SlideShare a Scribd company logo
1 of 31
CFD Analysis of New Heat Recirculating
Microreactor for Propane Catalytic Combustion
Amit Kunte and Niket Kaisare
Department of Chemical Engineering
Indian Institute of Technology Madras
Motivation
• Hydrocarbons have high gravimetric and volumetric energy density
• Catalytic combustion of hydrocarbons in micro-channels
 Energy generation
 Provide energy for fuel processing, reforming and synthesis
 Micro-propulsion
• Sustaining combustion at small channels is challenging
• “Excess Enthalpy” microburners show improved stability
Objectives
• Introduce new “Excess Enthalpy” geometry – Spiral Microburner
Y. Ju and K. Maruta. (2011) Progress in Energy and Combustion Science
Objectives
• Introduce new “Excess Enthalpy” geometry – Spiral Microburner
• Analyze extinction / blowout in spiral microburner using CFD
• Analyze thermal behavior of the PHR vis–à–vis ks , Φ , uo, and N.
• Compare with straight channel microburner
• Compare with the countercurrent heat recirculation ‘U-Bend’
combustor
Y. Ju and K. Maruta. (2011) Progress in Energy and Combustion Science
Super-adiabatic combustion in Planar Helical Micro-reactor
900
1100
1300
1500
1700
1900
2100
2300
0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Adiabaticreactiontemperature(K)
Equivalence ratio
Super-adiabaticity
~200K
Proposal for a “New” Geometry: Spiral Microburner
Pt washcoat on internal walls
Outlet channels shield reaction zone
Simpler than Swiss Roll (double-spiral)
Only geometry with heat recirculating
channel co-current to reaction channel
Model Description
• 2D CFD laminar model solved in Fluent
• Mass inlet at center; pressure outlet at periphery
• 600 μm channels; 200 μm walls; ~2.6 cm linear length
• Propane catalytic combustion (Deshmukh and Vlachos, 2007) as
UDF
Temperature contours Conversion Contours
1200 K
300 K
600 K
900 K
k = 1 W/mK
h = 10 W/m2K
u0 = 0.5 m/s
Φ = 0.65
100 %
80 %
60 %
40 %
20 %
0 %
Axial temperature and Mass fraction profiles
300
500
700
900
1100
1300
Temperature(K)
channel centerline
wall 1
wall 2
0 200 400 600
Massfraction
Dimensionless axial location
0.04
0.03
0.02
0.01
Turn1 Turn 2 Turn 3
a
uo = 0.5 m/s
b
Comparison between the 2D and the 3D temperature
contours at the inlet
2D 3D c/s
Effect of inlet velocity (uo)
1150
850
638
300
1553
1180
676
300
683
530
415
300
uo= 0.5 m/s
k = 1 W/mK
h = 10 W/m2K
Φ = 0.65
uo= 0.11 m/s uo= 6 m/s
Axial propane and mass fraction profiles at different uo
uo = 0.11 m/s uo = 6 m/s
0 200 400 600
Massfraction
Dimensionless axial location
300
400
500
600
700
Temperature(K)
channel centreline
wall 1
wall 2
0.04
0.03
0.02
0.01
Turn 1 Turn 2 Turn 3
0
0.01
0.02
0.03
0.04
0 100 200 300 400 500 600
Massfraction
Dimensionless axial location
300
600
900
1200
1500
1800
Temperature(K)
channel centreline
wall1
wall2
Turn 1
Turn 2
Turn 3
k = 1 W/mK
h = 10 W/m2K
Φ = 0.65
Transverse temperature profiles at different uo
uo = 0.5 m/s uo = 0.11 m/suo = 6 m/s
Axial catalytic reaction rate profiles at different Φ
Axial location of max reaction rate at various uo
0
100
200
300
0.1 0.5 2.5 12.5
Dimensionlessaxiallocation
Inlet velocity, uo (m/s)
ф=0.65
ф=0.45
ф=0.35
Extinction
Blowout
Effect of thermal conductivity (ks)
ks = 1 W/mK ks = 10 W/mK ks = 50 W/mK
uo = 0.5 m/s
h = 10 W/m2K
Φ = 0.65
1150
850
638
300
Axial temperature profiles at various ks
ks = 50 Wm/K
300
500
700
900
1100
0 100 200 300 400 500 600
Temperature(K)
Dimensionless axial location
channel centerline
wall 1
wall 2
Turn 1
Turn 2
Turn 3
300
500
700
900
1100
0 100 200 300 400 500 600
Temperature(K)
Dimensionless axial location
channel centreline
wall 1
wall 2
Turn 1
Turn 2
Turn 3
ks = 1 Wm/K uo = 0.5 m/s
h = 10 W/m2K
Φ = 0.65
Axial catalytic reaction profiles at different ks
0 100 200 300 400 500 600
Reactionrate(mol/m2s)
Dimensionless axial location
ks= 1W/mKTurn 1
Turn 2
Turn 3
ks= 10 W/mK
ks= 50 W/mK
0
0.0025
0.005
0.0075
0.001
0.0125
0.015
Axial location of max reaction rate at various ks
0
100
200
300
0.1 0.5 2.5 12.5
Dimensionlessaxiallocation
Inlet velocity, uo (m/s)
ks=50
ks= 10
ks= 1
Extinction
Blowout
Re >750
Stability plot (Φ vs uo ) at various ks
0.05
0.5
5
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Inletvelocity,uom/s
Equivalence ratio (ф)
Re > 750
Effect of uo on peak temperature and conversion at different ks
30
40
50
60
70
80
90
100
0.05 0.5 5
Percentageconversion
(%)
Inlet velocity, uo (m/s)
ks= 10 W/mK
0.210.160.11
500
750
1000
1250
1500
1750
Temperature(K)
ks= 50 W/mK
ks= 1 W/mK
9.4 m/s
6 m/s
a
b
Re > 750
Effect of Number of turns (N)
1070
827
610
300
1150
850
638
300
1190
876
650
300
N=2 N=3 N=4k = 1 W/mK
h = 10 W/m2K
u0 = 0.5 m/s
Φ = 0.65
Stability plot (Φ vs uo ) at various no. of turns (N)
0.05
0.5
5
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Inletvelocity,uom/s
Equivalence ratio (Φ)
Effect of uo on peak temperature and conversion at different N
N=
3
65
75
85
95
0.05 0.5 5
Percentageconversion(%)
Inlet velocity, uo (m/s)
N=4
N=3
b
0.1
0.12
500
750
1000
1250
1500
1750
Temperature(K) N=2
N=4
a
N=3
N=2
0.095
4 m/s
6
7.9
Axial location of max reaction rate at various N
0
100
200
300
400
500
0.1 0.5 2.5 12.5
Dimensionlessaxiallocation
Inlet velocity, uo (m/s)
N=2
N=3
N=4
Extinction
Blowout
Comparison with SCR (ceramic materials, 1 W/m/K)
0.05
0.5
5
50
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Inletvelocity(uo)m/s
Equivalence Ratio (ф)
Tmax > 1500K
operating region SCRoperating region PHR
conversion < 99%
Effect of Φ and uo on peak temperature and conversion
Comparison with UBR (ceramic materials, 1 W/m/K)
0.05
0.5
5
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Inletvelocity(uo)m/s
Equivalence Ratio(ф)
U-bend microburner
Re > 750
Effect of Φ and uo on peak temperature and conversion
Comparison of 2D and 3D extinction limits
0
0.1
0.2
0.3
0.4
0.5
0.6
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Inletvelocity,uo(m/s)
Equivalence ratio
3D PHR
2D PHR
Conclusion
• Spiral microburners show significant heat recirculation effect and
superadiabaticity
• Higher stability than straight channel (though lesser blowout stability than U-
Bend)
• Good propane breakthrough behavior
• Better operating characteristics compared to SCR

More Related Content

What's hot

AQA GCSE Physics P1 [ Summary answers ]
AQA GCSE Physics P1 [ Summary answers ]AQA GCSE Physics P1 [ Summary answers ]
AQA GCSE Physics P1 [ Summary answers ]Prawee Kaoklong
 
Assignment 3
Assignment 3Assignment 3
Assignment 3zirui lau
 
Temperature dependence of the energy gap of MgxZnyCd1–x–ySe alloy
Temperature dependence of the energy gap of MgxZnyCd1–x–ySe alloyTemperature dependence of the energy gap of MgxZnyCd1–x–ySe alloy
Temperature dependence of the energy gap of MgxZnyCd1–x–ySe alloyOleg Maksimov
 
Thermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metalsThermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metalsSangram Kadam
 
Heat Transfer Pool Simulation
Heat Transfer Pool SimulationHeat Transfer Pool Simulation
Heat Transfer Pool Simulationjwong024
 
Analysis of-heat-flow-in-downdraft-gasifier
Analysis of-heat-flow-in-downdraft-gasifier Analysis of-heat-flow-in-downdraft-gasifier
Analysis of-heat-flow-in-downdraft-gasifier Anant Arya
 
10.2 fields at work 2015
10.2 fields at work 201510.2 fields at work 2015
10.2 fields at work 2015Paula Mills
 
2 ωραίες ασκήσεις θερμότητας
2 ωραίες ασκήσεις θερμότητας 2 ωραίες ασκήσεις θερμότητας
2 ωραίες ασκήσεις θερμότητας Μαυρουδης Μακης
 
Tp 14 specific latent heat (shared)
Tp 14 specific latent heat (shared)Tp 14 specific latent heat (shared)
Tp 14 specific latent heat (shared)LThistlewood
 
AQA Physics P2 [ Summary answers ]
AQA Physics P2 [ Summary answers ]AQA Physics P2 [ Summary answers ]
AQA Physics P2 [ Summary answers ]Prawee Kaoklong
 
Thermal conductivity presentation
Thermal conductivity presentationThermal conductivity presentation
Thermal conductivity presentationRoss Mayo
 
Thermodynamics-HEAT ENGINES
Thermodynamics-HEAT ENGINESThermodynamics-HEAT ENGINES
Thermodynamics-HEAT ENGINESselvakumar948
 

What's hot (19)

AQA GCSE Physics P1 [ Summary answers ]
AQA GCSE Physics P1 [ Summary answers ]AQA GCSE Physics P1 [ Summary answers ]
AQA GCSE Physics P1 [ Summary answers ]
 
Pipes1
Pipes1Pipes1
Pipes1
 
Ni Fe Ga Co Ex
Ni Fe Ga Co ExNi Fe Ga Co Ex
Ni Fe Ga Co Ex
 
Assignment 3
Assignment 3Assignment 3
Assignment 3
 
Temperature dependence of the energy gap of MgxZnyCd1–x–ySe alloy
Temperature dependence of the energy gap of MgxZnyCd1–x–ySe alloyTemperature dependence of the energy gap of MgxZnyCd1–x–ySe alloy
Temperature dependence of the energy gap of MgxZnyCd1–x–ySe alloy
 
#20 Key
#20 Key#20 Key
#20 Key
 
Heat and mass transfer
Heat and mass transfer Heat and mass transfer
Heat and mass transfer
 
Thermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metalsThermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metals
 
Heat Transfer Pool Simulation
Heat Transfer Pool SimulationHeat Transfer Pool Simulation
Heat Transfer Pool Simulation
 
Analysis of-heat-flow-in-downdraft-gasifier
Analysis of-heat-flow-in-downdraft-gasifier Analysis of-heat-flow-in-downdraft-gasifier
Analysis of-heat-flow-in-downdraft-gasifier
 
10.2 fields at work 2015
10.2 fields at work 201510.2 fields at work 2015
10.2 fields at work 2015
 
2 ωραίες ασκήσεις θερμότητας
2 ωραίες ασκήσεις θερμότητας 2 ωραίες ασκήσεις θερμότητας
2 ωραίες ασκήσεις θερμότητας
 
Ijaret 06 07_001
Ijaret 06 07_001Ijaret 06 07_001
Ijaret 06 07_001
 
Thermal Conductivity
Thermal ConductivityThermal Conductivity
Thermal Conductivity
 
Tp 14 specific latent heat (shared)
Tp 14 specific latent heat (shared)Tp 14 specific latent heat (shared)
Tp 14 specific latent heat (shared)
 
#20
#20#20
#20
 
AQA Physics P2 [ Summary answers ]
AQA Physics P2 [ Summary answers ]AQA Physics P2 [ Summary answers ]
AQA Physics P2 [ Summary answers ]
 
Thermal conductivity presentation
Thermal conductivity presentationThermal conductivity presentation
Thermal conductivity presentation
 
Thermodynamics-HEAT ENGINES
Thermodynamics-HEAT ENGINESThermodynamics-HEAT ENGINES
Thermodynamics-HEAT ENGINES
 

Viewers also liked

PROFILE DRSSVELAN AS ON NOV,2016
PROFILE DRSSVELAN AS ON NOV,2016PROFILE DRSSVELAN AS ON NOV,2016
PROFILE DRSSVELAN AS ON NOV,2016Sendilvelan S
 
Cogeneration in Sugar mills
Cogeneration in Sugar millsCogeneration in Sugar mills
Cogeneration in Sugar millsPhani Mohan K
 
synopsis Presentation
synopsis Presentationsynopsis Presentation
synopsis PresentationNadim Bagwan
 
Emission Control by Catalytic Converter, Jeevan B M
Emission Control by Catalytic Converter, Jeevan B MEmission Control by Catalytic Converter, Jeevan B M
Emission Control by Catalytic Converter, Jeevan B MJeevan B M
 

Viewers also liked (6)

PROFILE DRSSVELAN AS ON NOV,2016
PROFILE DRSSVELAN AS ON NOV,2016PROFILE DRSSVELAN AS ON NOV,2016
PROFILE DRSSVELAN AS ON NOV,2016
 
Cogeneration in Sugar mills
Cogeneration in Sugar millsCogeneration in Sugar mills
Cogeneration in Sugar mills
 
synopsis Presentation
synopsis Presentationsynopsis Presentation
synopsis Presentation
 
Catalytic converter
Catalytic converterCatalytic converter
Catalytic converter
 
Emission Control by Catalytic Converter, Jeevan B M
Emission Control by Catalytic Converter, Jeevan B MEmission Control by Catalytic Converter, Jeevan B M
Emission Control by Catalytic Converter, Jeevan B M
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to Amit_Mtech_presentation

Final Evaluation
Final EvaluationFinal Evaluation
Final EvaluationShahroz Ali
 
Generating Electricity More Efficiently with Multiphase Thermoelectric Converter
Generating Electricity More Efficiently with Multiphase Thermoelectric ConverterGenerating Electricity More Efficiently with Multiphase Thermoelectric Converter
Generating Electricity More Efficiently with Multiphase Thermoelectric Converter"Douglas" F. Palte
 
Conjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat Exchanger
Conjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat ExchangerConjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat Exchanger
Conjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat ExchangerIRJET Journal
 
Magnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steelMagnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steelAPOORVKRISHNA1
 
Solar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptxSolar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptxBibhutiBhusanPani1
 
Appl.Phys.Lett.2010_Murat.CUBUKCU
Appl.Phys.Lett.2010_Murat.CUBUKCUAppl.Phys.Lett.2010_Murat.CUBUKCU
Appl.Phys.Lett.2010_Murat.CUBUKCUMurat Cubukcu
 
702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005Mukhlis Adam
 
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...IJMER
 
IRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden Plot
IRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden PlotIRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden Plot
IRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden PlotIRJET Journal
 
Testing and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climateTesting and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climateIJSRD
 
Testing and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climateTesting and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climateIJSRD
 
project presentation 1 (2).pptx
project presentation 1 (2).pptxproject presentation 1 (2).pptx
project presentation 1 (2).pptxDivinKV
 
cobalt oxide composed with rGO as effective electrode material
cobalt oxide composed with rGO as effective electrode materialcobalt oxide composed with rGO as effective electrode material
cobalt oxide composed with rGO as effective electrode materialjahanzaibmughal6
 
Thermodynamics Hw#5
Thermodynamics Hw#5Thermodynamics Hw#5
Thermodynamics Hw#5littlepine13
 
Grain size dependence of fracture toughness and crack-growth resistance
Grain size dependence of fracture toughness and crack-growth resistanceGrain size dependence of fracture toughness and crack-growth resistance
Grain size dependence of fracture toughness and crack-growth resistanceAslan Ahadi
 

Similar to Amit_Mtech_presentation (20)

Final Evaluation
Final EvaluationFinal Evaluation
Final Evaluation
 
18 quantifiable e xergy
18 quantifiable e xergy18 quantifiable e xergy
18 quantifiable e xergy
 
Generating Electricity More Efficiently with Multiphase Thermoelectric Converter
Generating Electricity More Efficiently with Multiphase Thermoelectric ConverterGenerating Electricity More Efficiently with Multiphase Thermoelectric Converter
Generating Electricity More Efficiently with Multiphase Thermoelectric Converter
 
Conjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat Exchanger
Conjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat ExchangerConjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat Exchanger
Conjugate Heat Transfer Analysis in a Cryogenic Microchannel Heat Exchanger
 
Magnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steelMagnetic nde characterization of tempered 2.25 cr 1mo steel
Magnetic nde characterization of tempered 2.25 cr 1mo steel
 
Solar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptxSolar Collector [Autosaved].pptx
Solar Collector [Autosaved].pptx
 
Appl.Phys.Lett.2010_Murat.CUBUKCU
Appl.Phys.Lett.2010_Murat.CUBUKCUAppl.Phys.Lett.2010_Murat.CUBUKCU
Appl.Phys.Lett.2010_Murat.CUBUKCU
 
Cv34588596
Cv34588596Cv34588596
Cv34588596
 
702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005
 
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
 
IRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden Plot
IRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden PlotIRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden Plot
IRJET- Ultrasonic and Ionic Study of Aqueous KCL through Walden Plot
 
Testing and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climateTesting and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climate
 
Testing and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climateTesting and Performance of Parabolic Trough Collector in Indian climate
Testing and Performance of Parabolic Trough Collector in Indian climate
 
project presentation 1 (2).pptx
project presentation 1 (2).pptxproject presentation 1 (2).pptx
project presentation 1 (2).pptx
 
cobalt oxide composed with rGO as effective electrode material
cobalt oxide composed with rGO as effective electrode materialcobalt oxide composed with rGO as effective electrode material
cobalt oxide composed with rGO as effective electrode material
 
Cb4201514518
Cb4201514518Cb4201514518
Cb4201514518
 
Thermodynamics Hw#5
Thermodynamics Hw#5Thermodynamics Hw#5
Thermodynamics Hw#5
 
FINAL2 PPT3
FINAL2 PPT3FINAL2 PPT3
FINAL2 PPT3
 
Grain size dependence of fracture toughness and crack-growth resistance
Grain size dependence of fracture toughness and crack-growth resistanceGrain size dependence of fracture toughness and crack-growth resistance
Grain size dependence of fracture toughness and crack-growth resistance
 
FINAL2 PPT3
FINAL2 PPT3FINAL2 PPT3
FINAL2 PPT3
 

Amit_Mtech_presentation

  • 1. CFD Analysis of New Heat Recirculating Microreactor for Propane Catalytic Combustion Amit Kunte and Niket Kaisare Department of Chemical Engineering Indian Institute of Technology Madras
  • 2. Motivation • Hydrocarbons have high gravimetric and volumetric energy density • Catalytic combustion of hydrocarbons in micro-channels  Energy generation  Provide energy for fuel processing, reforming and synthesis  Micro-propulsion • Sustaining combustion at small channels is challenging • “Excess Enthalpy” microburners show improved stability
  • 3. Objectives • Introduce new “Excess Enthalpy” geometry – Spiral Microburner Y. Ju and K. Maruta. (2011) Progress in Energy and Combustion Science
  • 4. Objectives • Introduce new “Excess Enthalpy” geometry – Spiral Microburner • Analyze extinction / blowout in spiral microburner using CFD • Analyze thermal behavior of the PHR vis–à–vis ks , Φ , uo, and N. • Compare with straight channel microburner • Compare with the countercurrent heat recirculation ‘U-Bend’ combustor Y. Ju and K. Maruta. (2011) Progress in Energy and Combustion Science
  • 5. Super-adiabatic combustion in Planar Helical Micro-reactor 900 1100 1300 1500 1700 1900 2100 2300 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 Adiabaticreactiontemperature(K) Equivalence ratio Super-adiabaticity ~200K
  • 6. Proposal for a “New” Geometry: Spiral Microburner Pt washcoat on internal walls Outlet channels shield reaction zone Simpler than Swiss Roll (double-spiral) Only geometry with heat recirculating channel co-current to reaction channel
  • 7. Model Description • 2D CFD laminar model solved in Fluent • Mass inlet at center; pressure outlet at periphery • 600 μm channels; 200 μm walls; ~2.6 cm linear length • Propane catalytic combustion (Deshmukh and Vlachos, 2007) as UDF
  • 8. Temperature contours Conversion Contours 1200 K 300 K 600 K 900 K k = 1 W/mK h = 10 W/m2K u0 = 0.5 m/s Φ = 0.65 100 % 80 % 60 % 40 % 20 % 0 %
  • 9. Axial temperature and Mass fraction profiles 300 500 700 900 1100 1300 Temperature(K) channel centerline wall 1 wall 2 0 200 400 600 Massfraction Dimensionless axial location 0.04 0.03 0.02 0.01 Turn1 Turn 2 Turn 3 a uo = 0.5 m/s b
  • 10. Comparison between the 2D and the 3D temperature contours at the inlet 2D 3D c/s
  • 11. Effect of inlet velocity (uo) 1150 850 638 300 1553 1180 676 300 683 530 415 300 uo= 0.5 m/s k = 1 W/mK h = 10 W/m2K Φ = 0.65 uo= 0.11 m/s uo= 6 m/s
  • 12. Axial propane and mass fraction profiles at different uo uo = 0.11 m/s uo = 6 m/s 0 200 400 600 Massfraction Dimensionless axial location 300 400 500 600 700 Temperature(K) channel centreline wall 1 wall 2 0.04 0.03 0.02 0.01 Turn 1 Turn 2 Turn 3 0 0.01 0.02 0.03 0.04 0 100 200 300 400 500 600 Massfraction Dimensionless axial location 300 600 900 1200 1500 1800 Temperature(K) channel centreline wall1 wall2 Turn 1 Turn 2 Turn 3 k = 1 W/mK h = 10 W/m2K Φ = 0.65
  • 13. Transverse temperature profiles at different uo uo = 0.5 m/s uo = 0.11 m/suo = 6 m/s
  • 14. Axial catalytic reaction rate profiles at different Φ
  • 15. Axial location of max reaction rate at various uo 0 100 200 300 0.1 0.5 2.5 12.5 Dimensionlessaxiallocation Inlet velocity, uo (m/s) ф=0.65 ф=0.45 ф=0.35 Extinction Blowout
  • 16. Effect of thermal conductivity (ks) ks = 1 W/mK ks = 10 W/mK ks = 50 W/mK uo = 0.5 m/s h = 10 W/m2K Φ = 0.65 1150 850 638 300
  • 17. Axial temperature profiles at various ks ks = 50 Wm/K 300 500 700 900 1100 0 100 200 300 400 500 600 Temperature(K) Dimensionless axial location channel centerline wall 1 wall 2 Turn 1 Turn 2 Turn 3 300 500 700 900 1100 0 100 200 300 400 500 600 Temperature(K) Dimensionless axial location channel centreline wall 1 wall 2 Turn 1 Turn 2 Turn 3 ks = 1 Wm/K uo = 0.5 m/s h = 10 W/m2K Φ = 0.65
  • 18. Axial catalytic reaction profiles at different ks 0 100 200 300 400 500 600 Reactionrate(mol/m2s) Dimensionless axial location ks= 1W/mKTurn 1 Turn 2 Turn 3 ks= 10 W/mK ks= 50 W/mK 0 0.0025 0.005 0.0075 0.001 0.0125 0.015
  • 19. Axial location of max reaction rate at various ks 0 100 200 300 0.1 0.5 2.5 12.5 Dimensionlessaxiallocation Inlet velocity, uo (m/s) ks=50 ks= 10 ks= 1 Extinction Blowout Re >750
  • 20. Stability plot (Φ vs uo ) at various ks 0.05 0.5 5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 Inletvelocity,uom/s Equivalence ratio (ф) Re > 750
  • 21. Effect of uo on peak temperature and conversion at different ks 30 40 50 60 70 80 90 100 0.05 0.5 5 Percentageconversion (%) Inlet velocity, uo (m/s) ks= 10 W/mK 0.210.160.11 500 750 1000 1250 1500 1750 Temperature(K) ks= 50 W/mK ks= 1 W/mK 9.4 m/s 6 m/s a b Re > 750
  • 22. Effect of Number of turns (N) 1070 827 610 300 1150 850 638 300 1190 876 650 300 N=2 N=3 N=4k = 1 W/mK h = 10 W/m2K u0 = 0.5 m/s Φ = 0.65
  • 23. Stability plot (Φ vs uo ) at various no. of turns (N) 0.05 0.5 5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 Inletvelocity,uom/s Equivalence ratio (Φ)
  • 24. Effect of uo on peak temperature and conversion at different N N= 3 65 75 85 95 0.05 0.5 5 Percentageconversion(%) Inlet velocity, uo (m/s) N=4 N=3 b 0.1 0.12 500 750 1000 1250 1500 1750 Temperature(K) N=2 N=4 a N=3 N=2 0.095 4 m/s 6 7.9
  • 25. Axial location of max reaction rate at various N 0 100 200 300 400 500 0.1 0.5 2.5 12.5 Dimensionlessaxiallocation Inlet velocity, uo (m/s) N=2 N=3 N=4 Extinction Blowout
  • 26. Comparison with SCR (ceramic materials, 1 W/m/K) 0.05 0.5 5 50 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 Inletvelocity(uo)m/s Equivalence Ratio (ф) Tmax > 1500K operating region SCRoperating region PHR conversion < 99%
  • 27. Effect of Φ and uo on peak temperature and conversion
  • 28. Comparison with UBR (ceramic materials, 1 W/m/K) 0.05 0.5 5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 Inletvelocity(uo)m/s Equivalence Ratio(ф) U-bend microburner Re > 750
  • 29. Effect of Φ and uo on peak temperature and conversion
  • 30. Comparison of 2D and 3D extinction limits 0 0.1 0.2 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Inletvelocity,uo(m/s) Equivalence ratio 3D PHR 2D PHR
  • 31. Conclusion • Spiral microburners show significant heat recirculation effect and superadiabaticity • Higher stability than straight channel (though lesser blowout stability than U- Bend) • Good propane breakthrough behavior • Better operating characteristics compared to SCR