SlideShare a Scribd company logo
1 of 66
Download to read offline
Andres	
  H.	
  Gu,érrez,	
  Leonard	
  Moise,	
  
Frances	
  Terry,	
  Kristen	
  Dasilva,	
  	
  
Chris	
  Bailey-­‐Kellogg,	
  William	
  Mar,n,	
  
Anne	
  S.	
  De	
  Groot	
  
Immunoinforma2c	
  analysis	
  of	
  	
  
Chinese	
  Hamster	
  Ovary	
  (CHO)	
  	
  
protein	
  contaminants	
  in	
  	
  
therapeu2c	
  protein	
  formula2ons	
  
Measurement	
  of	
  Residual	
  Host	
  Cell	
  Protein	
  and	
  DNA	
  in	
  Biotechnology	
  Products	
  
June	
  3,	
  2013	
  
	
  
How	
  did	
  we	
  get	
  to	
  HCP/CHO/CHOPPI?	
  
2002	
  
Invita,on	
  to	
  	
  
“Predic,ng	
  Biologic	
  	
  
Protein	
  Immunogenicity”	
  	
  
Conference	
  at	
  FDA	
  
2011	
  
CHO	
  	
  
Genome	
  
	
  Published	
  
	
  
2006-­‐2007	
  
Immunogenicity	
  scale	
  
Tregitopes,	
  Collabora,on	
  	
  
With	
  Gene	
  Koren	
  and	
  others	
  
CHO	
  genome	
  
	
  immunogenicity	
  
	
  analysis	
  
Plenary	
  at	
  ECI	
  CCE	
  conference	
  
HCP	
  /	
  CHO	
  Cells	
  
Host	
  Cell	
  Proteins	
  
Parallels	
  with	
  Graves’	
  model	
  
2004	
  
Benchmarking	
  Vaccine	
  tools	
  	
  
for	
  Biologics:	
  
Clustered	
  	
  
T	
  cell	
  epitopes	
  
EpiBars	
  
CHOPPI	
  
On	
  line	
  .	
  .	
  .	
  	
  
Why are we interested in the Impact of species-
specific sequences on immunogenicity?
Autoimmune	
  Graves	
  Disease	
  
Graves Disease Example
“Autoimmune	
  Graves	
  Disease”	
  begins	
  with	
  a	
  response	
  to	
  a	
  single	
  epitope	
  that	
  
is	
  mismatched	
  and	
  presented	
  in	
  the	
  context	
  of	
  murine	
  MHC	
  
hTSHR variant 1_NM_000369 and murine TSH-R mTSHR variant 1_NM_011648 alignment
mTSHR_variant_1_NM_011648 PPSTQTLKLIETHLKTIPSLAFSSLPNISRIYLSIDATLQRLEPHSFYNL
hTSHR_variant_1_NM_000369 PPSTQTLKLIETHLRTIPSHAFSNLPNISRIYVSIDVTLQQLESHSFYNL
peptide 5-6 (78-94) (variant)
Graves Disease Example
• Epitope fully conserved in human and murine FVIII:
• Tolerated in FVIII-expressing HLA DR mice (have autologous FVIII)
• Immunogenic in FVIII KO mice (do not have any FVIII)
• Epitopes containing human/murine FVIII sequence mismatches:
• immunogenic in FVIII-expressing HLA DR mice (foreign)
• immunogenic in FVIII KO mice (still foreign)
FVIII KO
Not KO
FVIII Example (murine)
Murine'response'to'TSH/R Mouse'Sequence'same'as'Hu Mouse'Sequence'Different
T'cell'Epitope'Present Tolerance Immunogenicity
T'Cell'Epitope'Absent No'Response'''' Absent'epitope,'no'response
Human'response'to'HCP Human'Sequence'Same'as'CHO Human'Sequence'Different
T'cell'Epitope'Present Tolerance Immunogenicity
T'cell'Epitope'Absent No'Response'''' Absent'epitope,'no'response
Mice	
  immunized	
  with	
  human	
  TSH-­‐R	
  	
  
Humans	
  exposed	
  to	
  CHO	
  or	
  other	
  HCP	
  
Important Parallels – HCP effects
Genomics
Transcriptomics Informatics
A new technology for HCP evaluation
Pathogen	
  
Immune	
  	
  	
  
Response?	
  
Self/	
  
Microbiome	
  
8	
  
Ac,ve	
  area	
  of	
  research	
  	
  -­‐	
  EpiVax/URI	
  
HCP	
  Contamina,on	
  cancels	
  trial	
  
Immune	
  response	
  to	
  HCP	
  (CHO)	
  led	
  to	
  recent	
  cancella,on	
  of	
  
phase	
  III	
  clinical	
  trials:	
  “Higher	
  than	
  expected	
  rate	
  of	
  An,-­‐
CHO	
  an,body	
  development”	
  (what	
  is	
  expected????).	
  
	
  
IB1001	
  –	
  hemophilia	
  
(Inspira3on	
  
Biopharmaceu3cals)	
  
•  Danger	
  signals	
  of	
  all	
  sorts	
  	
  
•  Aggregates	
  –	
  how	
  do	
  they	
  work?	
  	
  
– (probably	
  don’t	
  work	
  if	
  no	
  T	
  cell	
  epitopes)	
  	
  
– Immune	
  complexes	
  –	
  Complement	
  
•  T	
  cell	
  epitope	
  content	
  
•  (absence	
  of)	
  Treg	
  epitope	
  content	
  
•  Pre-­‐exis3ng	
  T	
  cell	
  response	
  (Tolerance	
  or	
  
heterologous	
  immunity)	
  
What	
  drives	
  immunogenicity?	
  
Factors (↑roof Immunogenicity) Immune effect
Glycosylation (↑) Increase presentation? Increase foreign-
ness of protein, need T cell epitopes
PEGylation (↓) Slow antigen processing, “mask” T cell
epitopes and B cell epitopes
Host Cell-derived Protein (↑) CPG DNA (if bacterial); CHO T cell epitopes
Oxidized Form of the Product (↑) Increase foreign-ness, modify presentation
Excipients (↑) Increase Danger signal, T cell epitopes
Leachates (↑) Increase Danger signal, T cell epitopes
Characteristics of Patients (↑or↓) Missing Protein is foreign, T cell epitopes
Frequency, Duration and Route of
Administration (↑or↓)
Administration like a vaccine, DAMPs, T cell
epitopes
Aggregates (↑) Aggregation increases T cell epitope
presentation
In almost every case
Mechanism of Action – T cell Response
In	
  almost	
  every	
  case	
  –	
  T	
  cell	
  epitope	
  drives	
  
Immune	
  response	
  
An,gen	
  
Epitope	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  
Drug	
  or	
  
Vaccine	
  
How	
  it	
  works	
  
 
In	
  the	
  right	
  context	
  self	
  proteins	
  can	
  be	
  
immunogenic.	
  Take	
  Epo†,	
  for	
  example.	
  	
  
T	
  cell	
  epitope	
  content	
  is	
  unequally	
  distributed	
  
throughout	
  the	
  human	
  (and	
  CHO)	
  proteome.*	
  	
  
Immune	
  response	
  depends	
  on	
  protein	
  prevalence,	
  
func,on	
  &	
  previous	
  exposure.**	
  
†	
  Marc	
  H.V.	
  van	
  Regenmortel,	
  Ph.D.,	
  Ka,a	
  Boven,	
  M.D.,	
  Fred	
  Bader,	
  Ph.D.	
  Immunogenicity	
  of	
  Biopharmaceu,cals:	
  An	
  Example	
  from	
  
Erythropoie,n:	
  Protein	
  structure,	
  contaminants,	
  formula,on,	
  container,	
  and	
  closure	
  all	
  can	
  affect	
  the	
  immunogenicity	
  of	
  the	
  product.	
  	
  
BioPharm	
  Interna,onal	
  2005.	
  hmp://www.biopharminterna,onal.com/biopharm/ar,cle/ar,cleDetail.jsp?id=174494&sk=&date=&pageID=5	
  
	
  
*A.S.	
  De	
  Groot,	
  J.	
  Rayner,	
  W.	
  Mar,n.	
  Modeling	
  the	
  immunogenicity	
  of	
  therapeu,c	
  proteins	
  using	
  T	
  cell	
  epitope	
  mapping.	
  In:	
  Immunogenicity	
  
of	
  Therapeu,c	
  Biological	
  Products.	
  Developments	
  in	
  Biologicals.	
  Fred	
  Brown,	
  Anthony	
  Mire	
  Suis,	
  editors.	
  Basel,	
  Karger,	
  2003.	
  Vol	
  112:71-­‐80.	
  
	
  
**Clute,	
  S.	
  C.,	
  L.	
  B.	
  Watkin,	
  M.	
  Cornberg,	
  Y.	
  N.	
  Naumov,	
  J.	
  L.	
  Sullivan,	
  K.	
  Luzuriaga,	
  R.	
  M.	
  Welsh,	
  and	
  L.	
  K.	
  Selin.	
  2005.	
  Cross-­‐reac,ve	
  influenza	
  
virus-­‐specific	
  CD8+	
  T	
  cells	
  contribute	
  to	
  lymphoprolifera,on	
  in	
  Epstein-­‐Barr	
  virus-­‐associated	
  infec,ous	
  mononucleosis.	
  The	
  Journal	
  of	
  clinical	
  
inves,ga,on	
  115:3602-­‐3612.	
  
CHO	
  are	
  mammalian	
  proteins	
  –	
  	
  
How	
  can	
  “self”	
  proteins	
  be	
  immunogenic?	
  
T	
  Cell	
  Epitope	
  Content	
  	
  -­‐	
  Predicted	
  Poten,al	
  for	
  Immunogenicity	
  of	
  Selected	
  Proteins	
  	
  
-­‐80	
  
-­‐60	
  
-­‐40	
  
-­‐20	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Human	
  FSH	
  
beta	
  
Human	
  IgA	
  CD	
  	
  
Human	
  IgG	
  CD	
  	
  
Human	
  	
  	
  	
  	
  	
  	
  Albumin	
  	
  	
  	
  	
  	
  	
  
Human	
  	
  	
  	
  	
  	
  	
  
Amylase	
  	
  	
  	
  	
  	
  
De-­‐immunized	
  
INF-­‐beta	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Human	
  
Transferrin	
  	
  	
  	
  	
  	
  	
  	
  	
  
*	
  Human	
  
Gonadotropin	
  	
  	
  
Random	
  
Expecta,on	
  
Influenza	
  
Hemagglu,nin	
  
*	
  Human	
  
GHRH	
  
*	
  Human	
  
Gonadotropin	
  
w/signal	
  
Tetanus	
  Toxin	
  
Human	
  Erythropoie2n	
  
Brazil	
  Nut	
  
An,gen	
  
*	
  Human	
  
GHRH	
  w/signal	
  
**	
  Human	
  INF-­‐	
  
beta	
  	
  
Less	
  	
  Immunogenic	
  Proteins	
  (based	
  on	
  clinical	
  experience)	
  	
  Have	
  Fewer	
  T	
  cell	
  Epitopes	
  
De	
  Groot,	
  As,	
  Goldberg	
  M,	
  Moise	
  L,	
  Mar,n	
  W.	
  Evolu2onary	
  deimmuniza2on:	
  An	
  ancillary	
  mechanism	
  for	
  self-­‐tolerance.	
  Cell	
  Immunol.	
  
2007	
  Apr	
  17;	
  	
  Pages	
  148-­‐153.	
  hmp://dx.doi.org/10.1016/j.cellimm.2007.02.006	
  	
  
	
  
Are	
  self	
  proteins	
  immunogenic?	
  
EpiVax	
  Immunogenicity	
  Hypothesis:	
  
Immune	
  Response	
  =	
  Sum	
  of	
  Epitopes	
  
T	
  cell	
  response	
  depends	
  on:	
  
	
  
T	
  cell	
  epitope	
  content	
  +	
  HLA	
  of	
  subject	
  
	
  
Protein	
  Immunogenicity	
  can	
  be	
  Ranked	
  	
  
	
  
	
  
epitope	
  
Protein	
  Therapeu,c	
  
1	
  	
  +	
  	
  1	
  	
  +	
  	
  1	
  	
  	
  	
  =	
  	
  Response	
  
epitope	
  epitope	
  
• De	
  Groot	
  A.S.	
  and	
  L.	
  Moise.	
  Predic,on	
  of	
  immunogenicity	
  for	
  therapeu,c	
  proteins:	
  State	
  of	
  the	
  art.	
  	
  Current	
  
Opinions	
  in	
  Drug	
  Development	
  and	
  Discovery.	
  May	
  2007.	
  10(3):332-­‐40.	
  
In	
  biologics,	
  immunogenicity	
  is	
  related	
  to	
  	
  
T	
  cell	
  epitope	
  content	
  
EpiVax	
  -­‐	
  Immunogenicity	
  Scale	
  	
  
Low 	
   	
   	
   	
  Neutral 	
   	
   	
   	
  High	
  
Albumin	
   Tetanus	
  Toxin	
  Protein	
  X	
  or	
  mAb	
  Y	
  
Proteins	
  ranked	
  by	
  T-­‐	
  Epitope	
  content	
  per	
  Amino	
  Acid	
  
	
  
• 	
  De	
  Groot	
  A.S.,	
  Drug	
  Discovery	
  Today	
  -­‐	
  2006;	
  
• 	
  De	
  Groot	
  A.S.,	
  Mire-­‐Sluis,	
  A.	
  Ed..	
  Dev.	
  Biol.	
  Basel,	
  Karger,	
  2005.	
  vol	
  122.	
  pp	
  137-­‐160.	
  	
  
An,gen	
  A	
   An,gen	
  B	
  
Aggregate	
  immunogenicity	
  drives	
  	
  
Immune	
  response	
  
EpiMatrix	
   predicted	
   excess/shorwall	
   in	
  
aggregate	
   immunogenicity	
   rela,ve	
   to	
   a	
  
random	
  pep,de	
  standard.	
  
-­‐	
   80	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   70	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   60	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   50	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   40	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   30	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   20	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   10	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   00	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  10	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  20	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  30	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  40	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  50	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  60	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  70	
  	
  	
  	
  	
   -­‐	
  
-­‐	
   -­‐	
  80	
  	
  	
  	
  	
   -­‐	
  
Thrombopoie2n	
  
Human	
  EPO	
  
Tetanus	
  Toxin	
  
Influenza	
  -­‐	
  HA	
  
Albumin	
  
IgG	
  FC	
  Region	
  
EBV	
  -­‐	
  BKRF3	
  
Follitropin	
  -­‐	
  Beta	
  
A	
  protein	
  score	
  >	
  20	
  indicates	
  a	
  significant	
  
immunogenic	
  poten,al.	
  
	
  
Proteins	
   that	
   have	
   previously	
   been	
  
demonstrated	
   to	
   be	
   immunogenic	
   have	
  
higher	
   poten,al	
   immunogenicity	
   on	
   the	
  
scale.	
  	
  
	
  
Those	
  that	
  have	
  rarely	
  been	
  demonstrated	
  
to	
   be	
   immunogenicity	
   have	
   lower	
   T	
   cell	
  
epitope	
  content.	
  	
  
	
  
Immunogenicity	
  scale	
  
Some Vaccine Antigens – High Scores
(work done for NMRC, Dept. of Defense)
-  80 -
-  70 -
-  60 -
-  50 -
-  40 -
-  30 -
-  20 -
-  10 -
-  00 -
-  -10 -
-  -20 -
-  -30 -
-  -40 -
-  -50 -
-  -60 -
-  -70 -
Human EPO
Immunogenic Antibodies*
Tetanus Toxin
Influenza-HA
Albumin
IgG FC Region
EBV-BKRF3
Fibrinogen-Alpha
Non-immunogenic Antibodies†
Follitropin-Beta
Hirudin(-­‐90.41)	
  	
  
See	
  my	
  Blog	
  “Thinking	
  out	
  Loud”	
  
for	
  a	
  discussion	
  of	
  Leech	
  proteins	
  
and	
  Tick	
  Saliva	
  proteins-­‐Tick	
  saliva	
  
proteins	
  also	
  have	
  low	
  
immunogenicity	
  poten,al.	
  	
  
Hirudin	
  –	
  Very	
  Low	
  Poten,al	
  Immunogenicity	
  -­‐	
  Why?	
  
Other Antigens – Extremely Low Scores
(Hirudin, Tick Saliva, Some Parasites)
•  Handled on a case-by-case basis
•  Consider Source
•  Maximum dose (mg biologics/kg body weight)
•  Route of administration
•  Frequency of dosing
•  Pre-clinical and clinical data
•  Detection process in evolution
The FDA Prefers Leech-like Proteins
And HCPs - Regulatory Perspective
HCP Analytical Technologies
•  Detection
–  Protein staining
–  Immunoblotting
•  Identification
–  2D-PAGE/MS
–  2D-LC/MS
•  Quantitation
–  ELISA using anti-HCP antibodies
–  May need to develop internal processes
–  Some kits are available
•  Risk assessment
–  Cytokine release assays
New	
  Approach	
  –	
  Immunogenicity	
  
Screening	
  in	
  silico	
  
Analytical Tests for HCP
•  MHC	
  binding	
  is	
  a	
  prerequisite	
  for	
  immunogenicity	
  
•  Epitopes	
  are	
  linear	
  and	
  directly	
  derived	
  from	
  an,gen	
  sequence	
  
•  Binding	
  is	
  determined	
  by	
  amino	
  acid	
  side	
  chains	
  
•  Matrix-­‐based	
  predictor	
  
MHC	
  II	
  
Mature	
  
APC
Immunogenicity	
  predic,on	
  
EpiMatrix	
  
•  EpiVax	
  uses	
  EpiMatrix	
  to	
  predict	
  epitopes	
  
–  matrix	
  based	
  predic,on	
  algorithm	
  
•  Can	
  predict	
  either	
  class	
  I	
  or	
  class	
  II	
  MHC	
  binding	
  
–  MHC	
  binding	
  is	
  a	
  prerequisite	
  for	
  immunogenicity	
  
MHC	
  II	
  Pocket	
  
Pep,de	
  	
  
Epitope	
  
Mature	
  
APC
MHC	
  II	
  
T	
  cell	
  epitopes	
  are	
  linear	
  and	
  directly	
  
derived	
  from	
  an,gen	
  sequence	
  
	
  
Binding	
  is	
  determined	
  by	
  amino	
  acid	
  
side	
  chains	
  (R	
  groups)	
  and	
  ‘encoded’	
  
in	
  single	
  lemer	
  code	
  
23	
  
6/3/13 Confidential
Easy	
  easy	
  to	
  deliver	
  as	
  pep,des	
  Clusters	
  of	
  MHC	
  binding	
  drive	
  T	
  cells	
  
DRB1*0101 	
  	
  
DRB1*0301 	
  	
  
DRB1*0401 	
  	
  
DRB1*0701 	
  	
  
DRB1*0801 	
  	
  
DRB1*1101 	
  	
  
DRB1*1301 	
  	
  
DRB1*1501 	
  	
  
•  T	
  cell	
  epitopes	
  are	
  not	
  randomly	
  distributed	
  but	
  instead	
  tend	
  to	
  cluster	
  in	
  specific	
  regions.	
  	
  
–  These	
  clusters	
  can	
  be	
  very	
  powerful,	
  enabling	
  significant	
  immune	
  responses	
  to	
  low	
  scoring	
  
proteins.	
  
•  Clus,Mer	
  recognizes	
  T-­‐cell	
  epitope	
  clusters	
  as	
  polypep,des	
  predicted	
  to	
  bind	
  to	
  an	
  
unusually	
  large	
  number	
  of	
  HLA	
  alleles.	
  
	
  
	
  
	
  
6/3/13 Confidential
What	
  Makes	
  Proteins	
  Really	
  immunogenic?	
  
Sequences	
  that	
  Contain	
  EpiBars	
  
Confiden,al	
  
Roberts	
  CGP,	
  Meister	
  GE,	
  Jesdale	
  BM,	
  Lieberman	
  J,	
  Berzofsky	
  JA,	
  A.S.	
  De	
  Groot,	
  Predic,on	
  of	
  HIV	
  pep,de	
  epitopes	
  by	
  a	
  
novel	
  algorithm,	
  AIDS	
  Research	
  and	
  Human	
  Retroviruses,	
  1996,	
  Vol.	
  12,	
  No.	
  7,	
  pp.	
  593-­‐610.	
  
Clus,Mer	
  -­‐	
  Locates	
  highly	
  immunogenic	
  regions	
  
EpiBar	
  :	
  A	
  common	
  
feature	
  of	
  highly	
  
immunogenic	
  clusters	
  
EpiBar	
  
EpiVax	
  Immunogenicity	
  Scale	
  
Confiden,al	
  
- 80 -
- 70 -
- 60 -
- 50 -
- 40 -
- 30 -
- 20 -
- 10 -
- 00 -
- -10 -
- -20 -
- -30 -
- -40 -
- -50 -
- -60 -
- -70 -
- -80 -
Thrombopoietin
Human EPO
Immunogenic Antibodies*
Tetanus Toxin
Influenza-HA
Albumin
IgG FC Region
EBV-BKRF3
Fibrinogen-Alpha
Non-immunogenic Antibodies†
Follitropin-Beta
PROTEIN_001 (35.13)
Protein Immunogenicity Scale
Proteins Scoring above +20 are
considered to be potentially
immunogenic.
On the left of the scale we
include some well-known
proteins for comparison
- 80 -
- 70 -
- 60 -
- 50 -
- 40 -
- 30 -
- 20 -
- 10 -
- 00 -
- -10 -
- -20 -
- -30 -
- -40 -
- -50 -
- -60 -
- -70 -
- -80 -
Thrombopoietin
Human EPO
Immunogenic Antibodies*
Tetanus Toxin
Influenza-HA
Albumin
IgG FC Region
EBV-BKRF3
Non-immunogenic Antibodies†
Follitropin-Beta
EpiMatrix	
  mAb	
  Immunogenicity	
  Scale	
  	
  
- 80 -
- 70 -
- 60 -
- 50 -
- 40 -
- 30 -
- 20 -
- 10 -
- 00 -
- -10 -
- -20 -
- -30 -
- -40 -
- -50 -
- -60 -
- -70 -
- -80 -
IgG FC Region
Nuvion (0%)
Avastin (0%)
AB01 (EPX Adjusted Score: -46.98)
AB02 (EPX Adjusted Score: -44.48)
AB03 (EPX Adjusted Score: -44.81)
AB04 (EPX Adjusted Score: -45.81)
AB05 (EPX Adjusted Score: -45.88)
AB06 (EPX Adjusted Score: -47.85)
AB07 (EPX Adjusted Score: -46.99)
AB08 (EPX Adjusted Score: -46.30)
AB09 (EPX Adjusted Score: -47.40)
AB10 (EPX Adjusted Score: -45.88)
AB11 (EPX Adjusted Score: -47.40)
Synagis (1%)
Simulect (1.4%)
Humira (12%)
Bivatuzumab (6.7%)
Remicade (26%)
Rituxan (27%)
Campath (45%)
Humicade (7%)
Reopro (5.8%)
Tysabri (7%)
LeukArrest (0%)
Herceptin (0.1%)
Compare	
  with:	
  
27	
  
6/3/13 Confidential
Due	
  to	
  the	
  presence	
  of	
  Tregitopes,	
  an,bodies	
  tend	
  to	
  fall	
  lower	
  on	
  
the	
  immunogenicity	
  scale.	
  
We	
  have	
  developed	
  a	
  refined	
  method	
  using	
  regression	
  analysis	
  to	
  
predict	
   the	
   immunogenicity	
   of	
   an,body	
   sequences	
   based	
   on	
  
observed	
  clinical	
  responses	
  (next	
  slide).	
  
We	
   have	
   found	
   that	
   a	
   balance	
   in	
   favor	
   of	
   Tregitope	
   (regulatory)	
  
content	
   over	
   neo-­‐epitope	
   (effector)	
   content	
   is	
   correlated	
   with	
  
reduced	
  clinical	
  immunogenicity.	
  
NeoEpitopeContent	
  
Tregitope Content	
  
High	
   Low	
  
Low	
  
Avastin (0%)	
  
Herceptin (0%)
Mylotarg (3%)	
  
Simulect (1%)	
  
Synagis (1%)	
  
High	
  
Campath (45%)	
  
Remicade (26%)	
  
Rituxan (27%)
CHO	
  
genome	
  
Immune	
  	
  	
  
Response?	
  
Self/	
  
Microbiome	
  
28	
  
Logical Next Step
measure CHO/Self Conservation
Databases	
  available	
  
Puta,vely	
  	
  
Secreted	
  
(signal	
  pep3de)	
  	
  
Mouse	
  
secreted	
  
165	
  proteins	
  
Transcriptome	
  
32,801	
  con,gs	
  
Validated	
  HCP	
  
contaminants	
  
25	
  proteins	
  
CHO	
  genome	
  
24,383	
  	
  
predicted	
  genes	
  	
  
Key Datasets
Genome and transcriptome
•  Protein databases (UniProtKB/Swiss-Prot, Locate)
•  BLAST
•  SignalP
•  EpiMatrix
•  BlastiMer - JanusMatrix
Tools used for this analysis
•  Identify secreted CHO proteins
•  Collect published HCP from CHO
•  Evaluate potential immunogenicity
•  Evaluate sequence homology
•  Identify clustered regions – compare to CHO;
•  Are human/CHO different at the cluster? Count
as possible immunogenicity trigger.
Approach
Immunogenicity	
  	
  Scores	
  distribu,on	
  
Immunogenicity	
  	
  Scale	
  
Validated	
  HCP	
  CHO	
  contaminants	
  
Other	
  potential	
  contaminants	
  
SL cytokine (84)
Lysosomal protective protein (35)
But	
  are	
  human-­‐like	
  proteins	
  immunogenic?	
  
CHO
	
  	
  	
  
okay?	
  
peptides	
  
Putatively	
  	
  
Secreted	
  
(signal	
  peptide)	
  	
  
Mouse	
  
secreted	
  
165	
  proteins	
  
Transcriptome	
  
32,801	
  contigs	
  
Validated	
  HCP	
  
contaminants	
  
25	
  proteins	
  
CHO	
  genome	
  
24,383	
  	
  
predicted	
  genes	
  	
  
Human	
  proteome	
  
20,238	
  proteins	
  
Approach	
  to	
  conserva,on	
  	
  
with	
  Human	
  
	
  
•  Identify secreted CHO proteins
•  Evaluate potential immunogenicity
•  Evaluate sequence homology
•  Identify clustered regions – compare to CHO;
•  Are human/CHO different at the cluster? Count
as possible immunogenicity trigger.
Approach
T	
  cell	
  Receptor	
  Face	
  
(epitope)	
  
MHC-­‐binding	
  Face	
  	
  
(agretope)	
  
T	
  cell	
  epitopes	
  are	
  two-­‐faced	
  
Identifies cross-reactive peptides:
•  Identical T cell-facing residues
•  Same HLA allele but . .
•  OK if different MHC-facing residues
The	
  God	
  of	
  Two	
  Faces:	
  JanusMatrix	
  
TCR	
  face	
  vs.	
  MHC	
  binding	
  face	
  
	
  
MHC/HLA
TCR
The most conservative approach:
•  Identical T cell-facing residues
•  Same HLA allele and minimally different
MHC-facing residues
EpiMatrix	
  adjusted	
  immunogenicity	
  
score	
  
	
  
Determina,on	
  of	
  conserva,on	
  with	
  self:	
  
JanusMatrix	
  results	
  
	
  
Cross-­‐reactivity	
  visualization	
  
Predicted	
  9-­‐mer	
  epitope	
  
from	
  a	
  source	
  protein	
  
Human	
  protein	
  where	
  
cross-­‐reactive	
  epitopes	
  
are	
  present	
  
9-­‐mer	
  from	
  human	
  
prevalent	
  proteome,	
  	
  
100%	
  TCR	
  face	
  identical	
  to	
  
source	
  epitope	
  
Source protein
HCV_G1_NS2_794
CEFT	
  Pep,des	
  (immunogenic)	
  	
  
Flu	
  and	
  Tet	
  tox	
  epitopes	
  
SNF2 histone
linker PHD RING
helicase
ETAA16 protein
Ankyrin repeat
domain 18A
Flu HA308-318
Ubiquitin
specific
protease 1
Poly ADP ribose
polymerase
family, member
9
Poly ADP ribose
polymerase
family, member
9
Tetanus
Toxin830-844
Olfactory
receptor, family
5, subfamily D,
member 14
hTregitope-­‐IGGC-­‐167	
  	
  
hTregitope-­‐IGGC-­‐289	
  
HTREG_IGGC-289
HTREG_IGGC-167
CHO: lysosomal protective protein
Lysosomal
protective
Lysosomal
protective
SL cytokine
CHO: SL cytokine	
  
SL cytokine
•  Identify secreted CHO proteins
•  Evaluate potential immunogenicity
•  Evaluate sequence homology
•  Identify clustered regions – compare to CHO;
•  Are human/CHO different at the cluster? Count
as possible immunogenicity trigger.
New Approach for CHO
Immune	
  Response	
  =	
  Sum	
  of	
  Epitopes	
  
Sum	
  includes	
  +	
  (T	
  effectors)	
  and	
  –	
  (Tregs)	
  scores	
  
Protein	
  Therapeu,c	
  
Host	
  Cell	
  Protein	
  Contaminant	
  
HCP	
  Epitope	
  
New Approach
For	
  an	
  individual,	
  T	
  cell	
  response	
  depends	
  on:	
  	
  
T	
  cell	
  epitope	
  content	
  x	
  HLA	
  –	
  Treg	
  Epitope	
  content	
  x	
  HLA	
  
	
  
Vaccine or Foreign Protein = (TeffPT1+	
  TeffPT2	
  .	
  .	
  .	
  )	
  =	
  	
  	
  Response	
  
CHO = Σ (	
  TeffPT	
  	
  +	
  	
  TeffPT	
  +	
  TeffHCP	
  –	
  TregPT)	
  =	
  	
  	
  Treg	
  Adjusted	
  Response	
  
Immune	
  response	
  depends	
  on	
  
	
  Foreign-­‐ness	
  
	
  Potential	
  Tregs	
  
	
  Adjuvant	
  (Danger	
  signal)	
  
Proposed adjustment to score
Available	
  now:	
  CHOPPI	
  
CHO	
  Protein	
  Predicted	
  Immunogenicity	
  
CHOPPI	
  hmp://bit.ly/11fZqfJ	
  
•  Formula,on	
  (VLP;	
  aggregates)	
  
•  “Danger	
  Signal”	
  
•  Route:	
  Subcutaneous	
  delivery?	
  
•  Dose	
  (high/low,	
  persistent,	
  intermiment)	
  
•  T	
  cell	
  epitope	
  content	
  
•  Differing	
  T	
  cell	
  epitope	
  content	
  =	
  HCP	
  
55	
  
In	
  Closing	
  
Factors	
  affec,ng	
  Immunogenicity	
  
• While CHO are the most
commonly used cell lines for
mammalian cell protein expression,
Company-specific cell lines may
vary. Furthermore, we can’t
anticipate
• Genetic engineering
• Batch-to-batch variation
• Expression (based on above)
• Which protein will ‘hitchhike’
CHO Cell lines may differ
Genomics
“Expressome”Informatics
In	
  the	
  future	
  –	
  Obtain	
  proteins	
  through	
  	
  
MS/MS	
  HPLC	
  –	
  and	
  Sequence,	
  ID	
  epitopes	
  	
  
Thank	
  you!	
  And	
  .	
  .	
  .	
  CHOPPI:	
  
hmp://bit.ly/11fZqfJ	
  or	
  contact	
  me.	
  	
  
Translational Immunology Research and Accelerated [Vaccine]
Development Institute for Immunology and Informatics University of
Rhode Island
Dartmouth College
EpiVax, Inc. SL cytokine
Institute for Immunology and Informatics (iCubed)
D.	
  Spero	
  icubed	
  overview	
  2011	
  
www.immunome.org	
  
URI	
  Alumni	
  Board	
  2012	
  
New	
  Concept:	
  
	
  
Tregitopes	
  induce	
  
	
  
tolerance	
  to	
  	
  
	
  
protein	
  	
  
	
  
Therapeu,cs	
  
	
  
(Friday	
  April	
  20th	
  	
  
Session)	
  
	
  
	
  	
  
Epitope may induce different types of Response
CHO Adjustment for Immunogenicity ?
+	
  	
  
+	
  	
  
Conserved epitope Neo-Epitope
Neo-Epitope
Immune	
  Response	
  =	
  Sum	
  of	
  Epitopes	
  
Sum	
  includes	
  +	
  (T	
  effectors)	
  and	
  –	
  (Tregs)	
  scores	
  
ISPRI approach to analyzing mAbs . . .
T	
  cell	
  response	
  depends	
  on:	
  
	
  
T	
  cell	
  epitope	
  content	
  x	
  HLA	
  –	
  Treg	
  Epitope	
  content	
  x	
  HLA	
  
	
  
	
  
Protein	
  Immunogenicity	
  can	
  be	
  Ranked	
  	
  
	
  
	
  
Treg	
  epitope	
  
Protein	
  Therapeu,c	
  
1	
  	
  +	
  	
  1	
  	
  -­‐	
  Treg	
  	
  =	
  	
  	
  Response	
  
epitope	
  epitope	
  
T	
  reg	
  S,mulus	
  
IL	
  10,	
  TNF	
  alpha	
  	
   Additional Treg Epitope
Modify Effector T cell response:
Reduce T effector Stimulus
Current Hypothesis: More Tregitopes
Lower Immunogenicity
De Groot A.S. and D. Scott. Immunogenicity of Protein Therapeutics.
Trends in Immunology. Invited Review. Trends Immunol. 2007 Nov;28(11):482-90.
631/29/11	
   63	
  Confiden,al	
  and	
  Copyrighted	
  EpiVax	
  
64	
  
EpiVax: Immunogenicity scale is
Correlation of antibody immunogenicity with
Tregitope adjusted EPX Scores
65	
  
Correlation of EpiMatrix Scores
and Immunogenicity in Human studies
40%	
  
37%	
  
	
  
21.97	
  
	
  
FPX	
  1	
  	
  
0%	
  
9.3%	
  
-­‐111.25	
  
FPX	
  5	
  
NA	
  0.5%	
  12%	
  Neutralizing	
  An,bodies	
  
5.6%	
  7.8%	
  53%	
  Binding	
  An,bodies	
  
-­‐1.76	
  1.62	
  34.37	
  EpiMatrix	
  score	
  
FPX	
  4	
  FPX	
  3	
  FPX	
  2	
  Protein	
  
Na:	
  	
  not	
  analyzed	
  
Nega,ve	
  score	
  indicates	
  presence	
  of	
  
Treg	
  epitope	
  
-  80 -
-  70 -
-  60 -
-  50 -
-  40 -
-  30 -
-  20 -
-  10 -
-  00 -
-  -10 -
-  -20 -
-  -30 -
-  -40 -
-  -50 -
-  -60 -
-  -70 -
-  -80 -
Thrombopoietin
Human EPO
Immunogenic Antibodies*
Tetanus Toxin
Influenza-HA
Albumin
IgG FC Region
EBV-BKRF3
Fibrinogen-Alpha
Non-immunogenic Antibodies†
Follitropin-Beta
Ab K (-38.23)
Ab E (-16.03)
Ab N (-53.88)
Ab P (-70.14)
Ab B (-00.32)
Ab A (13.82)
Ab D (-08.87)
Ab F (-22.13)
Ab I (-25.77)
Ab O (-54.26)
Ab L (-48.49)
Ab C (-02.03)
Ab M (-52.25)
Ab H (-24.99)
Ab J (-28.94)
Ab G (-24.33)
*Tregitope	
  adjusted	
  
Application – Germline Abs*

More Related Content

What's hot

Vaccines against East Coast fever: Re-assessment of p67C and identification o...
Vaccines against East Coast fever: Re-assessment of p67C and identification o...Vaccines against East Coast fever: Re-assessment of p67C and identification o...
Vaccines against East Coast fever: Re-assessment of p67C and identification o...ILRI
 
Structural vaccinology
Structural vaccinology Structural vaccinology
Structural vaccinology nasim arshadi
 
Dr Susan E Caldwell Publication Samples
Dr Susan E Caldwell Publication SamplesDr Susan E Caldwell Publication Samples
Dr Susan E Caldwell Publication SamplesSusan E Caldwell, PhD
 
Presentacion 1 cs protein y ratones
Presentacion  1 cs protein y ratonesPresentacion  1 cs protein y ratones
Presentacion 1 cs protein y ratonespaitocaro
 
OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...
OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...
OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...EuFMD
 
PEGS Korea 2015 the essential protein engineering summit
PEGS Korea 2015 the essential protein engineering summitPEGS Korea 2015 the essential protein engineering summit
PEGS Korea 2015 the essential protein engineering summitNicole Proulx
 
Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...
Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...
Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...Nacho Caballero
 
Human monoclonal antibody development
Human monoclonal antibody developmentHuman monoclonal antibody development
Human monoclonal antibody developmenthumanantibodies
 
Biological response modifiers
Biological response modifiersBiological response modifiers
Biological response modifiersjireankita
 

What's hot (20)

Vaccines against East Coast fever: Re-assessment of p67C and identification o...
Vaccines against East Coast fever: Re-assessment of p67C and identification o...Vaccines against East Coast fever: Re-assessment of p67C and identification o...
Vaccines against East Coast fever: Re-assessment of p67C and identification o...
 
Structural vaccinology
Structural vaccinology Structural vaccinology
Structural vaccinology
 
Dr Susan E Caldwell Publication Samples
Dr Susan E Caldwell Publication SamplesDr Susan E Caldwell Publication Samples
Dr Susan E Caldwell Publication Samples
 
Expression of luxS
Expression of luxSExpression of luxS
Expression of luxS
 
Deshpande et al.,Retrovirology 2016
Deshpande et al.,Retrovirology 2016Deshpande et al.,Retrovirology 2016
Deshpande et al.,Retrovirology 2016
 
mAb
mAbmAb
mAb
 
OA09.01, Cox
OA09.01, CoxOA09.01, Cox
OA09.01, Cox
 
R dna seminar
R dna seminarR dna seminar
R dna seminar
 
Presentacion 1 cs protein y ratones
Presentacion  1 cs protein y ratonesPresentacion  1 cs protein y ratones
Presentacion 1 cs protein y ratones
 
OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...
OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...
OS18 - 8.a.2 Rational Design of Attenuated FMDV Vaccines by elevation of –Cpg...
 
Ch03
Ch03Ch03
Ch03
 
Vaccinomics
VaccinomicsVaccinomics
Vaccinomics
 
PEGS Korea 2015 the essential protein engineering summit
PEGS Korea 2015 the essential protein engineering summitPEGS Korea 2015 the essential protein engineering summit
PEGS Korea 2015 the essential protein engineering summit
 
GKA deel 2 college 4
GKA deel 2 college 4GKA deel 2 college 4
GKA deel 2 college 4
 
Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...
Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...
Using the Host Immune Response to Hemorrhagic Fever Viruses to Understand Pat...
 
Human monoclonal antibody development
Human monoclonal antibody developmentHuman monoclonal antibody development
Human monoclonal antibody development
 
Antibodies as Drugs
Antibodies as DrugsAntibodies as Drugs
Antibodies as Drugs
 
Biological response modifiers
Biological response modifiersBiological response modifiers
Biological response modifiers
 
Host Cell Proteins
Host Cell ProteinsHost Cell Proteins
Host Cell Proteins
 
Host Cell Proteins
Host Cell ProteinsHost Cell Proteins
Host Cell Proteins
 

Similar to USP CHOP Annie De Groot Presentation June 2013

ProImmune Antigen Characterization Summit Sanja Selak
ProImmune Antigen Characterization Summit Sanja SelakProImmune Antigen Characterization Summit Sanja Selak
ProImmune Antigen Characterization Summit Sanja Selakamandacturner
 
Monoclonal antibodies Clinical Significance
Monoclonal antibodies Clinical SignificanceMonoclonal antibodies Clinical Significance
Monoclonal antibodies Clinical Significancedrvicky666
 
Experiment modelling of Auto-immune diseases
Experiment modelling of Auto-immune diseasesExperiment modelling of Auto-immune diseases
Experiment modelling of Auto-immune diseasesPratik Parikh
 
JPT_Poster_EPS_2016_final
JPT_Poster_EPS_2016_finalJPT_Poster_EPS_2016_final
JPT_Poster_EPS_2016_finalPaul Von Hoegen
 
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & AbIntroduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & AbLionel Wolberger
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...WAidid
 
JSmithAbstractAngovFinal
JSmithAbstractAngovFinalJSmithAbstractAngovFinal
JSmithAbstractAngovFinalJacob Smith
 
Immuno Coverage
Immuno CoverageImmuno Coverage
Immuno CoverageCaelum
 
Superantigens by Snehashish attributed
Superantigens by Snehashish   attributedSuperantigens by Snehashish   attributed
Superantigens by Snehashish attributedSnehashishSnehashish
 
Mci5004 biomarkers infectious diseases
Mci5004 biomarkers infectious diseasesMci5004 biomarkers infectious diseases
Mci5004 biomarkers infectious diseasesR Lin
 
Beyond humanization-tolerization campath-2013(1)
Beyond humanization-tolerization campath-2013(1)Beyond humanization-tolerization campath-2013(1)
Beyond humanization-tolerization campath-2013(1)Mark Bevington
 
ProImmune Antigen Characterization Summit Gene Olinger
ProImmune Antigen Characterization Summit Gene OlingerProImmune Antigen Characterization Summit Gene Olinger
ProImmune Antigen Characterization Summit Gene Olingeramandacturner
 
TNO Allergenicity risk prediction model
TNO Allergenicity risk prediction modelTNO Allergenicity risk prediction model
TNO Allergenicity risk prediction modelBas Kremer
 
G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2
 G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2 G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2
G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2Helder Jorge Semedo Pires
 
Laboratory diagnosis of toxoplasmosis
Laboratory diagnosis of toxoplasmosisLaboratory diagnosis of toxoplasmosis
Laboratory diagnosis of toxoplasmosisAbhijit Chaudhury
 
Antigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCE
Antigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCEAntigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCE
Antigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCEPRINCE C P
 

Similar to USP CHOP Annie De Groot Presentation June 2013 (20)

ProImmune Antigen Characterization Summit Sanja Selak
ProImmune Antigen Characterization Summit Sanja SelakProImmune Antigen Characterization Summit Sanja Selak
ProImmune Antigen Characterization Summit Sanja Selak
 
Monoclonal antibodies Clinical Significance
Monoclonal antibodies Clinical SignificanceMonoclonal antibodies Clinical Significance
Monoclonal antibodies Clinical Significance
 
Experiment modelling of Auto-immune diseases
Experiment modelling of Auto-immune diseasesExperiment modelling of Auto-immune diseases
Experiment modelling of Auto-immune diseases
 
IMMUNOLOGY.pptx
IMMUNOLOGY.pptxIMMUNOLOGY.pptx
IMMUNOLOGY.pptx
 
JPT_Poster_EPS_2016_final
JPT_Poster_EPS_2016_finalJPT_Poster_EPS_2016_final
JPT_Poster_EPS_2016_final
 
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & AbIntroduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
Introduction to Immunity Antibody Function & Diversity 2006 L1&2-overview & Ab
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...
 
HLA-DRB1
HLA-DRB1HLA-DRB1
HLA-DRB1
 
1.6 marc lecuit
1.6 marc lecuit1.6 marc lecuit
1.6 marc lecuit
 
JSmithAbstractAngovFinal
JSmithAbstractAngovFinalJSmithAbstractAngovFinal
JSmithAbstractAngovFinal
 
Immuno Coverage
Immuno CoverageImmuno Coverage
Immuno Coverage
 
Superantigens by Snehashish attributed
Superantigens by Snehashish   attributedSuperantigens by Snehashish   attributed
Superantigens by Snehashish attributed
 
Mci5004 biomarkers infectious diseases
Mci5004 biomarkers infectious diseasesMci5004 biomarkers infectious diseases
Mci5004 biomarkers infectious diseases
 
Beyond humanization-tolerization campath-2013(1)
Beyond humanization-tolerization campath-2013(1)Beyond humanization-tolerization campath-2013(1)
Beyond humanization-tolerization campath-2013(1)
 
ProImmune Antigen Characterization Summit Gene Olinger
ProImmune Antigen Characterization Summit Gene OlingerProImmune Antigen Characterization Summit Gene Olinger
ProImmune Antigen Characterization Summit Gene Olinger
 
TNO Allergenicity risk prediction model
TNO Allergenicity risk prediction modelTNO Allergenicity risk prediction model
TNO Allergenicity risk prediction model
 
G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2
 G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2 G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2
G.2014-immuno~ (14.imm.tolerance & autoimm. diseases-ls)2
 
Laboratory diagnosis of toxoplasmosis
Laboratory diagnosis of toxoplasmosisLaboratory diagnosis of toxoplasmosis
Laboratory diagnosis of toxoplasmosis
 
Antigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCE
Antigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCEAntigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCE
Antigen ,Antibody and Ag-Ab reactions ppt by DR.C.P.PRINCE
 
TLR ligand functionalized nanocarriers to enhance immunogenicity of vaccines
TLR ligand functionalized nanocarriers to enhance immunogenicity of vaccinesTLR ligand functionalized nanocarriers to enhance immunogenicity of vaccines
TLR ligand functionalized nanocarriers to enhance immunogenicity of vaccines
 

USP CHOP Annie De Groot Presentation June 2013

  • 1. Andres  H.  Gu,érrez,  Leonard  Moise,   Frances  Terry,  Kristen  Dasilva,     Chris  Bailey-­‐Kellogg,  William  Mar,n,   Anne  S.  De  Groot   Immunoinforma2c  analysis  of     Chinese  Hamster  Ovary  (CHO)     protein  contaminants  in     therapeu2c  protein  formula2ons   Measurement  of  Residual  Host  Cell  Protein  and  DNA  in  Biotechnology  Products   June  3,  2013    
  • 2. How  did  we  get  to  HCP/CHO/CHOPPI?   2002   Invita,on  to     “Predic,ng  Biologic     Protein  Immunogenicity”     Conference  at  FDA   2011   CHO     Genome    Published     2006-­‐2007   Immunogenicity  scale   Tregitopes,  Collabora,on     With  Gene  Koren  and  others   CHO  genome    immunogenicity    analysis   Plenary  at  ECI  CCE  conference   HCP  /  CHO  Cells   Host  Cell  Proteins   Parallels  with  Graves’  model   2004   Benchmarking  Vaccine  tools     for  Biologics:   Clustered     T  cell  epitopes   EpiBars   CHOPPI   On  line  .  .  .    
  • 3. Why are we interested in the Impact of species- specific sequences on immunogenicity? Autoimmune  Graves  Disease   Graves Disease Example
  • 4. “Autoimmune  Graves  Disease”  begins  with  a  response  to  a  single  epitope  that   is  mismatched  and  presented  in  the  context  of  murine  MHC   hTSHR variant 1_NM_000369 and murine TSH-R mTSHR variant 1_NM_011648 alignment mTSHR_variant_1_NM_011648 PPSTQTLKLIETHLKTIPSLAFSSLPNISRIYLSIDATLQRLEPHSFYNL hTSHR_variant_1_NM_000369 PPSTQTLKLIETHLRTIPSHAFSNLPNISRIYVSIDVTLQQLESHSFYNL peptide 5-6 (78-94) (variant) Graves Disease Example
  • 5. • Epitope fully conserved in human and murine FVIII: • Tolerated in FVIII-expressing HLA DR mice (have autologous FVIII) • Immunogenic in FVIII KO mice (do not have any FVIII) • Epitopes containing human/murine FVIII sequence mismatches: • immunogenic in FVIII-expressing HLA DR mice (foreign) • immunogenic in FVIII KO mice (still foreign) FVIII KO Not KO FVIII Example (murine)
  • 6. Murine'response'to'TSH/R Mouse'Sequence'same'as'Hu Mouse'Sequence'Different T'cell'Epitope'Present Tolerance Immunogenicity T'Cell'Epitope'Absent No'Response'''' Absent'epitope,'no'response Human'response'to'HCP Human'Sequence'Same'as'CHO Human'Sequence'Different T'cell'Epitope'Present Tolerance Immunogenicity T'cell'Epitope'Absent No'Response'''' Absent'epitope,'no'response Mice  immunized  with  human  TSH-­‐R     Humans  exposed  to  CHO  or  other  HCP   Important Parallels – HCP effects
  • 7. Genomics Transcriptomics Informatics A new technology for HCP evaluation
  • 8. Pathogen   Immune       Response?   Self/   Microbiome   8   Ac,ve  area  of  research    -­‐  EpiVax/URI  
  • 9. HCP  Contamina,on  cancels  trial   Immune  response  to  HCP  (CHO)  led  to  recent  cancella,on  of   phase  III  clinical  trials:  “Higher  than  expected  rate  of  An,-­‐ CHO  an,body  development”  (what  is  expected????).     IB1001  –  hemophilia   (Inspira3on   Biopharmaceu3cals)  
  • 10. •  Danger  signals  of  all  sorts     •  Aggregates  –  how  do  they  work?     – (probably  don’t  work  if  no  T  cell  epitopes)     – Immune  complexes  –  Complement   •  T  cell  epitope  content   •  (absence  of)  Treg  epitope  content   •  Pre-­‐exis3ng  T  cell  response  (Tolerance  or   heterologous  immunity)   What  drives  immunogenicity?  
  • 11. Factors (↑roof Immunogenicity) Immune effect Glycosylation (↑) Increase presentation? Increase foreign- ness of protein, need T cell epitopes PEGylation (↓) Slow antigen processing, “mask” T cell epitopes and B cell epitopes Host Cell-derived Protein (↑) CPG DNA (if bacterial); CHO T cell epitopes Oxidized Form of the Product (↑) Increase foreign-ness, modify presentation Excipients (↑) Increase Danger signal, T cell epitopes Leachates (↑) Increase Danger signal, T cell epitopes Characteristics of Patients (↑or↓) Missing Protein is foreign, T cell epitopes Frequency, Duration and Route of Administration (↑or↓) Administration like a vaccine, DAMPs, T cell epitopes Aggregates (↑) Aggregation increases T cell epitope presentation In almost every case Mechanism of Action – T cell Response In  almost  every  case  –  T  cell  epitope  drives   Immune  response  
  • 12. An,gen   Epitope                       Drug  or   Vaccine   How  it  works  
  • 13.   In  the  right  context  self  proteins  can  be   immunogenic.  Take  Epo†,  for  example.     T  cell  epitope  content  is  unequally  distributed   throughout  the  human  (and  CHO)  proteome.*     Immune  response  depends  on  protein  prevalence,   func,on  &  previous  exposure.**   †  Marc  H.V.  van  Regenmortel,  Ph.D.,  Ka,a  Boven,  M.D.,  Fred  Bader,  Ph.D.  Immunogenicity  of  Biopharmaceu,cals:  An  Example  from   Erythropoie,n:  Protein  structure,  contaminants,  formula,on,  container,  and  closure  all  can  affect  the  immunogenicity  of  the  product.     BioPharm  Interna,onal  2005.  hmp://www.biopharminterna,onal.com/biopharm/ar,cle/ar,cleDetail.jsp?id=174494&sk=&date=&pageID=5     *A.S.  De  Groot,  J.  Rayner,  W.  Mar,n.  Modeling  the  immunogenicity  of  therapeu,c  proteins  using  T  cell  epitope  mapping.  In:  Immunogenicity   of  Therapeu,c  Biological  Products.  Developments  in  Biologicals.  Fred  Brown,  Anthony  Mire  Suis,  editors.  Basel,  Karger,  2003.  Vol  112:71-­‐80.     **Clute,  S.  C.,  L.  B.  Watkin,  M.  Cornberg,  Y.  N.  Naumov,  J.  L.  Sullivan,  K.  Luzuriaga,  R.  M.  Welsh,  and  L.  K.  Selin.  2005.  Cross-­‐reac,ve  influenza   virus-­‐specific  CD8+  T  cells  contribute  to  lymphoprolifera,on  in  Epstein-­‐Barr  virus-­‐associated  infec,ous  mononucleosis.  The  Journal  of  clinical   inves,ga,on  115:3602-­‐3612.   CHO  are  mammalian  proteins  –     How  can  “self”  proteins  be  immunogenic?  
  • 14. T  Cell  Epitope  Content    -­‐  Predicted  Poten,al  for  Immunogenicity  of  Selected  Proteins     -­‐80   -­‐60   -­‐40   -­‐20   0   20   40   60   80   100                                   Human  FSH   beta   Human  IgA  CD     Human  IgG  CD     Human              Albumin               Human               Amylase             De-­‐immunized   INF-­‐beta                           Human   Transferrin                   *  Human   Gonadotropin       Random   Expecta,on   Influenza   Hemagglu,nin   *  Human   GHRH   *  Human   Gonadotropin   w/signal   Tetanus  Toxin   Human  Erythropoie2n   Brazil  Nut   An,gen   *  Human   GHRH  w/signal   **  Human  INF-­‐   beta     Less    Immunogenic  Proteins  (based  on  clinical  experience)    Have  Fewer  T  cell  Epitopes   De  Groot,  As,  Goldberg  M,  Moise  L,  Mar,n  W.  Evolu2onary  deimmuniza2on:  An  ancillary  mechanism  for  self-­‐tolerance.  Cell  Immunol.   2007  Apr  17;    Pages  148-­‐153.  hmp://dx.doi.org/10.1016/j.cellimm.2007.02.006       Are  self  proteins  immunogenic?  
  • 15. EpiVax  Immunogenicity  Hypothesis:   Immune  Response  =  Sum  of  Epitopes   T  cell  response  depends  on:     T  cell  epitope  content  +  HLA  of  subject     Protein  Immunogenicity  can  be  Ranked         epitope   Protein  Therapeu,c   1    +    1    +    1        =    Response   epitope  epitope   • De  Groot  A.S.  and  L.  Moise.  Predic,on  of  immunogenicity  for  therapeu,c  proteins:  State  of  the  art.    Current   Opinions  in  Drug  Development  and  Discovery.  May  2007.  10(3):332-­‐40.   In  biologics,  immunogenicity  is  related  to     T  cell  epitope  content  
  • 16. EpiVax  -­‐  Immunogenicity  Scale     Low        Neutral        High   Albumin   Tetanus  Toxin  Protein  X  or  mAb  Y   Proteins  ranked  by  T-­‐  Epitope  content  per  Amino  Acid     •   De  Groot  A.S.,  Drug  Discovery  Today  -­‐  2006;   •   De  Groot  A.S.,  Mire-­‐Sluis,  A.  Ed..  Dev.  Biol.  Basel,  Karger,  2005.  vol  122.  pp  137-­‐160.     An,gen  A   An,gen  B   Aggregate  immunogenicity  drives     Immune  response  
  • 17. EpiMatrix   predicted   excess/shorwall   in   aggregate   immunogenicity   rela,ve   to   a   random  pep,de  standard.   -­‐   80           -­‐   -­‐   70           -­‐   -­‐   60           -­‐   -­‐   50           -­‐   -­‐   40           -­‐   -­‐   30           -­‐   -­‐   20           -­‐   -­‐   10           -­‐   -­‐   00           -­‐   -­‐   -­‐  10           -­‐   -­‐   -­‐  20           -­‐   -­‐   -­‐  30           -­‐   -­‐   -­‐  40           -­‐   -­‐   -­‐  50           -­‐   -­‐   -­‐  60           -­‐   -­‐   -­‐  70           -­‐   -­‐   -­‐  80           -­‐   Thrombopoie2n   Human  EPO   Tetanus  Toxin   Influenza  -­‐  HA   Albumin   IgG  FC  Region   EBV  -­‐  BKRF3   Follitropin  -­‐  Beta   A  protein  score  >  20  indicates  a  significant   immunogenic  poten,al.     Proteins   that   have   previously   been   demonstrated   to   be   immunogenic   have   higher   poten,al   immunogenicity   on   the   scale.       Those  that  have  rarely  been  demonstrated   to   be   immunogenicity   have   lower   T   cell   epitope  content.       Immunogenicity  scale  
  • 18. Some Vaccine Antigens – High Scores (work done for NMRC, Dept. of Defense)
  • 19. -  80 - -  70 - -  60 - -  50 - -  40 - -  30 - -  20 - -  10 - -  00 - -  -10 - -  -20 - -  -30 - -  -40 - -  -50 - -  -60 - -  -70 - Human EPO Immunogenic Antibodies* Tetanus Toxin Influenza-HA Albumin IgG FC Region EBV-BKRF3 Fibrinogen-Alpha Non-immunogenic Antibodies† Follitropin-Beta Hirudin(-­‐90.41)     See  my  Blog  “Thinking  out  Loud”   for  a  discussion  of  Leech  proteins   and  Tick  Saliva  proteins-­‐Tick  saliva   proteins  also  have  low   immunogenicity  poten,al.     Hirudin  –  Very  Low  Poten,al  Immunogenicity  -­‐  Why?   Other Antigens – Extremely Low Scores (Hirudin, Tick Saliva, Some Parasites)
  • 20. •  Handled on a case-by-case basis •  Consider Source •  Maximum dose (mg biologics/kg body weight) •  Route of administration •  Frequency of dosing •  Pre-clinical and clinical data •  Detection process in evolution The FDA Prefers Leech-like Proteins And HCPs - Regulatory Perspective
  • 21. HCP Analytical Technologies •  Detection –  Protein staining –  Immunoblotting •  Identification –  2D-PAGE/MS –  2D-LC/MS •  Quantitation –  ELISA using anti-HCP antibodies –  May need to develop internal processes –  Some kits are available •  Risk assessment –  Cytokine release assays New  Approach  –  Immunogenicity   Screening  in  silico   Analytical Tests for HCP
  • 22. •  MHC  binding  is  a  prerequisite  for  immunogenicity   •  Epitopes  are  linear  and  directly  derived  from  an,gen  sequence   •  Binding  is  determined  by  amino  acid  side  chains   •  Matrix-­‐based  predictor   MHC  II   Mature   APC Immunogenicity  predic,on  
  • 23. EpiMatrix   •  EpiVax  uses  EpiMatrix  to  predict  epitopes   –  matrix  based  predic,on  algorithm   •  Can  predict  either  class  I  or  class  II  MHC  binding   –  MHC  binding  is  a  prerequisite  for  immunogenicity   MHC  II  Pocket   Pep,de     Epitope   Mature   APC MHC  II   T  cell  epitopes  are  linear  and  directly   derived  from  an,gen  sequence     Binding  is  determined  by  amino  acid   side  chains  (R  groups)  and  ‘encoded’   in  single  lemer  code   23   6/3/13 Confidential
  • 24. Easy  easy  to  deliver  as  pep,des  Clusters  of  MHC  binding  drive  T  cells   DRB1*0101     DRB1*0301     DRB1*0401     DRB1*0701     DRB1*0801     DRB1*1101     DRB1*1301     DRB1*1501     •  T  cell  epitopes  are  not  randomly  distributed  but  instead  tend  to  cluster  in  specific  regions.     –  These  clusters  can  be  very  powerful,  enabling  significant  immune  responses  to  low  scoring   proteins.   •  Clus,Mer  recognizes  T-­‐cell  epitope  clusters  as  polypep,des  predicted  to  bind  to  an   unusually  large  number  of  HLA  alleles.         6/3/13 Confidential
  • 25. What  Makes  Proteins  Really  immunogenic?   Sequences  that  Contain  EpiBars   Confiden,al   Roberts  CGP,  Meister  GE,  Jesdale  BM,  Lieberman  J,  Berzofsky  JA,  A.S.  De  Groot,  Predic,on  of  HIV  pep,de  epitopes  by  a   novel  algorithm,  AIDS  Research  and  Human  Retroviruses,  1996,  Vol.  12,  No.  7,  pp.  593-­‐610.   Clus,Mer  -­‐  Locates  highly  immunogenic  regions   EpiBar  :  A  common   feature  of  highly   immunogenic  clusters   EpiBar  
  • 26. EpiVax  Immunogenicity  Scale   Confiden,al   - 80 - - 70 - - 60 - - 50 - - 40 - - 30 - - 20 - - 10 - - 00 - - -10 - - -20 - - -30 - - -40 - - -50 - - -60 - - -70 - - -80 - Thrombopoietin Human EPO Immunogenic Antibodies* Tetanus Toxin Influenza-HA Albumin IgG FC Region EBV-BKRF3 Fibrinogen-Alpha Non-immunogenic Antibodies† Follitropin-Beta PROTEIN_001 (35.13) Protein Immunogenicity Scale Proteins Scoring above +20 are considered to be potentially immunogenic. On the left of the scale we include some well-known proteins for comparison - 80 - - 70 - - 60 - - 50 - - 40 - - 30 - - 20 - - 10 - - 00 - - -10 - - -20 - - -30 - - -40 - - -50 - - -60 - - -70 - - -80 - Thrombopoietin Human EPO Immunogenic Antibodies* Tetanus Toxin Influenza-HA Albumin IgG FC Region EBV-BKRF3 Non-immunogenic Antibodies† Follitropin-Beta
  • 27. EpiMatrix  mAb  Immunogenicity  Scale     - 80 - - 70 - - 60 - - 50 - - 40 - - 30 - - 20 - - 10 - - 00 - - -10 - - -20 - - -30 - - -40 - - -50 - - -60 - - -70 - - -80 - IgG FC Region Nuvion (0%) Avastin (0%) AB01 (EPX Adjusted Score: -46.98) AB02 (EPX Adjusted Score: -44.48) AB03 (EPX Adjusted Score: -44.81) AB04 (EPX Adjusted Score: -45.81) AB05 (EPX Adjusted Score: -45.88) AB06 (EPX Adjusted Score: -47.85) AB07 (EPX Adjusted Score: -46.99) AB08 (EPX Adjusted Score: -46.30) AB09 (EPX Adjusted Score: -47.40) AB10 (EPX Adjusted Score: -45.88) AB11 (EPX Adjusted Score: -47.40) Synagis (1%) Simulect (1.4%) Humira (12%) Bivatuzumab (6.7%) Remicade (26%) Rituxan (27%) Campath (45%) Humicade (7%) Reopro (5.8%) Tysabri (7%) LeukArrest (0%) Herceptin (0.1%) Compare  with:   27   6/3/13 Confidential Due  to  the  presence  of  Tregitopes,  an,bodies  tend  to  fall  lower  on   the  immunogenicity  scale.   We  have  developed  a  refined  method  using  regression  analysis  to   predict   the   immunogenicity   of   an,body   sequences   based   on   observed  clinical  responses  (next  slide).   We   have   found   that   a   balance   in   favor   of   Tregitope   (regulatory)   content   over   neo-­‐epitope   (effector)   content   is   correlated   with   reduced  clinical  immunogenicity.   NeoEpitopeContent   Tregitope Content   High   Low   Low   Avastin (0%)   Herceptin (0%) Mylotarg (3%)   Simulect (1%)   Synagis (1%)   High   Campath (45%)   Remicade (26%)   Rituxan (27%)
  • 28. CHO   genome   Immune       Response?   Self/   Microbiome   28   Logical Next Step measure CHO/Self Conservation
  • 29. Databases  available   Puta,vely     Secreted   (signal  pep3de)     Mouse   secreted   165  proteins   Transcriptome   32,801  con,gs   Validated  HCP   contaminants   25  proteins   CHO  genome   24,383     predicted  genes    
  • 30. Key Datasets Genome and transcriptome
  • 31. •  Protein databases (UniProtKB/Swiss-Prot, Locate) •  BLAST •  SignalP •  EpiMatrix •  BlastiMer - JanusMatrix Tools used for this analysis
  • 32. •  Identify secreted CHO proteins •  Collect published HCP from CHO •  Evaluate potential immunogenicity •  Evaluate sequence homology •  Identify clustered regions – compare to CHO; •  Are human/CHO different at the cluster? Count as possible immunogenicity trigger. Approach
  • 33. Immunogenicity    Scores  distribu,on  
  • 34. Immunogenicity    Scale   Validated  HCP  CHO  contaminants  
  • 35. Other  potential  contaminants   SL cytokine (84) Lysosomal protective protein (35)
  • 36. But  are  human-­‐like  proteins  immunogenic?   CHO       okay?   peptides  
  • 37. Putatively     Secreted   (signal  peptide)     Mouse   secreted   165  proteins   Transcriptome   32,801  contigs   Validated  HCP   contaminants   25  proteins   CHO  genome   24,383     predicted  genes     Human  proteome   20,238  proteins   Approach  to  conserva,on     with  Human    
  • 38. •  Identify secreted CHO proteins •  Evaluate potential immunogenicity •  Evaluate sequence homology •  Identify clustered regions – compare to CHO; •  Are human/CHO different at the cluster? Count as possible immunogenicity trigger. Approach
  • 39. T  cell  Receptor  Face   (epitope)   MHC-­‐binding  Face     (agretope)   T  cell  epitopes  are  two-­‐faced  
  • 40. Identifies cross-reactive peptides: •  Identical T cell-facing residues •  Same HLA allele but . . •  OK if different MHC-facing residues The  God  of  Two  Faces:  JanusMatrix  
  • 41. TCR  face  vs.  MHC  binding  face     MHC/HLA TCR The most conservative approach: •  Identical T cell-facing residues •  Same HLA allele and minimally different MHC-facing residues
  • 43. Determina,on  of  conserva,on  with  self:   JanusMatrix  results    
  • 44. Cross-­‐reactivity  visualization   Predicted  9-­‐mer  epitope   from  a  source  protein   Human  protein  where   cross-­‐reactive  epitopes   are  present   9-­‐mer  from  human   prevalent  proteome,     100%  TCR  face  identical  to   source  epitope   Source protein HCV_G1_NS2_794
  • 46. Flu  and  Tet  tox  epitopes   SNF2 histone linker PHD RING helicase ETAA16 protein Ankyrin repeat domain 18A Flu HA308-318 Ubiquitin specific protease 1 Poly ADP ribose polymerase family, member 9 Poly ADP ribose polymerase family, member 9 Tetanus Toxin830-844 Olfactory receptor, family 5, subfamily D, member 14
  • 48. CHO: lysosomal protective protein Lysosomal protective Lysosomal protective
  • 49. SL cytokine CHO: SL cytokine   SL cytokine
  • 50. •  Identify secreted CHO proteins •  Evaluate potential immunogenicity •  Evaluate sequence homology •  Identify clustered regions – compare to CHO; •  Are human/CHO different at the cluster? Count as possible immunogenicity trigger. New Approach for CHO
  • 51. Immune  Response  =  Sum  of  Epitopes   Sum  includes  +  (T  effectors)  and  –  (Tregs)  scores   Protein  Therapeu,c   Host  Cell  Protein  Contaminant   HCP  Epitope   New Approach
  • 52. For  an  individual,  T  cell  response  depends  on:     T  cell  epitope  content  x  HLA  –  Treg  Epitope  content  x  HLA     Vaccine or Foreign Protein = (TeffPT1+  TeffPT2  .  .  .  )  =      Response   CHO = Σ (  TeffPT    +    TeffPT  +  TeffHCP  –  TregPT)  =      Treg  Adjusted  Response   Immune  response  depends  on    Foreign-­‐ness    Potential  Tregs    Adjuvant  (Danger  signal)   Proposed adjustment to score
  • 53. Available  now:  CHOPPI   CHO  Protein  Predicted  Immunogenicity   CHOPPI  hmp://bit.ly/11fZqfJ  
  • 54. •  Formula,on  (VLP;  aggregates)   •  “Danger  Signal”   •  Route:  Subcutaneous  delivery?   •  Dose  (high/low,  persistent,  intermiment)   •  T  cell  epitope  content   •  Differing  T  cell  epitope  content  =  HCP   55   In  Closing   Factors  affec,ng  Immunogenicity  
  • 55. • While CHO are the most commonly used cell lines for mammalian cell protein expression, Company-specific cell lines may vary. Furthermore, we can’t anticipate • Genetic engineering • Batch-to-batch variation • Expression (based on above) • Which protein will ‘hitchhike’ CHO Cell lines may differ
  • 56. Genomics “Expressome”Informatics In  the  future  –  Obtain  proteins  through     MS/MS  HPLC  –  and  Sequence,  ID  epitopes    
  • 57. Thank  you!  And  .  .  .  CHOPPI:   hmp://bit.ly/11fZqfJ  or  contact  me.     Translational Immunology Research and Accelerated [Vaccine] Development Institute for Immunology and Informatics University of Rhode Island Dartmouth College EpiVax, Inc. SL cytokine
  • 58. Institute for Immunology and Informatics (iCubed) D.  Spero  icubed  overview  2011   www.immunome.org   URI  Alumni  Board  2012  
  • 59. New  Concept:     Tregitopes  induce     tolerance  to       protein       Therapeu,cs     (Friday  April  20th     Session)         Epitope may induce different types of Response
  • 60. CHO Adjustment for Immunogenicity ? +     +     Conserved epitope Neo-Epitope Neo-Epitope
  • 61. Immune  Response  =  Sum  of  Epitopes   Sum  includes  +  (T  effectors)  and  –  (Tregs)  scores   ISPRI approach to analyzing mAbs . . . T  cell  response  depends  on:     T  cell  epitope  content  x  HLA  –  Treg  Epitope  content  x  HLA       Protein  Immunogenicity  can  be  Ranked         Treg  epitope   Protein  Therapeu,c   1    +    1    -­‐  Treg    =      Response   epitope  epitope  
  • 62. T  reg  S,mulus   IL  10,  TNF  alpha     Additional Treg Epitope Modify Effector T cell response: Reduce T effector Stimulus Current Hypothesis: More Tregitopes Lower Immunogenicity De Groot A.S. and D. Scott. Immunogenicity of Protein Therapeutics. Trends in Immunology. Invited Review. Trends Immunol. 2007 Nov;28(11):482-90. 631/29/11   63  Confiden,al  and  Copyrighted  EpiVax  
  • 64. Correlation of antibody immunogenicity with Tregitope adjusted EPX Scores 65  
  • 65. Correlation of EpiMatrix Scores and Immunogenicity in Human studies 40%   37%     21.97     FPX  1     0%   9.3%   -­‐111.25   FPX  5   NA  0.5%  12%  Neutralizing  An,bodies   5.6%  7.8%  53%  Binding  An,bodies   -­‐1.76  1.62  34.37  EpiMatrix  score   FPX  4  FPX  3  FPX  2  Protein   Na:    not  analyzed   Nega,ve  score  indicates  presence  of   Treg  epitope  
  • 66. -  80 - -  70 - -  60 - -  50 - -  40 - -  30 - -  20 - -  10 - -  00 - -  -10 - -  -20 - -  -30 - -  -40 - -  -50 - -  -60 - -  -70 - -  -80 - Thrombopoietin Human EPO Immunogenic Antibodies* Tetanus Toxin Influenza-HA Albumin IgG FC Region EBV-BKRF3 Fibrinogen-Alpha Non-immunogenic Antibodies† Follitropin-Beta Ab K (-38.23) Ab E (-16.03) Ab N (-53.88) Ab P (-70.14) Ab B (-00.32) Ab A (13.82) Ab D (-08.87) Ab F (-22.13) Ab I (-25.77) Ab O (-54.26) Ab L (-48.49) Ab C (-02.03) Ab M (-52.25) Ab H (-24.99) Ab J (-28.94) Ab G (-24.33) *Tregitope  adjusted   Application – Germline Abs*