Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Machine Learning - What it is and why you should care

404 views

Published on

An introduction to machine learning - what it is and why you should care. Presentation from #Waterkant SH Startup Festival 2017.

Published in: Data & Analytics
  • Be the first to comment

  • Be the first to like this

Machine Learning - What it is and why you should care

  1. 1. Machine Learning What it is and why you should care Dr. Christian Wiele @christian_wiele
  2. 2. ©2017 gezeitenraum What is Machine Learning? 2
  3. 3. ©2017 gezeitenraum Machine Learning is the predominant area of artificial Intelligence (often AI and ML are used interchangeably) 3
  4. 4. ©2017 gezeitenraum Machine Learning = autonomous pattern identification and detection 4
  5. 5. ©2017 gezeitenraum Will we soon be dominated by super-human machines? 5
  6. 6. ©2017 gezeitenraum There are absolutely no indications of a nearby singularity! 6
  7. 7. ©2017 gezeitenraum Why should you care about Machine Learning? 7
  8. 8. Is it more than a hype? ©2017 gezeitenraum 8
  9. 9. ML gets the Value out of Data ©2017 gezeitenraum Computer vision ➡e.g. autonomous driving, cancer detection Speech recognition ➡e.g. Siri Natural language processing (NLP) ➡machine translation, chat bots General patterns ➡click stream analysis, fraud detection, security, recommender systems 9
  10. 10. AI might be over in EU before it starts ©2017 gezeitenraum 10 http://www.techzone360.com/topics/techzone/articles/2017/01/25/429101-eus-right-explanation-harmful-restriction-artificial-intelligence.htm
  11. 11. Skill Levels of Machine Learning ©2017 gezeitenraum 11 apply ML as black box understand research
  12. 12. ©2017 gezeitenraum So, What is Machine learning about? 12
  13. 13. Core Challenge of Machine learning ©2017 gezeitenraum 13 What humans are good at What Machines are good at (73492.232 + 2049.3827) * 883792.45
  14. 14. Learning approaches ©2017 gezeitenraum 14 supervised learning unsupervised learning BananA Grape Banana X X X X X X X X X X X X X X X X X X X X X X XX X X X
  15. 15. AIpoly ©2017 gezeitenraum 15
  16. 16. ©2017 gezeitenraum How it works 16
  17. 17. Classical programming paradigm ©2017 gezeitenraum 17 If (pixel1 == … And Pixel2 == …) Then … Else IF …
  18. 18. Goal: minimize the error ©2017 gezeitenraum 18 error {Parameter 1 Parameter 2
  19. 19. The fruit fly of ML: MNIST ©2017 gezeitenraum 19 55.000 handwritten digits 28x28 pixels
  20. 20. Neural Net: digit recognition ©2017 gezeitenraum 20 Input 1 2 3 4 5 6 7 8 9 0 output neurons 2 3 4 5 6 7 8 9 10 1 12 2 3 17 18 1 25 24 ……… … … hidden neurons output
  21. 21. Artificial Neuron: Internal view ©2017 gezeitenraum 21 logic: result = one number Output: 1 = activate 0 = not activate
  22. 22. Activation ©2017 gezeitenraum 22 hidden neuron 12: red dominantes —> fire input mask / weights weighted input hidden neuron 13: blue dominantes —> don’t fire
  23. 23. Neural Net: digit recognition ©2017 gezeitenraum 23 Input Output-Neuronen 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 10 1 … 12 2 3 17 18 1 25 24 ……… … Innere-Neuronen Output
  24. 24. What are relevant pixel structures? ©2017 gezeitenraum 24 neuron 12 neuron 18 neuron 25
  25. 25. ©2017 gezeitenraum So, how does learning work? 25
  26. 26. learning process ©2017 gezeitenraum 26
  27. 27. Neural Net: Learning Process ©2017 gezeitenraum 27 Input Output-Neuronen 2 3 4 5 6 7 8 9 10 1 12 2 3 17 18 1 25 24 ……… … … Innere-Neuronen Output 1 2 3 4 5 6 7 8 9 0 error error error slightly change parameters
  28. 28. ©2017 gezeitenraum How to get stared with Machine Learning? 28
  29. 29. Skill Levels of Machine Learning ©2017 gezeitenraum 29 apply ML as black box understand research
  30. 30. ©2017 gezeitenraum 30 https://www.coursera.org/learn/machine-learning/
  31. 31. fast.ai ©2017 gezeitenraum 31 http://fast.ai
  32. 32. Toolset ©2017 gezeitenraum Python ➡Theano, Tensorflow, Keras, NumPy, … ➡Jupyter notebook Linear algebra Access to GPU ➡AWS, Google, or your own … Time and motivation for experimenting 32
  33. 33. The machine learning expert ©2017 gezeitenraum 33
  34. 34. Geschafft ©2016 gezeitenraum 34 Vielen Dank! Dr. Christian Wiele christian@gezeitenraum.com @christian_wiele @gezeitenraum

×