5            1 0 −3   7 −4 3   7 −13 −24  6.  3 2 4  1 5 −2  =  23 10 41        2 −3 5  0 3 9     11 −8 57     7 −4 3   1 0 −3   1 −17 −22  1 5 −2  3 2 4  = 12 16 7        0 3 9   2 −3 5      27 −21 57   
  • 2.  3 3 3 6 9  7. [1 2 3]  4 = [26];    4  1 2 3 =  4 8 12   [ ]   6   6     5 10 15    3 0  3 0 3 0 9 1 0 3    21 15  −1 4  1 0 3  =  7 −20 13  8.  2 −5 4   −1 4  =   ;    2 −5 4       6 5 35 0   6 5   16 −25 38        0 −2   4   0 −2   3 1   3  =  7  but the product  3   3 1  is not defined. 9.    −2     −2     −4 5     −22     −4 5         2 1   −1 0 4  1 −2 13 10. AB =    3 −2 5  = 5 −6 31 but the product BA is not defined.  4 3      2 7 5 6 11. AB = [3 −5]   = [11 1 5 3] but the product BA is not defined.  −1 4 2 3 12. Neither product matrix AB or BA is defined.  3 1    2 5  0 1   3 1  10 17   32 51  13. A(BC) =     −3 1  2 3  =  −1 4  2 0  =  −2 −17   −1 4             3 1   2 5   0 1  3 16   0 1  32 51  ( AB)C =     −3 1   2 3 =  −14 −1  2 3 =  −2 −17    −1 4            2 5  6    −13 14. A ( BC ) = [2 −1]     −5  = [2 −1]  −23 = [−3]   −3 1         2 5   6  6 ( AB ) C =  [2 −1]     −5 = [7 9]  −5 = [−3]   −3 1       2 0  3   3  12 15  15. A ( BC ) =    [1 −1 2] 0 3   =   [4 5] =     2  1 4   2   8 10    
  • 3. 2 0  2 0    3   =  3 −3 6  0 3  = 12 15 ( AB ) C =    [1 −1 2] 0 3      8 10    2  1 4   2 −2 4   1 4        2 0 0  1 −1 1 0 −1 2   16. A ( BC ) =  3    3 −2  3 2 0 1   1  4      2 0  −4 −4 −2 2  = 0   −2 −2 −1 1  =  −9 −12 −9 12  3   −3 −4 −3 4    4  1   −14 −18 −13 17       2 0    1 −1  1 0 −1 2  ( AB ) C =  0 3   3 −2   3 2 0 1  1  4      2 −2   −4 −4 −2 2  1 0 −1 2 = 9 −6   =  −9 −12 −9 12    3 2 0 1   −9   13   −14 −18 −13 17      Each of the homogeneous linear systems in Problems 17-22 is already in echelon form, so it remains only to write (by back substitution) the solution, first in parametric form and then in vector form. 17. x3 = s, x4 = t , x1 = 5s − 4t , x2 = − 2 s + 7t x = s (5, −2,1, 0 ) + t ( −4, 7, 0,1) 18. x2 = s, x4 = t , x1 = 3s − 6t , x3 = − 9t x = s (3,1, 0, 0 ) + t ( −6, 0, −9,1) 19. x4 = s, x5 = t , x1 = − 3s + t , x2 = 2 s − 6t , x3 = − s + 8t x = s ( −3, 2, −1,1, 0 ) + t (1, −6,8, 0,1) 20. x2 = s, x5 = t , x1 = 3s − 7t , x3 = 2t , x4 = 10t x = s (3,1, 0, 0, 0 ) + t ( −7, 0, 2,10, 0 )
  • 4. 21. x3 = r , x4 = s, x5 = t , x1 = r − 2 s − 7t , x2 = − 2r + 3s − 4t x = r (1, −2,1, 0, 0 ) + s ( −2,3, 0,1, 0 ) + t ( −7, −4, 0, 0,1) 22. x2 = r , x4 = s, x5 = t , x1 = r − 7 s − 3t , x3 = s + 2t x = r (1,1, 0, 0,0 ) + s ( −7, 0,1,1, 0 ) + t ( −3, 0, 2, 0,1)  2 1   a b  1 0  23. The matrix equation   =  entails the four scalar equations  3 2   c d  0 1  2a + c = 1 2b + d = 0 3a + 2c = 0 3b + 2d = 1 that we readily solve for a = 2, b = −1, c = −3, d = 2. Hence the apparent inverse  2 −1 matrix of A, such that AB = I, is B =   . Indeed, we find that BA = I  −3 2  as well. 3 4   a b  1 0  24. The matrix equation   =  entails the four scalar equations 5 7   c d   0 1  3a + 4c = 1 3b + 4d = 0 5a + 7c = 0 5b + 7 d = 1 that we readily solve for a = 7, b = −4, c = −5, d = 3. Hence the apparent inverse  7 −4  matrix of A, such that AB = I, is B =   . Indeed, we find that BA = I  −5 3  as well.  5 7   a b  1 0  25. The matrix equation   =  entails the four scalar equations  2 3   c d  0 1  5a + 7c = 1 5b + 7 d = 0 2a + 3c = 0 2b + 3d = 1 that we readily solve for a = 3, b = −7, c = −2, d = 5. Hence the apparent inverse  3 −7  matrix of A, such that AB = I, is B =   . Indeed, we find that BA = I  −2 5  as well.
  • 5.  1 −2   a b  1 0  26. The matrix equation   =  entails the four scalar equations  −2 4   c d   0 1  a − 2c = 1 b − 2d = 0 −2a + 4c = 0 − 2b + 4d = 1. But the two equations in a and c obviously are inconsistent, because ( −1)(1) ≠ 0, and the two equations in b and d are similarly inconsistent. Therefore the given matrix A has no inverse matrix.  a1 0 0 0 b1 0 0 0  a1b1 0 0 0  0 a2 0 0 0 b 0 0   0 ab 0 0     2  2 2  27. 0 0 a3 0 0 0 b3 0 =  0 0 a3b3 0              0  0 0 an   0 0  0  bn   0  0 0 anbn   Thus the product of two diagonal matrices of the same size is obtained simply by multiplying corresponding diagonal elements. Then the commutativity of scalar multiplication immediately implies that AB = BA for diagonal matrices. 28. The matrix power A n is simply the product AAA A of n copies of A. It follows (by associativity) that parentheses don't matter: A r A s = ( AAA A) ( AAA A) = ( AAA A) = A r + s , r copies s copies r + s copies the product of r + s copies of A in either case. a b  1 0  29. (a + d ) A − (ad − bc )I = (a + d )   − (ad − bc ) 0 1  c d    (a + ad ) − (ad − bc) 2 ab + bd   a 2 + bc ab + bd  =  =    ac + cd (ad + d 2 ) − (ad − bc)   ac + cd bc + d 2  a b  a b  =  c d  = A 2 c d    2 1 30. If A =   then a + d = 4 and ad − bc = 3. Hence 1 2  2 1  1 0  5 4 A 2 = 4 A − 3I = 4   −3  =  ; 1 2 0 1  4 5
  • 6. 5 4 2 1  14 13 A 3 = 4 A 2 − 3A = 4   − 3 1 2  = 13 14  ; 4 5      14 13  5 4   41 40  A 4 = 4A3 − 3A 2 = 4   − 3  4 5  =  40 41 ; 13 14       41 40  14 13 122 121 A5 = 4A5 − 3A3 = 4   − 3 13 14  = 121 122  .  40 41      2 −1 1 5  31. (a) If A =   and B = 3 7  then  −4 3     3 4   1 −6   −25 −34  ( A + B )( A − B ) =    −7 −4  =  −71 −34   −1 10      but  8 −5  16 40   −8 −45 A 2 − B2 =   −  24 64  =  −44 −51 .  −20 13      (b) If AB = BA then ( A + B )( A − B ) = A ( A − B) + B( A − B) = A 2 − AB + BA − B 2 = A 2 − B 2 .  2 −1 1 5  32. (a) If A =   and B = 3 7  then  −4 3     3 4  3 4   5 52  ( A + B)2 =    −1 10 =  −13 96  −1 10     but  8 −5   2 −1 1 5  16 40  A 2 + 2 AB + B 2 =   + 2  −4 3  3 7  +  24 64   −20 13        8 −5   −1 3 16 40   22 41 =   + 2  5 1 +  24 64  = 14 79  .  −20 13        (b) If AB = BA then ( A + B )( A − B ) = A ( A − B) + B( A − B) = A 2 − AB + BA − B 2 = A 2 − B 2 . 33. Four different 2 × 2 matrices A with A2 = I are 1 0   −1 0  1 0   −1 0  0 1  ,  0 1  , 0 −1 , and  0 −1 .        
  • 7. 1 −1 If A =  ≠ 0 then A 2 = (0) A − (0)I = 0. 1 −1 34.    2 −1 35. If A =   ≠ 0 then A = (1) A − (0)I = A. 2  2 −1 0 1 If A =  ≠ 0 then A 2 = (0) A − ( −1)I = I. 1 0 36.    0 1 37. If A =   ≠ 0 then A = (0) A − (1)I = − I. 2  −1 0  0 1  0 1 38. If A =   ≠ 0 is the matrix of Problem 36 and B =  −1 0  ≠ 0 is the matrix 1 0   of Problem 37, then A + B = (I ) + (−I ) = 0. 2 2 39. If Ax1 = Ax2 = 0, then A ( c1x1 + c2 x 2 ) = c1 ( Ax1 ) + c2 ( Ax 2 ) = c1 (0 ) + c2 ( 0 ) = 0. 40. (a) If Ax0 = 0 and Ax1 = b, then A ( x 0 + x1 ) = Ax0 + Ax1 = 0 + b = b. (b) If Ax1 = b and Ax2 = b, then A ( x1 − x 2 ) = Ax1 − Ax 2 = b − b = 0. 41. If AB = BA then (A + B) 3 ( = ( A + B )( A + B ) = ( A + B ) A 2 + 2AB + B 2 2 ) ( ) ( = A A 2 + 2AB + B 2 + B A 2 + 2AB + B 2 ) = ( A + 2A B + AB ) + ( A B + 2AB 3 2 2 2 2 +B 3 ) = A + 3A B + 3AB + B . 3 2 2 3 (A + B) ( A + B ) = ( A + B )( A + B ) 4 4 3 To compute , write and proceed similarly, ( A + B ) just obtained. 3 substituting the expansion of
  • 8. 0 0 4  0 0 0  42. (a) 20 0 0  and N3 = 0 0 0  . Matrix multiplication gives N =     0 0 0    0 0 0    1 0 0  0 2 0  0 0 4 1 4 4 (b) 2 20 1 0 + 2  0 0 2  + 0 0 0  =  0 1 4  A = I + 2N + N =         0 0 1   0 0 0  0 0 0     0 0 1    1 0 0  0 2 0  0 0 4  1 6 12  3  0 1 0 + 3  0 0 2  + 3 0 0 0  =  0 1 6  A = I + 3N + 3N =  2        0 0 1    0 0 0    0 0 0    0 0 1    1 0 0 0 2 0 0 0 4 1 8 24 4 0 1 0 + 4  0 0 2  + 6  0 0 0  = 0 1 8  A = I + 4N + 6N =  2        0 0 1    0 0 0    0 0 0    0 0 1     2 −1 −1  6 −3 −3  43. 2  −1 2 −1 =  −3 6 −3 = 3A. Then First, matrix multiplication gives A =      −1 −1 2     −3 −3 6    A 3 = A 2 ⋅ A = 3A ⋅ A = 3A 2 = 3 ⋅ 3A = 9 A, A 4 = A 3 ⋅ A = 9 A ⋅ A = 9 A 2 = 9 ⋅ 3A = 27 A, and so forth.