SlideShare a Scribd company logo
1 of 9
3 bit automaton
for artificial humane intelligence
          Takahashi Toshiki
            2012/12/01
          wyc@tmtoc.com
1. 5-value logic

 • Y -- Yes
                     Classical Logic
 • N -- No
 • W -- Wait
 • E -- Executable   Process State of OS
 • R -- Run
2. 2 types of computing system




  Neumann Type                  Non Neumann Type
  ・Stored program                 ・Flat network architecture
  ・Manager controls processes     ・No manager
3. 8 states automaton


Judge                                           Action




                     B -- Begin
        5 values +   F -- Finish   = 8 states
                     S -- Stop
4. 3 bits allocation
                       D   S1   S2   C
    D S1 S2            0   0    0    B
   XXX                 0
                       0
                           0
                           1
                                1
                                1
                                     Y
                                     W
  Data Bit State Bit   0   1    0    N
                       1   1    0    R
                       1   1    1    S
                       1   0    1    E
                       1   0    0    F
5. logical chart between states
∧ B Y N W F E R S
B B Y N W F E R S          Ex:
Y Y N W F E R S B          Y∧N = W
N N W F E R S B Y
W W F E R S B Y N            001 Y
F F E R S B Y N W          + 010 N
E E R S B Y N W F
                           _____
R R S B Y N W F E
                             011 W
S S B Y N W F E R
6. future for OS in SoC
  • Implementation
     ・Classical system (0 & 1)
     ・Quantum system (4 entangled states)
     ・DNA system (4 types of base, AGCT)
  • “HW + OS → SoC” = Free Device Design
     ・elastic device
     ・edible device
     ・creature device
7. Implementation of Intelligence
• Automaton + Probability = Intelligence
• Criteria: “Select option which has the biggest
  information.”
     Selection = Max(Π|p(i)|).
• Setting complex probability in this automaton,
   it can discover and predict rules,
   then learn them.
 →this is exactly artificial humane intelligence!
Appendix: complex probability
Probability p(i) -- information we can get from event i
• p(i) = 1
 we know the event occurs without any observation (universal truth)
• p(i) = 1/2
 we observe the event occurs (measurement)
• p(i) = 0
 we know the event does not occurs without any observation, so
   we cannot know the event occurs with any observation (mystery)
• p(i) = -1/2
 we know the event can occur with some observation (discovery)
• p(i) = -1
 we can know the event can occur without observation (prediction)

More Related Content

More from dgbjdjg

「珍しさ」の情報経済論
「珍しさ」の情報経済論「珍しさ」の情報経済論
「珍しさ」の情報経済論dgbjdjg
 
世界解決問題
世界解決問題世界解決問題
世界解決問題dgbjdjg
 
Physical Mechanics of Detachment Theory
Physical Mechanics of Detachment TheoryPhysical Mechanics of Detachment Theory
Physical Mechanics of Detachment Theorydgbjdjg
 
無偶然論
無偶然論無偶然論
無偶然論dgbjdjg
 
一般確率 小論
一般確率 小論一般確率 小論
一般確率 小論dgbjdjg
 
複素確率論 序説
複素確率論 序説複素確率論 序説
複素確率論 序説dgbjdjg
 
種類の数学
種類の数学種類の数学
種類の数学dgbjdjg
 
牽引説
牽引説牽引説
牽引説dgbjdjg
 
ポリゴングラフとその応用
ポリゴングラフとその応用ポリゴングラフとその応用
ポリゴングラフとその応用dgbjdjg
 
NavierStokes
NavierStokesNavierStokes
NavierStokesdgbjdjg
 
Measurement Conscious
Measurement ConsciousMeasurement Conscious
Measurement Consciousdgbjdjg
 
God's dice
God's diceGod's dice
God's dicedgbjdjg
 
Orbi theoryeng
Orbi theoryengOrbi theoryeng
Orbi theoryengdgbjdjg
 
Logic zoo ws 2013
Logic zoo ws 2013Logic zoo ws 2013
Logic zoo ws 2013dgbjdjg
 

More from dgbjdjg (14)

「珍しさ」の情報経済論
「珍しさ」の情報経済論「珍しさ」の情報経済論
「珍しさ」の情報経済論
 
世界解決問題
世界解決問題世界解決問題
世界解決問題
 
Physical Mechanics of Detachment Theory
Physical Mechanics of Detachment TheoryPhysical Mechanics of Detachment Theory
Physical Mechanics of Detachment Theory
 
無偶然論
無偶然論無偶然論
無偶然論
 
一般確率 小論
一般確率 小論一般確率 小論
一般確率 小論
 
複素確率論 序説
複素確率論 序説複素確率論 序説
複素確率論 序説
 
種類の数学
種類の数学種類の数学
種類の数学
 
牽引説
牽引説牽引説
牽引説
 
ポリゴングラフとその応用
ポリゴングラフとその応用ポリゴングラフとその応用
ポリゴングラフとその応用
 
NavierStokes
NavierStokesNavierStokes
NavierStokes
 
Measurement Conscious
Measurement ConsciousMeasurement Conscious
Measurement Conscious
 
God's dice
God's diceGod's dice
God's dice
 
Orbi theoryeng
Orbi theoryengOrbi theoryeng
Orbi theoryeng
 
Logic zoo ws 2013
Logic zoo ws 2013Logic zoo ws 2013
Logic zoo ws 2013
 

20121201 en

  • 1. 3 bit automaton for artificial humane intelligence Takahashi Toshiki 2012/12/01 wyc@tmtoc.com
  • 2. 1. 5-value logic • Y -- Yes Classical Logic • N -- No • W -- Wait • E -- Executable Process State of OS • R -- Run
  • 3. 2. 2 types of computing system Neumann Type Non Neumann Type ・Stored program ・Flat network architecture ・Manager controls processes ・No manager
  • 4. 3. 8 states automaton Judge Action B -- Begin 5 values + F -- Finish = 8 states S -- Stop
  • 5. 4. 3 bits allocation D S1 S2 C D S1 S2 0 0 0 B XXX 0 0 0 1 1 1 Y W Data Bit State Bit 0 1 0 N 1 1 0 R 1 1 1 S 1 0 1 E 1 0 0 F
  • 6. 5. logical chart between states ∧ B Y N W F E R S B B Y N W F E R S Ex: Y Y N W F E R S B Y∧N = W N N W F E R S B Y W W F E R S B Y N 001 Y F F E R S B Y N W + 010 N E E R S B Y N W F _____ R R S B Y N W F E 011 W S S B Y N W F E R
  • 7. 6. future for OS in SoC • Implementation ・Classical system (0 & 1) ・Quantum system (4 entangled states) ・DNA system (4 types of base, AGCT) • “HW + OS → SoC” = Free Device Design ・elastic device ・edible device ・creature device
  • 8. 7. Implementation of Intelligence • Automaton + Probability = Intelligence • Criteria: “Select option which has the biggest information.” Selection = Max(Π|p(i)|). • Setting complex probability in this automaton, it can discover and predict rules, then learn them. →this is exactly artificial humane intelligence!
  • 9. Appendix: complex probability Probability p(i) -- information we can get from event i • p(i) = 1 we know the event occurs without any observation (universal truth) • p(i) = 1/2 we observe the event occurs (measurement) • p(i) = 0 we know the event does not occurs without any observation, so we cannot know the event occurs with any observation (mystery) • p(i) = -1/2 we know the event can occur with some observation (discovery) • p(i) = -1 we can know the event can occur without observation (prediction)