PRML 10.1 ~ 10.3
7/31
Yuki Soma
 10.1 Variational Inference . . . . . . . . . . . . . . . . . . . . . . 462
◦ 10.1.1 Factorized distributions . . . . . . . . . . . . . . . . . . . . 464
◦ 10.1.2 Properties of factorized approximations . . . . . . . . . . . 466
◦ 10.1.3 Example: The univariate Gaussian . . . . . . . . . . . . . . 470
◦ 10.1.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . 473
 10.2 Illustration: Variational Mixture of Gaussians . . . 474
◦ 10.2.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 475
◦ 10.2.2 Variational lower bound . . . . . . . . . . . . . . . . . . . 481
◦ 10.2.3 Predictive density . . . . . . . . . . . . . . . . . . . . . . . 482
◦ 10.2.4 Determining the number of components . . . . . . . . . . . 483
◦ 10.2.5 Induced factorizations . . . . . . . . . . . . . . . . . . . . 485
 10.3 Variational Linear Regression . . . . . . . . .. . . . . . 486
◦ 10.3.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 486
◦ 10.3.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 488
◦ 10.3.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 489
 𝐗 𝐙 𝑝(𝐙|𝐗)
𝐙


◦
◦ 11 MCMC



◦
◦ EP 10.7
 𝐙
1.
◦ 𝑞 𝐙 = 𝑞(𝐙|𝛚) 𝛚
2. 𝐙
◦
◦ 𝑞𝑖 𝐙𝑖 = 𝑞𝑖

◦
◦ 𝐙
 𝐗
 𝑝(𝐗, 𝐙)
 𝑝(𝐙|𝐗) 𝑝(𝐗)
◦

 ℒ(𝑞)
𝐾𝐿(𝑞| 𝑝 = 0 𝑞 𝐙 = 𝑝(𝐙|𝐗)
 10.5 ℒ(𝑞)
𝒒𝒊
 10.5 ℒ(𝑞)
KL
𝑞 𝑗 = 𝑝 𝐗, 𝐙𝐣
 ℒ(𝑞) 𝑞 𝑗
∗
𝑗 = 1, … , 𝑀
 𝑞𝑖 𝑖 ≠ 𝑗

1. 𝑞 𝑗
2.
 foreach 𝑞𝑖:
 𝑞𝑖 𝑞 𝑗 𝑞𝑖
 𝑞𝑖

◦
 ℒ(𝑞) 𝑞𝑖

 𝐙


 KL
 KL 𝑝(𝐙) 0 𝑞(𝐙)
0
 KL 𝑞(𝐙) 𝑝(𝐙)
 KL 1
 1

 𝑝(𝑚) 𝑚
◦ 𝑝(𝑚|𝐗)
 𝑞 𝐙, 𝑚 = 𝑞 𝐙 𝑞(𝑚)
◦ 𝐙
⇒ 𝑞 𝐙, 𝑚 = 𝑞 𝐙|𝑚 𝑞(𝑚)
 10.10
 ln 𝑝 𝐗 = ℒ − 𝑞 𝑍 𝑚 𝑞 𝑚 ln
𝑝 𝑍,𝑚 𝑋
𝑞 𝑍 𝑚 𝑞 𝑚𝐙𝑚
◦ ℒ = 𝑞 𝑍 𝑚 𝑞 𝑚 ln
𝑝(𝑍,𝑋,𝑚)
𝑞 𝑍 𝑚 𝑞 𝑚𝐙𝑚
 ℒ 𝑞(𝑚)
◦ 𝑞(𝑚) ∝ 𝑝(𝑚)𝑒ℒ 𝑚 (10.36)
 ℒ 𝑚 = 𝑞 𝑍 𝑚 𝑞 𝑚 ln
𝑝(𝑍,𝑋|𝑚)
𝑞 𝑍 𝑚𝐙
 ℒ 𝑚 𝑞(𝑍|𝑚) (10.36)
𝑞(𝑚)


◦ 𝐾
 𝐾
 𝛑 1
◦ 𝐳𝑖 1-of-𝐾 𝐾

 𝐙


 𝜋
 𝜇, Λ
◦ 𝐦0 = 𝟎

◦ 𝑝 𝑞

◦ PRML
1. E 𝑧 𝑛𝑘 = 𝑟𝑛𝑘
2. 𝑞∗
(𝜋, 𝜇, Λ)
3. 𝑞∗ 𝐙
◦ 𝑟𝑛𝑘
4. 2.
 0
◦
 𝛼0 < 1
◦ 𝛼0 = 10−3


◦

◦
◦

◦


 t
10.81
◦ 𝑁
𝑞 𝜋 𝑞(𝜇, Λ)
 𝐾 𝐾!
 K
 ln 𝐾!
10.22
 𝜋
 𝜋 𝑞 …
 0
◦ RVM 7.22


 3.3
𝛼, 𝛽

◦ 𝛽
 10.6


 …
 10.9 𝛼

 𝛼

 𝑞


PRML 10.1節 ~ 10.3節 - 変分ベイズ法