SlideShare a Scribd company logo
1 of 42
Download to read offline
1
Autonomous Roving Vehicle for Crop Yield
Improvement - Team DC1
Final Report
Sponsored by:
Iowa State University Department of
Mechanical Engineering Department of
Agronomy
For:
Dr. Asheesh Singh
Dr. Arti Singh
Dr. Baskar Ganapathysubramanian
Prepared by:
Ryan Tweedt
Robert Bromberek Zheng
Yi Liew
Todd Heidrich
Travis Heidrich
2
May 5th, 2015
Table of Contents
Contents
List of Figures …………………………………………………………. 3
List of Tables …………………………………………………………... 3
Executive Summary …………………………………………………… 4
Introduction ……………………………………………………………. 5
Design Evolution ………………………………………………………. 6
Detailed Design of Lead Concept ……………………………………… 8
Implementation of Process or Design ………………………………….. 11
Cost Analysis …………………………………………………………... 12
Conclusions ­ Future Work ……………………………………………..13
Appendix ………………………………………………………………. 14
References ……………………………………………………………... 24
3
List of Figures
Figure 1- Peg Leg Frame Pg 6
Figure 2- Rocker Frame Pg 7
Figure 3- Articulating Leg Frame Pg 8
Figure 4- ARV Isometric View Pg 10
Figure 5- ARV Front View Pg 10
Figure 6- Bill of Material Cost Breakdown Pg 13
List of Tables
Table 1- Customer Requirements met by design Pg 9
Table 2- Summary of Bill of Material for ARV Final Design Pg 13
4
Executive Summary
In an effort to increase crop yield of soybeans annually to aid in the demand for food, feed and
fuel, Dr. Asheesh K Singh, Dr. Arti Singh and Dr. B. Ganapathysubramanian have begun a
project to design an autonomous roving vehicle to collect phenotype data. This data is intended
to provide data regarding what soybean plants and their associated genotypes are the most robust
and resilient to stressors experienced during their full term growth. In theory by crossing the
genetic traits of the optimal soybean plants the next generation will be produce greater
environmental defenses while maturing.
The project was divided up among the Automated Ground Vehicle Team (DC1) and the
Manually Ground Vehicle Team (DC2). Team DC1 was responsible to design and autonomous
roving vehicle to collect accurate phenotype data on soybeans. This report provides a detailed
summary of the design and quantified elements of the autonomous roving vehicle. The design
objectives and constraints associated with DC1 were described in a Project Proposal Form.
DC1 was required to design a robotic system that is capable of traversing the soybean field. The
system must keep the sensory package level with a maximum angle of 10 degrees when under
the climbing a 30 degree grade and traversing a 6 in step up in terrain. The robotic system must
be capable geotagging individual plants as data is collected. Also, the design should use the same
or similar camera system as DC2’s design. The robotic system is designed to perform these
functions and achieve these constraints for an extended period of operation time.
The final design of the chassis of the robotic rover has been completed and proposed by the ME
415 Undergraduate Team DC1. The final design of the robotic rover is a rocker bogie with four
separate track systems, two generators and is compatible with DC1’s sensory camera package.
Three mathematical models were constructed using MATLAB. The first model analyzed ground
pressure which produced a ground pressure for all four tracks of 1.6 kN. The second model
analyzed vehicle tilt under the worst case scenario where the rover is climbing a 30 degree grade
and traversing a 6 in jump in terrain. The result showed the sensory package’s tilt was 9.9562
degrees. The third model analyzed power consumption under the scenario the rover was climbing
a 30 degree slope. The results showed a power consumption of 1.2917 kW. These math models
were utilized to ensure the final rover design would meet the specified constraints.
5
Introduction
With the growing world population and ever increasing demand for food, feed and fuel there is a
need to increase the annual crop yield of soybean plants. The Agronomy Department at Iowa
State University collects phenotype data on the soybean plants in order to select plants with
desirable genetic traits to be used to cultivate an improved next generation of plants. The purpose
of the team’s project is to develop an autonomous roving vehicle that will navigate the research
fields of the Agronomy department and collect the soybean phenotype data at a faster rate than
the department is currently able to with manual inspection. Gathering data using an unmanned
vehicle provides researchers more data to analyze and more time to analyze it, which will result
in production of better cultivars that will increase crop yield. The data is collected using a
camera system containing Hyperspectral, GoPro and Kinect cameras to give the researchers a
variety of data to analyze. The sponsors of this project have produced detailed constraints and
objects the rover is intended to accomplish and are as follows:
The rover is intended to straddle one or more soybean plant rows while traversing the field and
collect plant or canopy data. The data collected must be accurate and consistent across plants,
with the goal of collecting plant data at a rate of 700 plants/hour. The rover should be able to
overcome a maximum expected variation in terrain is 6 inches and maintain traction in both dry
and wet soil conditions. This involves keeping the camera package parallel with the ground; the
maximum allowable tilt constraint is 10 degrees. Soybean plants should not be damaged during
operation, which requires the rover to clear a maximum of 50 inches and be as thin as possible.
The system must incorporate a Pixie positioning system for navigation and to track individual
plant location on the field, which will be used to tag each image taken. It is required that the
rover will be capable of operating for extended periods of time in the field. Ideally the rover
should use the same or similar camera system designed by the DC2 team with minimal
modifications. The rover is designed to move continuously while collecting data and geotagging
individual plants. Lastly, it is desired for as many off the shelf components to be used as
possible, so that parts can be simply reordered if broken instead of remade. These design
constraints are intended to be accomplished as the rover operates autonomously in the field.
6
Design Evolution
Rover concepts were brainstormed given the customer requirements. Each concept had the
following components: a main chassis/frame, a suspension system, a locomotion system, a power
source, and a connection for the camera package system. The differences between concepts came
from the frame design, the suspension mechanism, and locomotion mechanism. Three main
designs were seriously considered:
1. A “peg leg” frame with straight legs that uses a shock absorber system for suspension.
Figure 1: Peg Leg Frame
7
2. A “rocker” frame with angled legs that provide suspension purely mechanically via a
pivot and rocking system based on the Mars Curiosity Rover.
Figure 2: Rocker Frame
3. A frame with articulating legs that are able to swivel so that the width of the vehicle can
be adjusted. This frame uses a shock absorber system for suspension.
8
Figure 3: Articulating Leg Frame
Each design concept could be used with either of the three locomotion concepts: wheels, full
tracks, or ATV tracks (the partial tracks pictured in each of the figures above). Based on the
decision matrix used which rated each concept based on its ability to meet each customer
requirement and how important each requirement is the the customer, the lead concept selected is
the rocker frame with ATV tracks.
The articulating frame provided the ability to operate in rows of varying widths, but this is not an
issue important to the customer and is thus an unnecessary added complexity. The rocker frame
succeeded because of its simple mechanical suspension system that did not require designing and
specifying shock absorbers. Including shock absorbers would be over-engineering the rover since
it will operate at relatively low speeds and smooth terrain.
The wheels provide the benefit of simplicity and cost effectiveness, however do not provide the
traction and surface area needed to traverse various terrain conditions. The full track system does
provide enough traction and surface area, however there are no off the shelf products available
and steering is severely limited. ATV tracks provides the best solution because there are off the
shelf products available, traction and surface area is still significant, and
steering/maneuverability is good.
9
Detailed Design of Lead Concept
Table 1: Customer Requirements Met by Design
Customer Requirements Meets Requirements
Must be fully autonomous Yes
Must be able to link data with particular plants Yes
Must be able to keep cameras stable and level Yes
Must be able to mount the hyperspectral camera Yes
Must be able to mount the Kinect Camera Yes
Must be able to mount at least 1 GoPro camera Yes
Must be able to traverse various terrain/weather conditions Yes
Must not damage plants Partially
Must operate for extended periods of time Yes
Must gather consistent and accurate plant data Yes
Should have enough clearance for full plant height Yes
Should be compatible with the MGV camera mount system Yes
Should be compatible with the MGV shading system No
Should be easy to maintain, store, and operate Yes
Should greatly increase data collection rate Yes
Should be easy to assemble/manufacture Yes
Should be cost effective Yes
Should be easy to access computers and data on board Yes
10
10
Figure 4: ARV Isometric view
Figure 5: ARV Front View
11
11
For the Rocker Track design’s primary structural material, 8020 Aluminium extrusion was
chosen. The team felt that this material would be the best for off-the-shelf part selection,
flexibility with design and future modifications, as well as with cost and manufacturing. By
using 8020 extrusion and McMaster Carr parts, only a few customized parts will need to be
fabricated to complete the design. The detailed drawings of these customized parts are attached
in the Appendix.
A major area of success with the selected design is the rocker bogie suspension including a
differential control bar. The differential control bar can be viewed in both figures 4 and 5. This
allowed for a direct linkage between both rocker bogies. The action is as so; when the right front
track moves upward the left front track moves downward. Using this design feature in the math
model labeled vehicle tilt in the Appendix DC1 discovered under the worst expected scenario of
a 6 inch terrain variation, the rover’s platform remained under the constraint of 10 degrees.
The areas of concern with DC1’s design are as follows: Must not damage plants and should be
compatible with the MGV’s shading system. The design for an adequate shielding system to
effectively protect the soybean plants as the rover traverses the field was not addressed because
of time constraints. DC1 mainly focused on the rover’s capability to efficiently and effectively
collect soybean data while maintaining a level platform for the sensor system as it traveled over
various terrain environments. The sprocket drive trains, areas around the generator mount and all
four tracks would also be design features of the rover that would require shielding. DC1 suggests
that upon fabrication the use of a heat formed plastic shields for the design features discussed
above a cost effective and effective solution. The rover is not compatible with the MGV team’s
shading system simply because the MGV team did not design one.
For drive and steering motors, the design team differed final selection to the future team that will
be working with the controls and electronics. Specifications for the drive motors were found with
the math model, and any ½ Horsepower motor capable of outputting 1300 in*lbf of torque on the
track axles will suffice. These motors are mounted as shown in the CAD assembly and in figures
4 and 5, and connected to the the track axle through a chain and sprocket. Additional speed
reduction of the motor output can be done by adjusting the sprocket ratio, so specific sprockets
were not selected for the Bill of Materials.
DFMEA: When analysing various failure modes DC1 discovered concerns with the use of tires
on the rover and realized potential failure with traction and rolling resistance. The proposed
solution to mitigate these failures was to replace the tires with tracks. There was also great
concern regarding excessive contact with plants. The team intended to design a shielding system,
but under the time constraint of various deadlines, DC1 was unable to address this problem.
12
12
DC1 also discovered concerns with the possibility of insufficient power. To ensure sufficient
power is provided to the rover DC1 incorporated two generators (2.2 kW each).
Implementation of Process or Design
The track mount can only be specified when the Mattracks XT series is purchased as Mattracks
could not provide detailed drawings for the tracks due to confidential issue. The brackets that
hold the tracks and motors are made by welding two ½” stainless steel T­304 plate as shown in
the detailed drawings in Appendix. The steering plate is manufactured from stainless steel T-304
bar and the center hole on the plate for the worm gear drive depends on the control team’s
selection of steering system. Other than the customized parts and future decisions needed to be
made by control team, the ARV final design assembly should be pretty straight forward.
Cost Analysis
The table below is the summary of the costs of all the components for the final design of the
ARV and Figure 6 shows the cost breakdown of the total estimated cost. The total cost includes
all components including estimates for the components that the control team has to select. The
total cost gives an upper estimate for the cost needed to build this design ARV, and it may be
possible to reduce significantly. All part numbers are hyperlinked to aid the manufacturing team
to purchase the components or find replacement parts. Labor cost would be variable depending
on the manufacturing team and customized parts. Recurring cost would not include maintenance
costs as the operator is more likely to replace the broken parts. The complete and detailed Bill of
Material is attached in Appendix.
13
13
Table 2. Summary of Bill of Material for ARV Final Design
Summary
Chassis Subtotal $1,525.25
Steering System Subtotal $4,144.30
Rocker Arms Subtotal $566.81
Generator with Mount Subtotal $1,325.78
Mattracks Subtotal $5,538.00
Motors Subtotal $2,200.00
Manufacturing Subtotal $500.00
ARV Total $15,800.14
Figure 6. Bill of Material Cost Breakdown
14
14
Conclusions - Future Work
In summary, the team completed extensive design work with efforts to have the final design
ready to be prototyped, however some future work is still required before this design can be
manufactured.
I. Covers/shielding - To prevent damage to plants and debris infiltration, shielding needs to
be designed to protect the tracks, driving and steering motors, and the accompanying
gears or chain drivetrain.
II. Track and generator dimensions - Specific dimensions for the tracks and generator could
not be acquired - only some general dimensions. The parts will have to be purchased and
measured to get specific dimensions. The generator mount and the track connections
depend on these dimensions, so some minor changes to these systems may be necessary
once dimensions are found.
III. Track mounts - Once tracks are attained and specific geometry is found, the connection
of the tracks to the frame needs to be designed. The material selected for the front and
back track brackets is stainless steel, but a cheaper material may be found suitable after
stress analysis.
IV. Sensors and controls ­ the controls design is out of the team’s scope, and the controls
team responsible for the vehicle’s autonomy will want to have a say in the following
aspects of the design:
A. Final motor selection - drive motors require 0.5 hp, with an output of 1300 lbf-in.
The motor drivetrain ratio may need to be adjusted based on motor selection. The
requirements for the steering motor have not been determined; analysis on the
friction resistance between tracks and soil is needed to determine this. The size of
the steering worm gear may need to be adjusted based on selection.
B. Computer selection and mounting (a spot located next to the generators has been
designated for the computer).
C. Sensor selection, integration, and wiring.
V. Sunlight shielding to maintain consistent lighting for cameras.
VI. Camera system height adjustment - the hyperspectral camera is mounted too high to
capture plants as they are budding from the ground. Either the DC2 (Manual Ground
Vehicle) team’s design of the camera system will need to be adjusted to hang lower, or a
different lens with longer focal length is needed.
VII. Track axle bearings and steering bearings - bearings have been selected, but automotive
wheel bearings should be investigated for better performance.
VIII. Fabrication and assembly of components.
15
15
Appendix
Solidworks Drawings for Customized Parts
16
17
18
19
20
1
ARV Math Model
Table of Contents
Ground Pressure ................................................................................................................. 1
Vehicle Tilt ........................................................................................................................ 1
Power Consumption ............................................................................................................. 2
Ground Pressure
Define constants
g = 9.81; % m/s^2
m = 500; % kg - this is a guess
A = 0.7664*4; % m^2 - times four because 4 tracks
% find ground pressure
p = m*g/A % N/m^2 - ground pressure of all four tracksVeklo
p =
1.6000e+03
Vehicle Tilt
Define constants
s = 1.9; % m - just a rough guess for the rocker length
between axles
alpha = 90; % degrees - angle between rocker legs
yr = 0.1524; % m - displacement height of the rocker leg by
rock
theta1 = 15; % degrees - angle of slope for side 1
theta2 = 0; % degrees - angle of slope for side 2
w = 60*0.0254; % m - width of vehicle
length = 1.75; % m - length of the vehicle frame
% find leg lengths
beta = (180 - alpha)/2; % degrees - angles of rocker triangle
l = s*sind(beta)/sind(alpha); % m - leg length
h = l*sind(beta); % m - rocker joint height with no
displacement
% find height of rocker joint 1
phi1 = atand(yr/s); % degrees - angle from rock
thetaMax1 = theta1 + phi1; % degrees - total angle relative to
level
2
ARV Math Model
h1 = l*sind(thetaMax1 + beta); % m - height of side 1
dh1 = h1 - h; % m - change in height of rocker joint
1
% find height of rocker joint 2
phi2 = 0;%asind(yr/s); % degrees - angle from rock
thetaMax2 = theta2 + phi2; % degrees - total angle relative to
level
h2 = l*sind(thetaMax2 + beta); % m - height of side 1
dh2 = h2 - h; % m - change in height of rocker joint
1
% find side-to-side angle of frame
tilt = asind((dh1 - dh2)/w) % degrees - the angle of the frame
with repect to the ground
% find twist angle of frame
dx1 = l*cosd(beta) - l*cosd(beta+phi1); %displacement of rocker
join in x direction (along travel motion)
thetaTwist = atand(dx1/w) % twist angle of the frame
% Ground Clearance
clearance = length/2*tand(thetaMax1) % m - Clearance of the rover
measured from the frame to ground
tilt =
9.9562
thetaTwist =
2.9673
clearance =
0.3113
Power Consumption
http://www.sciencedirect.com/science/article/pii/S0022489803000582 Power requirement
slope = 19.5859; % degrees - ThetaMax when climbing a 15
degree slope and rock
weight = m*g; % N - weight of vehicle
Cf = 0.25; % coefficient of friction
V = 2.25/5; % m/s ~ 5 mph - velocity of vehicle
Fg = m*g*sind(slope); % N - Force of gravity Fg
Ff = m*g*Cf; % N - Force of rolling resistance Ff
3
ARV Math Model
F = Fg + Ff; % N - Sum of the forces
P = F*V % W - Theoretical power consumption
P =
1.2917e+03
Published with MATLAB® R2015a
Item Description Part Number Cost/Unit Quantity Total
Chassis
40x40mm Aluminum Extrusion 5537T102 $8.21 90 $7
80x80mm Aluminum Extrusion 5537T95 $195.56 2 $3
40x80mm Aluminum Extrusion 5537T112 $18.11 1 $
Straight Connector 5537T294 $6.30 46 $2
45 Degree Connectors 5537T473 $21.83 4 $
Chassis Subtotal $1,5
Steering System
Ball Joint Linkages 60645K471 $13.79 4 $55.16 McMaster Carr
Nylock Nut for Ball Joint Linkages 91831A145 $6.83 1 $6.83 McMaster Carr
Washer for Ball Joint Linkages Mounting 91201A035 $10.32 1 $10.32 McMaster Carr
Threaded Rod for Steering 92580A139 $20.43 4 $81.72 McMaster Carr
Track Flange Bearing 5967K81 $38.32 8 $306.56 McMaster Carr
Hex Head Cap Screw 92198A820 $4.35 4 $17.40 McMaster Carr
Nylock Nut for Hex Head Cap Screw 91831A144 $5.81 1 $5.81 McMaster Carr
Cap Screw for Flange Bearing Mounting 92186A677 $1.59 16 $25.44 McMaster Carr
Nylock Nut for Cap Screw 91831A133 $7.76 1 $7.76 McMaster Carr
Unspecified Right-Angle Speed Reducers Estimated $750.00 2 $1,500.00
Speed Reducers Mounting Cap Screws 92240A622 $6.24 1 $6.24 McMaster Carr
Unspecified Sprocket Estimated $50.00 8 $400.00
Unspecified Roller Chain Estimated $20.00 4 $80.00
M6x1 T-Slot Nut 90510A211 $4.67 16 $74.72 McMaster Carr
Track Wheel Hub Estimated $50.00 4 $200.00
5/8" Hardened Shaft 6253K55 $13.27 4 $53.08 McMaster Carr
Retaining Rings 93416A306 $4.11 8 $32.88 McMaster Carr
Steering Stainless HRAP 1/4" Bar 304 3"x12" OnlineMetals $15.26 2 $30.52 OnlineMetals
Bracket Stainless HRAP 1/2" Plate 304 12"x36" OnlineMetals $301.28 4 $1,205.12 OnlineMetals
Steering Motor Mount Aluminum 4.83mm Sheet 12"x24" OnlineMetals 44.74 1 $44.74 OnlineMetals
Steering System Subtotal $4,144.30
Rocker Arms
Flange Sleeve Bearing 14mm 5448T17 $5.03 4 $20.12 McMaster Carr
M14x2 Cap Screw 60mm 91287A788 $2.80 2 $5.60 McMaster Carr
M14x2 Cap Screw 130mm 91287A815 $6.50 2 $13.00 McMaster Carr
Ball Joint Rod End 2988K361 $47.71 4 $190.84 McMaster Carr
M14x2 Nylon Flange Nut 99908A105 $8.71 2 $17.42 McMaster Carr
M12x1.75 Nylon Flange Nut 94710A106 $3.23 1 $3.23 McMaster Carr
M12x1.75 Cap Screw 160mm 91287A439 $5.69 1 $5.69 McMaster Carr
12mm Flange Bearing 1434K15 $10.72 6 $64.32 McMaster Carr
Flange Sleeve Bearing 12mm 5448T14 $4.78 1 $4.78 McMaster Carr
12mm Washer 93475A290 $6.49 1 $6.49 McMaster Carr
M14x2 Threaded Rod 90024A005 $13.59 1 $13.59 McMaster Carr
12mm Shaft 1482K21 $16.02 1 $16.02 McMaster Carr
12mm Thrust Bearing 1262N12 $6.67 4 $26.68 McMaster Carr
12mm Shaft Mount 62645K38 $19.45 4 $77.80 McMaster Carr
M6x1 T-Slot Nut 90510A211 $4.67 20 $93.40 McMaster Carr
M6x1 Cap Screw 16mm (50 pack) 91287A136 $7.83 1 $7.83 McMaster Carr
Rocker Arms Subtotal $566.81
Generator with Mount
M6x1 T-Slot Nut 90510A211 $4.67 16 $74.72 McMaster Carr
Stainless Steel Hex Head Cap Screw (50 pack) 91287A211 $9.16 1 $9.16 McMaster Carr
Stainless Steel Hex Head Cap Screw (25 pack) 93635A208 $6.15 1 $6.15 McMaster Carr
Digital Inverter Generator WH2000iXLT $563.14 2 $1,126.28 Home Depot
Parallel Cord for Generators WHPC $49.99 1 $49.99 Hardware Sales
6"x50" Aluminum 6061 Bare Sheet (0.063" thick) OnlineMetals $27.00 1 $27.00 OnlineMetals
Stainless Steel Unthreaded Spacer 92871A244 $2.85 4 $11.40 McMaster Carr
Chemical-Resistant PVC Vibration Damping Pad 5998K4 $21.08 1 $21.08 McMaster Carr
Generator with Mount Subtotal $1,325.78
Tracks
Mattracks XT XT $5,188.00 1 $5,188.00 Mattracks
Freight for Mattracks $350.00 1 $350.00 Mattracks
Mattracks Subtotal $5,538.00
Motors
Drive Motors Estimated 500 4 $2,000.00
Steering Motors Estimated
Motors Subtotal
100 2 $200.00
Manufacturing Estimate
Cutting Aluminum Extrusions to length Boyd Lab
Threading Control Bar and Support Block end holes
Drilling through-holes in Rocker Arms, Control Bar, and Frame
Drilling out mounting holes in Shaft Mounts and Flange Bearings 10
Boyd Lab
Boyd Lab
Boyd Lab
Fabricating Track and Motor Brackets 4 Boyd Lab
Fabricating Steering Mount Bracket 2 Boyd Lab
Fabricating Generator Side Brackets 2 Boyd Lab
Fabricating Generator C-Clamp Brackets
Manufacturing Subtotal guess
2
$500.00
Boyd Lab
Summary
Chassis Subtotal $1,525.25
Steering System Subtotal $4,144.30
Rocker Arms Subtotal $566.81
Generator with Mount Subtotal $1,325.78
Mattracks Subtotal $5,538.00
Motors Subtotal $0.00
Manufacturing Subtotal $500.00
ARV Total $13,600.14
Notes
Does not include the cost of additional sensors, computers, power supplies, motor controllers, and cables
MayTec has cheaper options, but involves a much more complicated quoting process
Cost Breakdown
0%
4%
11%
41%
30%
Chassis Subtotal
Steering System Subtotal
Rocker Arms Subtotal
Generator with Mount Subtotal
Mattracks Subtotal
Motors Subtotal
Manufacturing Subtotal
4%
10%
Product Engineering Specifications Concept 1: Manual Labor
Customer Needs/Wants (from CR worksheet)
Design
Feature 1
Target
Value Unit
Design
Feature 2
Target
Value Unit
Design
Feature 3
Target
Value Unit Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit
Must be fully autonomous
Must be able to link data with particular plants
Must be able to keep cameras stable and level
Must be able to mount the hyperspectral camera
Must be able to mount the Kinect Camera
Must be able to mount at least 1 GoPro camera
Must be able to traverse various terrain/weather conditions
Must not damage plants
Must operate for extended periods of time
Must gather consistent and accurate plant data
Should have enough clearance for full plant height
Should be compatible with the MGV camera mount system
Should be compatible with the MGV shading system
Should be easy to maintain, store, and operate
Should greatly increase data collection rate
Should be easy to assemble/manufacture
Should be easy to access computers and data on board
Should be cost effective
Little human interaction
TBD hrs/day
Accurate positioning system +/-1 cm
Vibration dampening mount TBD G's
Mounts hyperspectral Yes Y/N
Mounts Kinect camera Yes Y/N
Mounts GoPros Yes Y/N
Surmountable terrain variation 15 cm
Plant vertical clearance cm
Run time 10 hrs
Sensor Levelness +/- 10 degrees
Height Adjustment +/- 1 [2] m
Uses MGV camera mount Yes Y/N
Uses MGV shade mount Yes Y/N
Low maintenance TBD hrs/month
Data Collection Rate TBD plants/hr
Tools Required TBD count
Simple computer interface
(Windows app) Yes Y/N
Cost TBD USD
Traction in moist soil Yes Y/N
Gentle interaction
(distance from plant
stem) 25 cm
Size TBD m^3
Standard plug interface
(USB) Yes Y/N
Long lasting product life TBD years
Water Resistance Yes Y/N
Training Time for
Operator 1 days
Removeable media (SD
Card) Yes Y/N
Personal GPS +/-1 m
Head-mounted
GoPro 1 ct
Gentle interaction
(distance from plant
stem) 25 cm
Full day of work 8 hrs
Data Collection
Rate 100 Plants/hr
Labor Cost 10 USD/hr
Plant tag 0 m
Workers per field TBD count
HOME
Customer Requirements to Engineering Specifications
Use this worksheet to create list of competitive design features, concept features, and the associated performance parameters. (HINT: Use the Market Benchmarking to identify features/functions that need to be present to satisfy customer
needs/wants. Use manufacturer data or reverse engineering to identify target values.)
Resources:
[1] UAV: http://www.precisionhawk.com/
[2] https://en.wikipedia.org/wiki/Soybean
[3] https://www.deere.com/en_US/products/equipment/tractors/utility_tractors/5e_series_h/5085e/5085e-2015.page?#viewTabs
[4] http://www.nxp.com/files/sensors/doc/data_sheet/MPL3115A2.pdf
Concept 2: UAV Precision Hawk Concept 3: John Deere Tractor Concept 4: Improved Manual Ground Vehicle
Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit
Little human
interaction TBD hrs/day
GPS +/- 1 [1] m
In flight auto
correction Yes [1] Y/N
Hyperspectral
on board 1 [1] count
Altimeter
accuracy 0.3 [4] m
Run time hrs
Sufficient Plant
Clearance Yes [1] Y/N
Low
maintenance 1 hrs/week
Data Collection
Rate TBD Plants/hr
Tools Required 0 count
On Board
computer Yes Y/N
Cost 25,000 USD
Wingspan 1.5 m
3D mapping Yes Y/N
Training Time 1 days
Little human
interaction 8 hrs/day
Engine power 85 hp
turning radius 3.54 m
weight 7055 kg
wheel base 92.5 in
Fuel Tank 25 gal
Tire size (front) 43.5 in
Low
maintenance 2 hrs/week
Data Collection
Rate TBD Plants/hr
Assemnbly time 0 hrs
Cost 48,000 USD
Little human
interaction 8 hrs/day
Camera Pitch +/- 10 degrees
Tire Spacing 77 cm
Fuel Tank TBD gal
Low
maintenance 1 hrs/week
Data Collection
Rate TBD Plants/hr
Tools Required TBD count
Cost TBD USD
Chassis Height 1 m
Some systems may require more than one QFD. Often it is TR1 Tracks 2 Strong Positive Impact Left to Bottom
1 Moderate Positive Impact Left to Bottom
0 No Impact
separated by systems or subsystems. See you instructor for TR2 TR2 Tires
TR3 Engine
"CTRL" key and click on the worksheet tab and drag across TR4 -2 TR4 Camera ‐1 Moderate Negative Impact Bottom to Left
to duplicate. TR5 2 TR5 Automated Controls -2 Strong Negative Impact Bottom to Left
TR10 1 0 1 2 TR10 Electric Motor Power
gTR11 2 2 2 2 2 TR11 Consistant Straight Steerin
TR17
TR18
TR17 0
TR18
TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12 TR13 TR14 TR15 TR16 TR17 TR18
(+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
Dr. Mountable Maintains Consistant
James Chad Dr. Dr. Ganapathysubrama Automated Protect from camera level Generator Electric Straight Motor Sensors for
Heise Garber Singh Singh nian Tracks Tires Engine Camera Controls enviornment systems platform Power Motor Power Steering Suspension Chassis Mount Autonomy
Fixed frame Articulating
Manual Rocker with arms with
Labor MGV Goals Wheel suspention suspension
9 9 9 9 9 9 9 1 9 9 9
9 9 3 1 9 9 9 9
9 9 9 9 3 3 9 9 3 9
9 3 1 9 9 9 9 9
9 3 1 1 9 9 9 9
9 9 9 9 3 9 3 9
9 9 3 9 3 9 9 9 3 9 3 3
3 3 9 9 9 9 3 3 9 9 3 9
3 3 1 9 9 9 9 9
3 3 1 9 1 9 3 9 9 3
3 3 3 9 3 9 9 3 9 3 9 9 9
3 1 3 1 3 9 3 9 3
9 9 9 9 9 9 9
3 9 3 9 9 1 1 3 9 9 3
anking: 6% 6% 5 % 5% 10% 3% 11% 4% 3% 6% 6% 7% 13% 6% 10% 3035 4353 4151 4229 7428 5898 6402 0
8. Benchmark Data - Engineering Specifications (Metrics) 4. Market
0 43.5 85 1 Yes Yes No +/- 25 No 0 +/- 2 Yes Yes Yes Yes John Deere Tractor
0 0 0 2 Yes No No +/- 20 No 1 +/- 10 No No No Yes Precision Hawk UAV
0 0 0 3 No No No N/A No 0 +/- 1 No No No No Manual Labor
0 0 18 3 No Yes Yes +/- 10 No 0 +/- 0.5 Yes Yes Yes Yes MGV
Goals - Engineering Specifications
0 20 0 3 Yes Yes Yes +/- 10 Yes 4 +/- 0.5 Yes Yes Yes Yes Rocker Wheel
0 20 0 3 Yes Yes Yes +/- 15 Yes 4 +/- 0.5 Yes Yes Yes Yes Fixed frame with suspention
0 20 0 3 Yes Yes Yes +/- 10 Yes 4 +/- 0.5 Yes Yes Yes Yes Articulating arms with suspension
0
Units: in in hp ct Yes/No Yes/No Yes/No degrees Yes/No ct F eet Yes/No Yes/No Yes/No Yes/No
3. Importance 2. Customer Requirements
9 9 9 Must be fully autonomous 1 1 3 9
9 9 9 Must be able to link data with particular plants 9 9 3 9
9 9 9 Must be able to keep cameras stable and level 3 3 1 9 9 9
9 9 9 Must be able to mount the hyperspectral camera 9 3
9 9 9 Must be able to mount the Kinect Camera 9 3
9 9 9 Must be able to mount at least 1 GoPro camera 9 3
9 9 9 Must be able to traverse various terrain/weather conditions 9 9 3 3 3
9 9 9 Must not damage plants 9 9 3 3 3 9
9 9 9 Must operate for extended periods of time 3 3 9 9 9 3
9 9 9 Must gather consistent and accurate plant data 3 3 9 3 9 9 9
9 9 9 Should have enough clearance for full plant height 3 3 9 3
9 9 9 Should be compatible with the MGV camera mount system 3 9
9 9 9 Should be compatible with the MGV shading system 3 3 1 3 3 9
9 9 9 Should be easy to maintain, store, and operate 3 3 3 9 9 3
9 9 9 Should greatly increase data collection rate 9 9 9 9 9 9 3
3 3 3 Should be easy to assemble/manufacture 9 9 3 3 3
3 3 3 Should be easy to access computers and data on board 1 3
9 9 9 Should be cost effective 3 3 3 9 3
Note:
QUALITY FUNCTION DEPLOYMENT (QFD)
9. Function vs. Function - Trade-offs Key
more information. To copy this worksheet just hold the TR3
TR6 ‐1 1 TR6 Protect from enviornment
TR7 0 2 TR7 Mountablecamera systems If not related, leave blank
TR8 2 -1 -2 2 1 1 TR8 Maintains level platform
TR9 2 0 2 TR9 Generator Power
TR12 2 -1 -1 2 2 2 2 TR12 Suspension
TR13 1 1 1 1 1 2 2 2 2 TR13 Chassis
TR14 2 2 1 2 -1 2 2 TR14 Motor Mount
TR15 2 2 1 1 2 1 2 1 -1 TR15 Sensors for Autonomy
TR16 TR16 0
0
1. Customer
Direction of Improvement (+/-)
6. Product Features (Functions) 4. Competition
Market
4. Concepts
John
Deere Precision
7. Meets Requirements?
1 1
1 1
1 1
1 1
1 1
Tractor Hawk UAV
5. Meets Reqmts?
1
9
9
3
3
5. Meets Reqmts?
1 1 9 3 1 1 3 9 9 9 9
1 1 9
1 1 9 3 3 1 9 9 3 3 3 9
1 1 9
1 1 9
1 1 9 9 1 9 3 9 9 9
1 1 3
1 1 3 3 9 3 1 9 9 3
1 1
1 1 1
1 1
1 1 9
1 1 3 3
R
John
Deer
e
Trac
tor
Prec
ision
Haw
k
UAV
Man
ual
Labo
r
MG
V
Goal
s
Roc
ker
Whe
el
d
fram
e
with
susp
ulati
ng
arms
with
susp 0
WvH sum Decision Matrix Calculations
59 531 531 59 59 531 531 531 0
48 144 48 432 432 432 432 432 0
70 210 210 630 630 630 210 630 0
24 24 216 72 216 216 216 216 0
24 24 24 72 216 216 216 216 0
24 24 24 72 216 216 216 216 0
54 486 0 486 162 486 162 486 0
51 51 459 459 153 153 153 459 0
78 702 702 702 234 702 234 234 0
87 261 261 783 783 783 261 783 0
36 36 324 0 108 324 324 324 0
40 0 0 0 0 360 360 360 0
41 0 0 0 0 369 369 123 0
46 46 414 0 138 414 414 138 0
96 288 864 96 288 864 864 864 0
34 34 102 0 306 102 306 102 0
13 117 117 117 117 117 117 117 0
57 57 57 171 171 513 513 171 0
3035 4353 4151 4229 7428 5898 6402 0
TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12 TR13 TR14 TR15 TR16 TR17 TR18
5.8 5.8 5.8 17.4 52.2 52.2 52.2 52.2 52.2 52.2
5.8 52.2 52.2 17.4 52.2 52.2 52.2
5.8 17.4 17.4 5.8 52.2 52.2 52.2 52.2 52.2 52.2 52.2
5.8 52.2 17.4 52.2 17.4
5.8 52.2 17.4 52.2 17.4
5.8 52.2 17.4 52.2 17.4
5.8 52.2 52.2 17.4 17.4 17.4 52.2 52.2 52.2
5.8 52.2 52.2 17.4 17.4 17.4 52.2 52.2 17.4 17.4
5.8 17.4 17.4 52.2 52.2 52.2 17.4 52.2 52.2 17.4 52.2 17.4 52.2
5.8 17.4 17.4 52.2 17.4 52.2 52.2 52.2 17.4 17.4 52.2 52.2 52.2 52.2
5.8 17.4 17.4 52.2 17.4 52.2 52.2
5.8 17.4 52.2 17.4 17.4 5.8 52.2 17.4 52.2
5.8 17.4 17.4 5.8 17.4 17.4 52.2 17.4 17.4 52.2 17.4 5.8
5.8 17.4 17.4 17.4 52.2 52.2 17.4 17.4 17.4 5.8 52.2
5.8 52.2 52.2 52.2 52.2 52.2 52.2 17.4 17.4 17.4 17.4 52.2 17.4 52.2 52.2
2.2 19.8 19.8 6.6 6.6 6.6 6.6 2.2 6.6
2.2 2.2 6.6 19.8
17.4 17.4 17.4 52.2 17.4 17.4 52.2 17.4 52.2 17.4 52.2
6% 6% 5% 5% 10% 3% 11% 4% 3% 6% 6% 7% 13% 6% 10%
Prioritization Calculations Artic
(3) Avg V
(3 x 6) =>
5.8
< Decision Matrix Priority =>
Product Name: Autonomous Roving Vehicle
Responsible: Bobby Bromberek
Prepared by:Bobby Bromberek Page 1 of 1
DFMEA Date (Orig) March 8, 2016 (Rev)
Line No: Device Function
System,
subsystem, or Part
Description
System, Subsystem, or Part
Function
Potential Failure Mode
Potential Failure
Effects
SEV Root Cause OCC
Current Design Evaluation or
Control
DET RPN Actions Recommended Resp. Actions Taken SEV
OC
C
DE
T
RPN
Line No: What are the primary functions of the device?
What is the system,
subsystem or
part under
evaluation?
What is the Function
Provided by the system,
subsystem or part?
In what ways does this
function lose its
functionality?
What is the impact to the
Customer? (internal or
external)
How
Severe is
the effect
to the
cusotmer?
What root cause of the loss of
function?
How
often
does the
root
cause or
failure
mode
occur?
What are the tests, methods or
techniques to discover the root
cause before design release?
How well
can you
detect
cause or
failure
mode?
What are the actions for reducing the
occurrance of the Cause, or improving
detection? Should have actions only on high
RPN's or easy fixes.
Whose Responsible for the
recommended action?
What are the completed
actions taken with the
recalculated RPN? Be sure
to include completion
month/year
1 Locomotion
Tires Mobilize vehicle, contact with
ground
Sinking/slipping on soil ARV cannot perform
task of capturing plant
data
8
Improper balance between
weight and traction/surface
area
4
Numerical Analysis, Prototype
testing 7 224
Increase contact surface area in design, test
under worst terrain case scenario 0
2 Locomotion
Tires Mobilize vehicle, contact with
ground
Sinking/slipping on soil ARV cannot perform
task of capturing plant
data
8
Tread wear, deflated tire, flat
tire 3
Tire warrenty and expected lifetime
analysis 2 48
Advise end user to replace tires every
lifecycle and to check before operation (same
as a car)
0
3 Locomotion
Tires Mobilize vehicle, contact with
ground
Sinking/slipping on soil ARV cannot perform
task of capturing plant
data
8
Vehicle bottoms out
2
Model simulations and math
calculations 2 32
Design clearances such that vehicle will not
bottom out in expected conditions 0
4 Locomotion
Tires Mobilize vehicle, contact with
ground
Resistance to rotation Inefficient energy use =
shorter operation
periods, inability to move
7
Debris caught in wheels or
gears 4
Design for appropriate protection
5 140
Cover wheels to shield debris and gear train,
design so that debris falls out naturally 0
5 Locomotion
Tires Mobilize vehicle, contact with
ground
Excessive contact with plants Misrepresents plant
health and status 7
Plants caught in wheels
4
Design for appropriate protection
7 196
Cover the wheels with shield to deflect plants
with minimal impact with plants 0
6 Locomotion
Motors Power the wheels electrical failure or short ARV cannot move,
potential damage to
computer harware
8
water leaking into motor
3
Design for appropriate protection
5 120
Seal motor off from elements or choose a
motor with water resistance built in 0
7 Locomotion
motors Power the wheels Overheating ARV loses power and
the motors degrade 7
insufficient cooling of motor
7
Design for appropriate heat
management 2 98
Include heatsink or cooling system for motors
along with thermisters to detect dangerous
heat levels
0
8 Data Capture
Camera System
Capture pictures repeatably Angled pictures (>10 degrees) Data is less valuable
7
Camera package is unlevel
5
Design and test a leveling
2 70 Include suspension in addition to camera
package leveling
0
9 Locomotion
Controls and
breaking
correspondence
Position cameras directly
above plant Break too early or too late Data is less valuable
7
GPS and sensors are not
accurate or controls are not
calibrated
3 Performance test for timing and
location accuracy
2 42 Minimize tolerance in location accuracy, plan
controls measures to combat problem
0
10 Frame
Supports
Hold up weight of ARV
Bend or break ARV cannot operate,
damage to camera
equipment
9
Design or material not strong
enough to hold weight over
repeated cycles
2
Strength and reliability analysis
3 54
Calculate stresses at critical areas, calculate
for high life cycle, run FEA if possible,
choose appropriate material
0
11 Frame
Supports
Hold up weight of ARV
Bend or break ARV cannot operate,
damage to camera
equipment
9
Material loses strength due to
weathering/wear 2
Include weathering/wear factors in
strength and reliability analysis 6 108
Research effects of weathering and choose
material or coating to prevent 0
12 Stability
Weight distribution Remain stable, do not tip over Tip over Plant and equipment
destruction 9
Center of gravity is too high or
unsymmetrical 2
Numerical Analysis
1 18
Calculate center of gravity, do a force
analysis including inclines and wind effects 0
13 Power
Generator Supply power to batteries Fuel runs out early ARV cannot operate
8
Inadequate design for required
load 3
Numerical Analysis
1 24
Accurate math model to spec power
requirements 0
14 Power
Generator Supply power to batteries Fuel runs out early ARV cannot operate
8
Fuel leak
2
Performance test for leaks
1 16
Add a fuel gauge to design
0
15 Power
Batteries Supply power to motor Battery charge runs out early ARV cannot operate
8
Inadequate design for required
load 2
Numerical Analysis
1 16
Accurate math model to spec power
requirements 0
16 Power
Batteries Supply power to motor Battery charge runs out early ARV cannot operate
8
Age of batteries
2
Reliability Analysis
3 48
Advise end user to replace every lifecycle an
to check regularly
d
0
Priority Title Description
Probability
of Impact
Schedule
Risk
Scope
Risk
Quality
Risk
Cost
Risk Planned Risk Mitigation Actions
Activity Since Last
Report
1
Misunderstanding of sponsor's
needs/wants
1) Sponser's key interests in the robotic rover's design
may be misunderstood by the design team. 2)
Sponsor's do not communicate the major design
features to the design team.
Medium High High Low Medium
The team will maintian effective communication with
design team members, sponsors, and professors to
verify there is not a misunderstanding between the
sponsors and the design team. The project charter and
spec sheet provided by the sponsors for the robotic
rover's design will be referenced.
N/A
2
Limited funding
The limited funding will force DC1 to determine what
design functions of the robotic rover require the most
costly components. This may result in potential failures
during operation.
High Medium Medium High High
The design team will determine what components that
will require the most funding. These components will be
analyzed to determined their overall influence in the
design of the robotic rover. The team will not sacrifice
quality as the funding will be allocated to various design
elements. Appropriate documentation and justification
will be used to back up the decisions made by the
design team.
N/A
3
Maintain Schedule
Potential increase in time allocation to major design
features may extend float time past the allowable time.
These delays will impede the progression of other
project tasks.
High High High High High
In the circumstance the project's schedule is at risk the
design team will reallocate the resource of man hours to
ensure no team member is overloaded and an
equilibrium of work load is developed amongst each
team member. Schedule risks will be addressesed with
the sponsor so the quality of the design develops
efficiently. The sponsor will be informed if the man
hours exceeds what is possible.
N/A
4
Failure to meet project scope
Design team experiences losses in time to complete the
contracted requirements of the robotic rover. Potential
overload of man hours for individual design team
members.
High High High Medium Medium
The design team will utilize the gantt chart and project
schedule to maintain a timely completion of the tasks
required to achieve the contracted scope of the project
with the sponsors. If there are misunderstandings of the
scope the design team will refer to the project charter
and the customer requirements so the final design
contains all desired features. Constant communication
between the sponsors and the design team will be
maintained so the scope of the project is met.
N/A
5
Designs are untested
Robotic rover's function features fail to operate as
desired
High Low Medium High High
The design team will understand the time demand of the
project and determine which functions are in the highest
demand of being tested. Those functions which will not
be capable of being tested will need to be analyzed
through design models to understand their capability to
perform the desired tasks.
N/A
6
Lack of technical ability of team
Team members lack experience and expertise to
effectively develope a design to meet the functional
requirements of the robtoic rover.
Medium Medium Low Medium Medium
The areas which the design team may lack technical
ability will be over came by reasearching and learning
the concepts which are not yet understood. The design
team will communicate with the sponsor about potential
delays and purchasing systems to help reduse man
hours, but the design team will need to undersatnd the
cost of taking such avenues.
N/A
HOME Risk Register
DMADVR_MASTER_Planning_Phase_Review_DC1 - Editable.xlsx
WBS
M E Capstone
3/10/2016 Page A1-1
HOME WORK BREAKDOWN STRUCTURE
Follow recommended steps for defining project task structure
1 Divide project into managable subsystems and subtasks, use PFSB (at right) to help with task definition
2 Fit specific project tasks within each phase area; insert rows as needed.
3 Determine expected durations for each task either in effort hours or days duration (indicate which)
4 If known, specify 'must start' and/or 'must end' dates
5 Transfer contents to 'Critical Path' worksheet
Phase
Task
Step
Task Description
Must Start
Date
Must End
Date
Expected
Duration
Define-Measure
1 Team Roster/Skill Survey and project preferences 1/12/2016 1/12/2016 1
2 Team Norms 1/19/2016 1/21/2016 2
3 Project Charter 1/24/2016 1/28/2016 4
4 Preliminary WBS and schedule 1/31/2016 2/4/2016 4
5 Benchmarking and Customer Requirements 2/13/2016 2/17/2016 4
6 Stakeholder Analysis 2/15/2016 2/17/2016 2
7 Initiation Phase Review 2/18/2016 2/18/2016 1
Analyze
8 ARV Function tree defined and verified with MGV team 3/2/2016 3/3/2016 1
9 Solutions brainstormed for ARV subfunctions 3/2/2016 3/3/2016 1
10 Design concepts from combined solutions using Morphological Matrix 3/2/2016 3/3/2016 1
11 Functional Analysis with QFD Chart 2/29/2016 3/3/2016 3
12 Risk Management Plan with DFMEA 2/29/2016 3/3/2016 3
13 Select a design concept based on Decision Matrix and/or Pugh Chart 3/1/2016 3/3/2016 2
14 Peer Assessment 1 2/18/2016 2/18/2016 1
15 Design WBS, Critical Path, and Schedule 3/6/2016 3/8/2016 2
16 Engineering Specifications 2/20/2016 2/23/2016 3
17 Planning Phase Review 3/10/2016 3/10/2016 1
Design
18 Design Chassis 4/10/2016 4/26/2016 16
19 Design Traction/Locomotion 4/2/2016 4/26/2016 24
20 Design Power Source 4/18/2016 4/26/2016 8
21 Design/Ensure Camera Package Compatibility 4/18/2016 4/26/2016 8
22 Design Controls 4/22/2016 4/26/2016 4
23 Design Integration 4/8/2016 4/26/2016 18
24 Peer Assessment 2 3/31/2016 3/31/2016 1
25 System Model 4/2/2016 4/5/2016 3
26 Final Design and Drawings 4/18/2016 4/26/2016 8
27 Bill of Materials and production costs 4/21/2016 4/26/2016 5
Report
28 Create Design Expo Poster 4/15/2016 4/19/2016 4
29 Prepare Final Presentation 4/22/2016 4/26/2016 4
30 Write Final Report 4/28/2016 5/5/2016 8
31 Final Phase Review 4/26/2016 4/26/2016 1
32 Design Expo 4/26/2016 4/26/2016 1
33 Final Presentation 4/26/2016 4/26/2016 1
34 Peer Assessment 3 4/28/2016 4/28/2016 1
35 Final Report 5/5/2016 5/5/2016 1
36 All project files to SharePoint/ All materials ready to ship 5/5/2016 5/5/2016 1
153
DMADVR_MASTER_Planning_Phase_Review_DC1 - Editable.xlsx
WBS
M E Capstone
3/10/2016 Page A1-2
WBS LEVEL 1
1 Autonomous Roving Vehicle (ARV) 153 1
WBS LEVEL 2
ARV 153 1
WBS LEVEL 3
ARV 153
WBS LEVEL 4
1.1 Chassis 16 1.1 Chassis 16
1.2 Traction/Locomotion 24 1.1.1 Frame 4
1.3 Power Source 8 1.1.2 Camera Package Mount 2
1.4 Camera Package Compatability 8 1.1.3 Power Source Mount 2
1.5 Controls 4 1.1.4 Track Mount 8
1.6 Integration 18 1.2 Traction/Locomotion 24
1.7 Project Mgt. 75 1.2.1 Track System 8
1.2.2 Steering 6
1.2.3 Suspension 5
1.2.4 Motors 3
1.2.5 Motor Mount 2
1.3 Power Source 8
1.4 Camera Package Compatability 8
1.5 Controls 4
1.5.1 Sensors 4
1.6 Integration 18
1.6.1 Concept 4
1.6.2 Verify with MGV team 4
1.6.3 Design 10
1.7 Project Mgt. 75
Enter Status
Phrase per key
(see below)
Do not enter dates in these
columns. Auto format based on
ES/ME dates and Duration value.
Float Duration is calculated.
Phase
Task
Step
Task Description
Team Member(s)
Assigned
Status
Early Start
Date
Duration
(days)
Late Start
Date
Early End
Date
Float
Duration
Must End
Date
Define-Measure
1 Team Roster/Skill Survey and project preferences Ryan COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
COMPLETED
1/12/16 1 1/12/16 1/12/16 0 1/12/2016
2 Team Norms Travis 1/20/16 2 1/20/16 1/21/16 0 1/21/2016
3 Project Charter Todd 1/24/16 4 1/24/16 1/28/16 0 1/28/2016
4 Preliminary WBS and schedule Bobby 1/29/16 4 1/31/16 2/2/16 2 2/4/2016
5 Benchmarking and Customer Requirements Zheng 2/5/16 4 2/19/16 2/9/16 14 2/23/2016
6 Stakeholder Analysis Ryan 2/5/16 2 2/15/16 2/7/16 10 2/17/2016
9 Initiation Phase Review Ryan 2/18/16 1 2/18/16 2/18/16 0 2/18/2016
Analyze
10 ARV Function tree defined and verified with MGV team Travis 2/9/16 1 3/2/16 2/10/16 22 3/3/2016
11 Solutions brainstormed for ARV subfunctions Todd 2/10/16 1 3/2/16 2/11/16 21 3/3/2016
12 Design concepts from combined solutions using Morphological Matrix Bobby 2/11/16 1 3/2/16 2/12/16 20 3/3/2016
13 Functional Analysis with House of Quality Zheng 2/12/16 3 2/29/16 2/15/16 17 3/3/2016
14 Risk Management Plan with DFMEA Ryan 2/16/16 3 2/29/16 2/19/16 13 3/3/2016
15 Select a design concept based on Decision Matrix and/or Pugh Chart Travis 2/15/16 2 3/1/16 2/17/16 15 3/3/2016
16 Peer Assessment 1 Ryan 2/18/16 1 2/18/16 2/18/16 0 2/18/2016
17 Design WBS, Critical Path, and Schedule Todd 2/17/16 2 3/6/16 2/19/16 18 3/8/2016
18 Engineering Specifications Bobby 2/10/16 3 2/20/16 2/13/16 10 2/23/2016
19 Planning Phase Review Ryan MILESTONE 3/10/16 1 3/10/16 3/10/16 0 3/10/2016
Design
20 Design Chassis Bobby PLANNED 3/10/16 16 4/10/16 3/26/16 31 4/26/2016
21 Design Traction/Locomotion Ryan PLANNED 3/10/16 24 4/2/16 4/3/16 23 4/26/2016
22 Design Power Source Travis PLANNED 3/10/16 4 4/22/16 3/14/16 43 4/26/2016
23 Design/Ensure Camera Package Compatibility Zheng PLANNED 3/10/16 8 4/18/16 3/18/16 39 4/26/2016
24 Design Controls Todd PLANNED 3/10/16 4 4/22/16 3/14/16 43 4/26/2016
25 Design Integration Ryan PLANNED 3/10/16 18 4/8/16 3/28/16 29 4/26/2016
26 Peer Assessment 2 Ryan PLANNED 3/31/16 1 3/31/16 3/31/16 0 3/31/2016
27 System Model Todd PLANNED 3/18/16 3 4/2/16 3/21/16 15 4/5/2016
28 Final Design and Drawings Travis MILESTONE 4/3/16 8 4/18/16 4/11/16 15 4/26/2016
29 Bill of Materials and production costs Bobby PLANNED 4/3/16 5 4/21/16 4/8/16 18 4/26/2016
Report
30 Create Design Expo Poster Zheng PLANNED 4/11/16 4 4/15/16 4/15/16 4 4/19/2016
31 Prepare Final Presentation Ryan PLANNED 4/8/16 4 4/22/16 4/12/16 14 4/26/2016
32 Write Final Report Travis PLANNED 4/8/16 8 4/27/16 4/16/16 19 5/5/2016
33 Final Phase Review Ryan MILESTONE 4/26/16 1 4/26/16 4/26/16 0 4/26/2016
34 Design Expo Ryan MILESTONE
MILESTONE
4/26/16 1 4/26/16 4/26/16 0 4/26/2016
35 Final Presentation Ryan 4/26/16 1 4/26/16 4/26/16 0 4/26/2016
36 Peer Assessment 3 Ryan PLANNED 4/28/16 1 4/28/16 4/28/16 0 4/28/2016
37 Final Report Ryan MILESTONE 5/5/16 1 5/5/16 5/5/16 0 5/5/2016
38 All project files to SharePoint/ All materials ready to ship Ryan MILESTONE 5/5/16 1 5/5/16 5/5/16 0 5/5/2016
HOME
Project Schedule
BY: Zheng Yi Liew, Travis Heidrich, Todd Heidrich, Bobby Bromberek, Ryan Tweedt
Date:
Status Key:
PLANNED
MILESTONE
ON TIME
CRITICAL/LATE
COMPLETED
DMADVR_MASTER_Planning_Phase_Review_DC1 - Editable.xlsx
Schedule
M E Capstone
3/10/2016 Page A1-1
TASKSEQUENCEProject Schedule
DATE (Mo/Date)
1/11/2016 1/18/2016 1/25/2016 2/1/2016 2/8/2016 2/15/2016 2/22/2016 2/29/2016 3/7/2016 3/14/2016 3/21/2016 3/28/2016 4/4/2016 4/11/2016 4/18/2016 4/25/2016 5/2/2016
1
2
3
4
5
6
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
DMADVR_MASTER.xlsm
Schedule
M E Capstone
3/8/2016 Page A1-2
Task
Step
Task Description
Must Start
Date
Must End
Date
Expected
Duration Activity
1 Team Roster/Skill Survey and project preferences 1/12/2016 1/12/2016 1 A
2 Team Norms 1/19/2016 1/21/2016 2 B
3 Project Charter 1/24/2016 1/28/2016 4 C
4 Preliminary WBS and schedule 1/31/2016 2/4/2016 4 F
5 Benchmarking and Customer Requirements 2/13/2016 2/17/2016 4 D
6 Stakeholder Analysis 2/15/2016 2/17/2016 2 E
7 Initiation Phase Review 2/18/2016 2/18/2016 1 G
8 ARV Function tree defined and verified with MGV team 3/2/2016 3/3/2016 1 H
9 Solutions brainstormed for ARV subfunctions 3/2/2016 3/3/2016 1 I
10 Design concepts from combined solutions using Morphological Matrix 3/2/2016 3/3/2016 1 J
11 Functional Analysis with QFD Chart 2/29/2016 3/3/2016 3 L
12 Risk Management Plan with DFMEA 2/29/2016 3/3/2016 3 O
13 Select a design concept based on Decision Matrix and/or Pugh Chart 3/1/2016 3/3/2016 2 M
14 Peer Assessment 1 2/18/2016 2/18/2016 1
15 Design WBS, Critical Path, and Schedule 3/6/2016 3/8/2016 2 N
16 Engineering Specifications 2/20/2016 2/23/2016 3 K
17 Planning Phase Review 3/10/2016 3/10/2016 1 P
18 Design Chassis 4/10/2016 4/26/2016 16 Q
19 Design Traction/Locomotion 4/2/2016 4/26/2016 24 R
20 Design Power Source 4/18/2016 4/26/2016 8 S
21 Design/Ensure Camera Package Compatibility 4/18/2016 4/26/2016 8 T
22 Design Controls 4/22/2016 4/26/2016 4 U
23 Design Integration 4/8/2016 4/26/2016 18 V
24 Peer Assessment 2 3/31/2016 3/31/2016 1
25 System Model 4/2/2016 4/5/2016 3 W
26 Final Design and Drawings 4/18/2016 4/26/2016 8 Y
27 Bill of Materials and production costs 4/21/2016 4/26/2016 5 X
28 Create Design Expo Poster 4/15/2016 4/19/2016 4 Z
29 Prepare Final Presentation 4/22/2016 4/26/2016 4 AB
30 Write Final Report 4/28/2016 5/5/2016 8 AE
31 Final Phase Review 4/26/2016 4/26/2016 1 AD
32 Design Expo 4/26/2016 4/26/2016 1 AA
33 Final Presentation 4/26/2016 4/26/2016 1 AC
34 Peer Assessment 3 4/28/2016 4/28/2016 1
35 Final Report 5/5/2016 5/5/2016 1 AF
36 All project files to SharePoint/ All materials ready to ship 5/5/2016 5/5/2016 1 AG
CRITICAL PATH ANALYSIS
Follow recommended steps for defining project schedule
1 Copy WBS from previous worksheet
2 Determine task links (predecessors)
3 Construct workpath entities (Hint: 'Events' are transition dates between 'Activities')
4 Calculate workpath durations and dates
5 Determine critical workpaths based on durations, 'must start' and 'must end' requirements
6 Determine 'float' time non-critical workpaths
7 Transfer information back to WBS and on to Gantt Chart
Event Activity LS
20 - 19 AG 83
19 - 18 AF 82
18 - 15 AE 74
19 - 15 AD 82
19 - 17 AC 82
17 - 15 AB 78
19 - 16 AA 82
16 - 15 Z 78
15 - 14 Y 66
14 - 12 X 61
14 - 12 W 63
14 - 13 V 48
13 - 12 U 44
13 - 12 T 40
13 - 12 S 40
13 - 12 R 24
13 - 12 Q 32
12 - 11 P 23
11 - 10 O 20
11 - 10 N 21
10 - 9 M 18
9 - 8 L 15
8 - 6 K 12
8 - 7 J 14
7 - 6 I 13
6 - 4 H 11
6 - 5 G 11
5 - 3 F 7
5 - 3 E 9
5 - 4 D 7
4 - 3 C 3
3 - 2 B 1
2 - 1 A 0
Activity LS ES TF
A 0 0 0
B 1 1 0
C 3 3 0
D 7 7 0
E 9 3 6
F 7 3 4
G 11 11 0
H 11 7 4
I 13 12 1
J 14 13 1
K 12 12 0
L 15 15 0
M 18 18 0
N 21 20 1
O 20 20 0
P 23 23 0
Q 32 24 8
R 24 24 0
S 40 24 16
T 40 24 16
U 44 24 20
V 48 48 0
W 63 24 39
X 61 24 37
Y 66 66 0
Z 78 74 4
AA 82 78 4
AB 78 74 4
AC 82 78 4
AD 82 74 8
AE 74 74 0
AF 82 82 0
AG 83 83 0
Total Float Analysis -
Forward Pass - Early Start Analysis Backward Pass - Late Start Analysis Items with '0' Float are critical path
Event Activity ES Path
1 A 0 ES1
2 B 1 ES2 = ES1 + 1
3 C, E, F 3 ES3 = ES2 +2
4 D, H 7 ES4 = ES3 + 4
5 G 11 ES5 = ES4 + 4
6 I, K 12 ES6 = ES5 + 1
7 J 13 ES7 = ES6 +1
8 L 15 ES8 = ES6 +3
9 M 18 ES9 = ES8 + 3
10 N, O 20 ES10 = ES9 + 2
11 P 23 ES11 = ES10 + 3
12 Q, R, S, T, U, W, X 24 ES12 = ES11 + 1
13 V 48 ES13 = ES12 + 24
14 Y 66 ES14 = ES13 + 18
15 Z, AB, AD, AE 74 ES15 = ES14 + 8
16 AA 78 ES16 = ES15 + 4
17 AC 78 ES17 = ES15 + 4
18 AF 82 ES18 = ES15 + 8
19 AG 83 ES19 = ES18 + 1
20 84 ES20 = ES19 + 1
WORKPATH FLOW DIAGRAM
References
[1] http://www.mattracks.com/tracks/litefoot/xt/xt/
[2] http://www.worldatlas.com/r/w728-h425-c728x425/upload/49/1c/b3/soybean-farm.jpg
[3] Iowa State University Departments of Agronomy & Mechanical Engineering ME 415 Section
C Team DC2
[4]https://www.deere.co.in/en_IN/products/equipment/tractors/d_series/5045_d_4wd_45_hp/504
5_d_4wd_45_hp.page
[5] http://www.ilsoyadvisor.com/diagnostics/2014/july/video-how-to-stage-a-soybean-plant/
21

More Related Content

Viewers also liked

Escenario socioeconomico
Escenario socioeconomicoEscenario socioeconomico
Escenario socioeconomicoAnel Sosa
 
Eed 465 all weeks discussion and assignments – entire course
Eed 465 all weeks discussion and assignments – entire courseEed 465 all weeks discussion and assignments – entire course
Eed 465 all weeks discussion and assignments – entire coursejohn willamson
 
1 bga presentacion-nathaly muñoz
1 bga presentacion-nathaly muñoz1 bga presentacion-nathaly muñoz
1 bga presentacion-nathaly muñozhalenynicol
 
WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...
WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...
WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...Chris Takacs
 
Francisco cela rodriguez
Francisco cela rodriguezFrancisco cela rodriguez
Francisco cela rodriguezLIPIDS
 

Viewers also liked (7)

Escenario socioeconomico
Escenario socioeconomicoEscenario socioeconomico
Escenario socioeconomico
 
Chutes cascades
Chutes cascadesChutes cascades
Chutes cascades
 
Eed 465 all weeks discussion and assignments – entire course
Eed 465 all weeks discussion and assignments – entire courseEed 465 all weeks discussion and assignments – entire course
Eed 465 all weeks discussion and assignments – entire course
 
1 bga presentacion-nathaly muñoz
1 bga presentacion-nathaly muñoz1 bga presentacion-nathaly muñoz
1 bga presentacion-nathaly muñoz
 
WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...
WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...
WhitePaper-BuyersGuidePatentSearchAnalysisSoftware-AdvancedAnalysis-Corporate...
 
Francisco cela rodriguez
Francisco cela rodriguezFrancisco cela rodriguez
Francisco cela rodriguez
 
Manifiesto
ManifiestoManifiesto
Manifiesto
 

Similar to Autonomous Roving Vehicle

VT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final ReportVT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final ReportChristopher Gumm
 
Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)
Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)
Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)IRJET Journal
 
Rocker bogie mechanism (mars rover) final year mini project final review paper
Rocker bogie mechanism (mars rover) final year mini project final review paper Rocker bogie mechanism (mars rover) final year mini project final review paper
Rocker bogie mechanism (mars rover) final year mini project final review paper BIRENDRA KUMAR PANDIT
 
Fabrication of Two Stroke Engine Operated Amphibious Vehicle
Fabrication of Two Stroke Engine Operated Amphibious VehicleFabrication of Two Stroke Engine Operated Amphibious Vehicle
Fabrication of Two Stroke Engine Operated Amphibious VehicleIRJET Journal
 
INTERNSHIP REPORT AT DRONA AUTOMATIONS
INTERNSHIP REPORT AT DRONA AUTOMATIONSINTERNSHIP REPORT AT DRONA AUTOMATIONS
INTERNSHIP REPORT AT DRONA AUTOMATIONStulasiva
 
Project Report
Project ReportProject Report
Project ReportRahul Hans
 
IJSRED-V2I3P106
IJSRED-V2I3P106IJSRED-V2I3P106
IJSRED-V2I3P106IJSRED
 
Portfolio - William Main
Portfolio - William MainPortfolio - William Main
Portfolio - William MainWilliam Main
 
H3O 2014 Technical Report ,Faculty of Engineering at Helwan university
H3O 2014 Technical Report ,Faculty of Engineering at Helwan universityH3O 2014 Technical Report ,Faculty of Engineering at Helwan university
H3O 2014 Technical Report ,Faculty of Engineering at Helwan universityHosam Younis
 
Motion Control Technical Paper - Spring 2016
Motion Control Technical Paper - Spring 2016Motion Control Technical Paper - Spring 2016
Motion Control Technical Paper - Spring 2016Matthew Emge
 
Pick & place robot ppt
Pick & place robot pptPick & place robot ppt
Pick & place robot pptRahul Banerjee
 
IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...
IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...
IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...IRJET Journal
 
Final Design Proposal Beginning
Final Design Proposal BeginningFinal Design Proposal Beginning
Final Design Proposal BeginningRobert Lewis
 
mechanical spider robot by klann mechanism
mechanical spider robot by klann mechanismmechanical spider robot by klann mechanism
mechanical spider robot by klann mechanismNeel Shah
 

Similar to Autonomous Roving Vehicle (20)

Research Paper
Research PaperResearch Paper
Research Paper
 
VT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final ReportVT PYREX RoboOps 2014 Final Report
VT PYREX RoboOps 2014 Final Report
 
Automatic Plowing System
Automatic Plowing SystemAutomatic Plowing System
Automatic Plowing System
 
Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)
Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)
Smart Terrain Adaptive Robotic Suspension System (S.T.A.R.S.S)
 
Rocker bogie mechanism (mars rover) final year mini project final review paper
Rocker bogie mechanism (mars rover) final year mini project final review paper Rocker bogie mechanism (mars rover) final year mini project final review paper
Rocker bogie mechanism (mars rover) final year mini project final review paper
 
Fabrication of Two Stroke Engine Operated Amphibious Vehicle
Fabrication of Two Stroke Engine Operated Amphibious VehicleFabrication of Two Stroke Engine Operated Amphibious Vehicle
Fabrication of Two Stroke Engine Operated Amphibious Vehicle
 
Automatic P2R Published Paper P1277-1283
Automatic P2R Published Paper P1277-1283Automatic P2R Published Paper P1277-1283
Automatic P2R Published Paper P1277-1283
 
INTERNSHIP REPORT AT DRONA AUTOMATIONS
INTERNSHIP REPORT AT DRONA AUTOMATIONSINTERNSHIP REPORT AT DRONA AUTOMATIONS
INTERNSHIP REPORT AT DRONA AUTOMATIONS
 
Project Report
Project ReportProject Report
Project Report
 
IJSRED-V2I3P106
IJSRED-V2I3P106IJSRED-V2I3P106
IJSRED-V2I3P106
 
Aris_Robotics
Aris_RoboticsAris_Robotics
Aris_Robotics
 
Portfolio - William Main
Portfolio - William MainPortfolio - William Main
Portfolio - William Main
 
H3O 2014 Technical Report ,Faculty of Engineering at Helwan university
H3O 2014 Technical Report ,Faculty of Engineering at Helwan universityH3O 2014 Technical Report ,Faculty of Engineering at Helwan university
H3O 2014 Technical Report ,Faculty of Engineering at Helwan university
 
Motion Control Technical Paper - Spring 2016
Motion Control Technical Paper - Spring 2016Motion Control Technical Paper - Spring 2016
Motion Control Technical Paper - Spring 2016
 
Portfolio_new
Portfolio_newPortfolio_new
Portfolio_new
 
Pick & place robot ppt
Pick & place robot pptPick & place robot ppt
Pick & place robot ppt
 
IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...
IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...
IRJET- Review on Rover with Rocker-Bogie Linkage Mounted with Ultrasonic Sens...
 
Final Design Proposal Beginning
Final Design Proposal BeginningFinal Design Proposal Beginning
Final Design Proposal Beginning
 
A10_TeamPrime
A10_TeamPrimeA10_TeamPrime
A10_TeamPrime
 
mechanical spider robot by klann mechanism
mechanical spider robot by klann mechanismmechanical spider robot by klann mechanism
mechanical spider robot by klann mechanism
 

Autonomous Roving Vehicle

  • 1. 1 Autonomous Roving Vehicle for Crop Yield Improvement - Team DC1 Final Report Sponsored by: Iowa State University Department of Mechanical Engineering Department of Agronomy For: Dr. Asheesh Singh Dr. Arti Singh Dr. Baskar Ganapathysubramanian Prepared by: Ryan Tweedt Robert Bromberek Zheng Yi Liew Todd Heidrich Travis Heidrich
  • 2. 2 May 5th, 2015 Table of Contents Contents List of Figures …………………………………………………………. 3 List of Tables …………………………………………………………... 3 Executive Summary …………………………………………………… 4 Introduction ……………………………………………………………. 5 Design Evolution ………………………………………………………. 6 Detailed Design of Lead Concept ……………………………………… 8 Implementation of Process or Design ………………………………….. 11 Cost Analysis …………………………………………………………... 12 Conclusions ­ Future Work ……………………………………………..13 Appendix ………………………………………………………………. 14 References ……………………………………………………………... 24
  • 3. 3 List of Figures Figure 1- Peg Leg Frame Pg 6 Figure 2- Rocker Frame Pg 7 Figure 3- Articulating Leg Frame Pg 8 Figure 4- ARV Isometric View Pg 10 Figure 5- ARV Front View Pg 10 Figure 6- Bill of Material Cost Breakdown Pg 13 List of Tables Table 1- Customer Requirements met by design Pg 9 Table 2- Summary of Bill of Material for ARV Final Design Pg 13
  • 4. 4 Executive Summary In an effort to increase crop yield of soybeans annually to aid in the demand for food, feed and fuel, Dr. Asheesh K Singh, Dr. Arti Singh and Dr. B. Ganapathysubramanian have begun a project to design an autonomous roving vehicle to collect phenotype data. This data is intended to provide data regarding what soybean plants and their associated genotypes are the most robust and resilient to stressors experienced during their full term growth. In theory by crossing the genetic traits of the optimal soybean plants the next generation will be produce greater environmental defenses while maturing. The project was divided up among the Automated Ground Vehicle Team (DC1) and the Manually Ground Vehicle Team (DC2). Team DC1 was responsible to design and autonomous roving vehicle to collect accurate phenotype data on soybeans. This report provides a detailed summary of the design and quantified elements of the autonomous roving vehicle. The design objectives and constraints associated with DC1 were described in a Project Proposal Form. DC1 was required to design a robotic system that is capable of traversing the soybean field. The system must keep the sensory package level with a maximum angle of 10 degrees when under the climbing a 30 degree grade and traversing a 6 in step up in terrain. The robotic system must be capable geotagging individual plants as data is collected. Also, the design should use the same or similar camera system as DC2’s design. The robotic system is designed to perform these functions and achieve these constraints for an extended period of operation time. The final design of the chassis of the robotic rover has been completed and proposed by the ME 415 Undergraduate Team DC1. The final design of the robotic rover is a rocker bogie with four separate track systems, two generators and is compatible with DC1’s sensory camera package. Three mathematical models were constructed using MATLAB. The first model analyzed ground pressure which produced a ground pressure for all four tracks of 1.6 kN. The second model analyzed vehicle tilt under the worst case scenario where the rover is climbing a 30 degree grade and traversing a 6 in jump in terrain. The result showed the sensory package’s tilt was 9.9562 degrees. The third model analyzed power consumption under the scenario the rover was climbing a 30 degree slope. The results showed a power consumption of 1.2917 kW. These math models were utilized to ensure the final rover design would meet the specified constraints.
  • 5. 5 Introduction With the growing world population and ever increasing demand for food, feed and fuel there is a need to increase the annual crop yield of soybean plants. The Agronomy Department at Iowa State University collects phenotype data on the soybean plants in order to select plants with desirable genetic traits to be used to cultivate an improved next generation of plants. The purpose of the team’s project is to develop an autonomous roving vehicle that will navigate the research fields of the Agronomy department and collect the soybean phenotype data at a faster rate than the department is currently able to with manual inspection. Gathering data using an unmanned vehicle provides researchers more data to analyze and more time to analyze it, which will result in production of better cultivars that will increase crop yield. The data is collected using a camera system containing Hyperspectral, GoPro and Kinect cameras to give the researchers a variety of data to analyze. The sponsors of this project have produced detailed constraints and objects the rover is intended to accomplish and are as follows: The rover is intended to straddle one or more soybean plant rows while traversing the field and collect plant or canopy data. The data collected must be accurate and consistent across plants, with the goal of collecting plant data at a rate of 700 plants/hour. The rover should be able to overcome a maximum expected variation in terrain is 6 inches and maintain traction in both dry and wet soil conditions. This involves keeping the camera package parallel with the ground; the maximum allowable tilt constraint is 10 degrees. Soybean plants should not be damaged during operation, which requires the rover to clear a maximum of 50 inches and be as thin as possible. The system must incorporate a Pixie positioning system for navigation and to track individual plant location on the field, which will be used to tag each image taken. It is required that the rover will be capable of operating for extended periods of time in the field. Ideally the rover should use the same or similar camera system designed by the DC2 team with minimal modifications. The rover is designed to move continuously while collecting data and geotagging individual plants. Lastly, it is desired for as many off the shelf components to be used as possible, so that parts can be simply reordered if broken instead of remade. These design constraints are intended to be accomplished as the rover operates autonomously in the field.
  • 6. 6 Design Evolution Rover concepts were brainstormed given the customer requirements. Each concept had the following components: a main chassis/frame, a suspension system, a locomotion system, a power source, and a connection for the camera package system. The differences between concepts came from the frame design, the suspension mechanism, and locomotion mechanism. Three main designs were seriously considered: 1. A “peg leg” frame with straight legs that uses a shock absorber system for suspension. Figure 1: Peg Leg Frame
  • 7. 7 2. A “rocker” frame with angled legs that provide suspension purely mechanically via a pivot and rocking system based on the Mars Curiosity Rover. Figure 2: Rocker Frame 3. A frame with articulating legs that are able to swivel so that the width of the vehicle can be adjusted. This frame uses a shock absorber system for suspension.
  • 8. 8 Figure 3: Articulating Leg Frame Each design concept could be used with either of the three locomotion concepts: wheels, full tracks, or ATV tracks (the partial tracks pictured in each of the figures above). Based on the decision matrix used which rated each concept based on its ability to meet each customer requirement and how important each requirement is the the customer, the lead concept selected is the rocker frame with ATV tracks. The articulating frame provided the ability to operate in rows of varying widths, but this is not an issue important to the customer and is thus an unnecessary added complexity. The rocker frame succeeded because of its simple mechanical suspension system that did not require designing and specifying shock absorbers. Including shock absorbers would be over-engineering the rover since it will operate at relatively low speeds and smooth terrain. The wheels provide the benefit of simplicity and cost effectiveness, however do not provide the traction and surface area needed to traverse various terrain conditions. The full track system does provide enough traction and surface area, however there are no off the shelf products available and steering is severely limited. ATV tracks provides the best solution because there are off the shelf products available, traction and surface area is still significant, and steering/maneuverability is good.
  • 9. 9 Detailed Design of Lead Concept Table 1: Customer Requirements Met by Design Customer Requirements Meets Requirements Must be fully autonomous Yes Must be able to link data with particular plants Yes Must be able to keep cameras stable and level Yes Must be able to mount the hyperspectral camera Yes Must be able to mount the Kinect Camera Yes Must be able to mount at least 1 GoPro camera Yes Must be able to traverse various terrain/weather conditions Yes Must not damage plants Partially Must operate for extended periods of time Yes Must gather consistent and accurate plant data Yes Should have enough clearance for full plant height Yes Should be compatible with the MGV camera mount system Yes Should be compatible with the MGV shading system No Should be easy to maintain, store, and operate Yes Should greatly increase data collection rate Yes Should be easy to assemble/manufacture Yes Should be cost effective Yes Should be easy to access computers and data on board Yes
  • 10. 10 10 Figure 4: ARV Isometric view Figure 5: ARV Front View
  • 11. 11 11 For the Rocker Track design’s primary structural material, 8020 Aluminium extrusion was chosen. The team felt that this material would be the best for off-the-shelf part selection, flexibility with design and future modifications, as well as with cost and manufacturing. By using 8020 extrusion and McMaster Carr parts, only a few customized parts will need to be fabricated to complete the design. The detailed drawings of these customized parts are attached in the Appendix. A major area of success with the selected design is the rocker bogie suspension including a differential control bar. The differential control bar can be viewed in both figures 4 and 5. This allowed for a direct linkage between both rocker bogies. The action is as so; when the right front track moves upward the left front track moves downward. Using this design feature in the math model labeled vehicle tilt in the Appendix DC1 discovered under the worst expected scenario of a 6 inch terrain variation, the rover’s platform remained under the constraint of 10 degrees. The areas of concern with DC1’s design are as follows: Must not damage plants and should be compatible with the MGV’s shading system. The design for an adequate shielding system to effectively protect the soybean plants as the rover traverses the field was not addressed because of time constraints. DC1 mainly focused on the rover’s capability to efficiently and effectively collect soybean data while maintaining a level platform for the sensor system as it traveled over various terrain environments. The sprocket drive trains, areas around the generator mount and all four tracks would also be design features of the rover that would require shielding. DC1 suggests that upon fabrication the use of a heat formed plastic shields for the design features discussed above a cost effective and effective solution. The rover is not compatible with the MGV team’s shading system simply because the MGV team did not design one. For drive and steering motors, the design team differed final selection to the future team that will be working with the controls and electronics. Specifications for the drive motors were found with the math model, and any ½ Horsepower motor capable of outputting 1300 in*lbf of torque on the track axles will suffice. These motors are mounted as shown in the CAD assembly and in figures 4 and 5, and connected to the the track axle through a chain and sprocket. Additional speed reduction of the motor output can be done by adjusting the sprocket ratio, so specific sprockets were not selected for the Bill of Materials. DFMEA: When analysing various failure modes DC1 discovered concerns with the use of tires on the rover and realized potential failure with traction and rolling resistance. The proposed solution to mitigate these failures was to replace the tires with tracks. There was also great concern regarding excessive contact with plants. The team intended to design a shielding system, but under the time constraint of various deadlines, DC1 was unable to address this problem.
  • 12. 12 12 DC1 also discovered concerns with the possibility of insufficient power. To ensure sufficient power is provided to the rover DC1 incorporated two generators (2.2 kW each). Implementation of Process or Design The track mount can only be specified when the Mattracks XT series is purchased as Mattracks could not provide detailed drawings for the tracks due to confidential issue. The brackets that hold the tracks and motors are made by welding two ½” stainless steel T­304 plate as shown in the detailed drawings in Appendix. The steering plate is manufactured from stainless steel T-304 bar and the center hole on the plate for the worm gear drive depends on the control team’s selection of steering system. Other than the customized parts and future decisions needed to be made by control team, the ARV final design assembly should be pretty straight forward. Cost Analysis The table below is the summary of the costs of all the components for the final design of the ARV and Figure 6 shows the cost breakdown of the total estimated cost. The total cost includes all components including estimates for the components that the control team has to select. The total cost gives an upper estimate for the cost needed to build this design ARV, and it may be possible to reduce significantly. All part numbers are hyperlinked to aid the manufacturing team to purchase the components or find replacement parts. Labor cost would be variable depending on the manufacturing team and customized parts. Recurring cost would not include maintenance costs as the operator is more likely to replace the broken parts. The complete and detailed Bill of Material is attached in Appendix.
  • 13. 13 13 Table 2. Summary of Bill of Material for ARV Final Design Summary Chassis Subtotal $1,525.25 Steering System Subtotal $4,144.30 Rocker Arms Subtotal $566.81 Generator with Mount Subtotal $1,325.78 Mattracks Subtotal $5,538.00 Motors Subtotal $2,200.00 Manufacturing Subtotal $500.00 ARV Total $15,800.14 Figure 6. Bill of Material Cost Breakdown
  • 14. 14 14 Conclusions - Future Work In summary, the team completed extensive design work with efforts to have the final design ready to be prototyped, however some future work is still required before this design can be manufactured. I. Covers/shielding - To prevent damage to plants and debris infiltration, shielding needs to be designed to protect the tracks, driving and steering motors, and the accompanying gears or chain drivetrain. II. Track and generator dimensions - Specific dimensions for the tracks and generator could not be acquired - only some general dimensions. The parts will have to be purchased and measured to get specific dimensions. The generator mount and the track connections depend on these dimensions, so some minor changes to these systems may be necessary once dimensions are found. III. Track mounts - Once tracks are attained and specific geometry is found, the connection of the tracks to the frame needs to be designed. The material selected for the front and back track brackets is stainless steel, but a cheaper material may be found suitable after stress analysis. IV. Sensors and controls ­ the controls design is out of the team’s scope, and the controls team responsible for the vehicle’s autonomy will want to have a say in the following aspects of the design: A. Final motor selection - drive motors require 0.5 hp, with an output of 1300 lbf-in. The motor drivetrain ratio may need to be adjusted based on motor selection. The requirements for the steering motor have not been determined; analysis on the friction resistance between tracks and soil is needed to determine this. The size of the steering worm gear may need to be adjusted based on selection. B. Computer selection and mounting (a spot located next to the generators has been designated for the computer). C. Sensor selection, integration, and wiring. V. Sunlight shielding to maintain consistent lighting for cameras. VI. Camera system height adjustment - the hyperspectral camera is mounted too high to capture plants as they are budding from the ground. Either the DC2 (Manual Ground Vehicle) team’s design of the camera system will need to be adjusted to hang lower, or a different lens with longer focal length is needed. VII. Track axle bearings and steering bearings - bearings have been selected, but automotive wheel bearings should be investigated for better performance. VIII. Fabrication and assembly of components.
  • 16. 16
  • 17. 17
  • 18. 18
  • 19. 19
  • 20. 20
  • 21. 1 ARV Math Model Table of Contents Ground Pressure ................................................................................................................. 1 Vehicle Tilt ........................................................................................................................ 1 Power Consumption ............................................................................................................. 2 Ground Pressure Define constants g = 9.81; % m/s^2 m = 500; % kg - this is a guess A = 0.7664*4; % m^2 - times four because 4 tracks % find ground pressure p = m*g/A % N/m^2 - ground pressure of all four tracksVeklo p = 1.6000e+03 Vehicle Tilt Define constants s = 1.9; % m - just a rough guess for the rocker length between axles alpha = 90; % degrees - angle between rocker legs yr = 0.1524; % m - displacement height of the rocker leg by rock theta1 = 15; % degrees - angle of slope for side 1 theta2 = 0; % degrees - angle of slope for side 2 w = 60*0.0254; % m - width of vehicle length = 1.75; % m - length of the vehicle frame % find leg lengths beta = (180 - alpha)/2; % degrees - angles of rocker triangle l = s*sind(beta)/sind(alpha); % m - leg length h = l*sind(beta); % m - rocker joint height with no displacement % find height of rocker joint 1 phi1 = atand(yr/s); % degrees - angle from rock thetaMax1 = theta1 + phi1; % degrees - total angle relative to level
  • 22. 2 ARV Math Model h1 = l*sind(thetaMax1 + beta); % m - height of side 1 dh1 = h1 - h; % m - change in height of rocker joint 1 % find height of rocker joint 2 phi2 = 0;%asind(yr/s); % degrees - angle from rock thetaMax2 = theta2 + phi2; % degrees - total angle relative to level h2 = l*sind(thetaMax2 + beta); % m - height of side 1 dh2 = h2 - h; % m - change in height of rocker joint 1 % find side-to-side angle of frame tilt = asind((dh1 - dh2)/w) % degrees - the angle of the frame with repect to the ground % find twist angle of frame dx1 = l*cosd(beta) - l*cosd(beta+phi1); %displacement of rocker join in x direction (along travel motion) thetaTwist = atand(dx1/w) % twist angle of the frame % Ground Clearance clearance = length/2*tand(thetaMax1) % m - Clearance of the rover measured from the frame to ground tilt = 9.9562 thetaTwist = 2.9673 clearance = 0.3113 Power Consumption http://www.sciencedirect.com/science/article/pii/S0022489803000582 Power requirement slope = 19.5859; % degrees - ThetaMax when climbing a 15 degree slope and rock weight = m*g; % N - weight of vehicle Cf = 0.25; % coefficient of friction V = 2.25/5; % m/s ~ 5 mph - velocity of vehicle Fg = m*g*sind(slope); % N - Force of gravity Fg Ff = m*g*Cf; % N - Force of rolling resistance Ff
  • 23. 3 ARV Math Model F = Fg + Ff; % N - Sum of the forces P = F*V % W - Theoretical power consumption P = 1.2917e+03 Published with MATLAB® R2015a
  • 24. Item Description Part Number Cost/Unit Quantity Total Chassis 40x40mm Aluminum Extrusion 5537T102 $8.21 90 $7 80x80mm Aluminum Extrusion 5537T95 $195.56 2 $3 40x80mm Aluminum Extrusion 5537T112 $18.11 1 $ Straight Connector 5537T294 $6.30 46 $2 45 Degree Connectors 5537T473 $21.83 4 $ Chassis Subtotal $1,5 Steering System Ball Joint Linkages 60645K471 $13.79 4 $55.16 McMaster Carr Nylock Nut for Ball Joint Linkages 91831A145 $6.83 1 $6.83 McMaster Carr Washer for Ball Joint Linkages Mounting 91201A035 $10.32 1 $10.32 McMaster Carr Threaded Rod for Steering 92580A139 $20.43 4 $81.72 McMaster Carr Track Flange Bearing 5967K81 $38.32 8 $306.56 McMaster Carr Hex Head Cap Screw 92198A820 $4.35 4 $17.40 McMaster Carr Nylock Nut for Hex Head Cap Screw 91831A144 $5.81 1 $5.81 McMaster Carr Cap Screw for Flange Bearing Mounting 92186A677 $1.59 16 $25.44 McMaster Carr Nylock Nut for Cap Screw 91831A133 $7.76 1 $7.76 McMaster Carr Unspecified Right-Angle Speed Reducers Estimated $750.00 2 $1,500.00 Speed Reducers Mounting Cap Screws 92240A622 $6.24 1 $6.24 McMaster Carr Unspecified Sprocket Estimated $50.00 8 $400.00 Unspecified Roller Chain Estimated $20.00 4 $80.00 M6x1 T-Slot Nut 90510A211 $4.67 16 $74.72 McMaster Carr Track Wheel Hub Estimated $50.00 4 $200.00 5/8" Hardened Shaft 6253K55 $13.27 4 $53.08 McMaster Carr Retaining Rings 93416A306 $4.11 8 $32.88 McMaster Carr Steering Stainless HRAP 1/4" Bar 304 3"x12" OnlineMetals $15.26 2 $30.52 OnlineMetals Bracket Stainless HRAP 1/2" Plate 304 12"x36" OnlineMetals $301.28 4 $1,205.12 OnlineMetals Steering Motor Mount Aluminum 4.83mm Sheet 12"x24" OnlineMetals 44.74 1 $44.74 OnlineMetals Steering System Subtotal $4,144.30 Rocker Arms Flange Sleeve Bearing 14mm 5448T17 $5.03 4 $20.12 McMaster Carr M14x2 Cap Screw 60mm 91287A788 $2.80 2 $5.60 McMaster Carr M14x2 Cap Screw 130mm 91287A815 $6.50 2 $13.00 McMaster Carr Ball Joint Rod End 2988K361 $47.71 4 $190.84 McMaster Carr M14x2 Nylon Flange Nut 99908A105 $8.71 2 $17.42 McMaster Carr M12x1.75 Nylon Flange Nut 94710A106 $3.23 1 $3.23 McMaster Carr M12x1.75 Cap Screw 160mm 91287A439 $5.69 1 $5.69 McMaster Carr 12mm Flange Bearing 1434K15 $10.72 6 $64.32 McMaster Carr Flange Sleeve Bearing 12mm 5448T14 $4.78 1 $4.78 McMaster Carr 12mm Washer 93475A290 $6.49 1 $6.49 McMaster Carr M14x2 Threaded Rod 90024A005 $13.59 1 $13.59 McMaster Carr 12mm Shaft 1482K21 $16.02 1 $16.02 McMaster Carr 12mm Thrust Bearing 1262N12 $6.67 4 $26.68 McMaster Carr 12mm Shaft Mount 62645K38 $19.45 4 $77.80 McMaster Carr M6x1 T-Slot Nut 90510A211 $4.67 20 $93.40 McMaster Carr M6x1 Cap Screw 16mm (50 pack) 91287A136 $7.83 1 $7.83 McMaster Carr Rocker Arms Subtotal $566.81
  • 25. Generator with Mount M6x1 T-Slot Nut 90510A211 $4.67 16 $74.72 McMaster Carr Stainless Steel Hex Head Cap Screw (50 pack) 91287A211 $9.16 1 $9.16 McMaster Carr Stainless Steel Hex Head Cap Screw (25 pack) 93635A208 $6.15 1 $6.15 McMaster Carr Digital Inverter Generator WH2000iXLT $563.14 2 $1,126.28 Home Depot Parallel Cord for Generators WHPC $49.99 1 $49.99 Hardware Sales 6"x50" Aluminum 6061 Bare Sheet (0.063" thick) OnlineMetals $27.00 1 $27.00 OnlineMetals Stainless Steel Unthreaded Spacer 92871A244 $2.85 4 $11.40 McMaster Carr Chemical-Resistant PVC Vibration Damping Pad 5998K4 $21.08 1 $21.08 McMaster Carr Generator with Mount Subtotal $1,325.78 Tracks Mattracks XT XT $5,188.00 1 $5,188.00 Mattracks Freight for Mattracks $350.00 1 $350.00 Mattracks Mattracks Subtotal $5,538.00 Motors Drive Motors Estimated 500 4 $2,000.00 Steering Motors Estimated Motors Subtotal 100 2 $200.00 Manufacturing Estimate Cutting Aluminum Extrusions to length Boyd Lab Threading Control Bar and Support Block end holes Drilling through-holes in Rocker Arms, Control Bar, and Frame Drilling out mounting holes in Shaft Mounts and Flange Bearings 10 Boyd Lab Boyd Lab Boyd Lab Fabricating Track and Motor Brackets 4 Boyd Lab Fabricating Steering Mount Bracket 2 Boyd Lab Fabricating Generator Side Brackets 2 Boyd Lab Fabricating Generator C-Clamp Brackets Manufacturing Subtotal guess 2 $500.00 Boyd Lab Summary Chassis Subtotal $1,525.25 Steering System Subtotal $4,144.30 Rocker Arms Subtotal $566.81 Generator with Mount Subtotal $1,325.78 Mattracks Subtotal $5,538.00 Motors Subtotal $0.00 Manufacturing Subtotal $500.00 ARV Total $13,600.14 Notes Does not include the cost of additional sensors, computers, power supplies, motor controllers, and cables
  • 26. MayTec has cheaper options, but involves a much more complicated quoting process Cost Breakdown 0% 4% 11% 41% 30% Chassis Subtotal Steering System Subtotal Rocker Arms Subtotal Generator with Mount Subtotal Mattracks Subtotal Motors Subtotal Manufacturing Subtotal 4% 10%
  • 27. Product Engineering Specifications Concept 1: Manual Labor Customer Needs/Wants (from CR worksheet) Design Feature 1 Target Value Unit Design Feature 2 Target Value Unit Design Feature 3 Target Value Unit Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit Must be fully autonomous Must be able to link data with particular plants Must be able to keep cameras stable and level Must be able to mount the hyperspectral camera Must be able to mount the Kinect Camera Must be able to mount at least 1 GoPro camera Must be able to traverse various terrain/weather conditions Must not damage plants Must operate for extended periods of time Must gather consistent and accurate plant data Should have enough clearance for full plant height Should be compatible with the MGV camera mount system Should be compatible with the MGV shading system Should be easy to maintain, store, and operate Should greatly increase data collection rate Should be easy to assemble/manufacture Should be easy to access computers and data on board Should be cost effective Little human interaction TBD hrs/day Accurate positioning system +/-1 cm Vibration dampening mount TBD G's Mounts hyperspectral Yes Y/N Mounts Kinect camera Yes Y/N Mounts GoPros Yes Y/N Surmountable terrain variation 15 cm Plant vertical clearance cm Run time 10 hrs Sensor Levelness +/- 10 degrees Height Adjustment +/- 1 [2] m Uses MGV camera mount Yes Y/N Uses MGV shade mount Yes Y/N Low maintenance TBD hrs/month Data Collection Rate TBD plants/hr Tools Required TBD count Simple computer interface (Windows app) Yes Y/N Cost TBD USD Traction in moist soil Yes Y/N Gentle interaction (distance from plant stem) 25 cm Size TBD m^3 Standard plug interface (USB) Yes Y/N Long lasting product life TBD years Water Resistance Yes Y/N Training Time for Operator 1 days Removeable media (SD Card) Yes Y/N Personal GPS +/-1 m Head-mounted GoPro 1 ct Gentle interaction (distance from plant stem) 25 cm Full day of work 8 hrs Data Collection Rate 100 Plants/hr Labor Cost 10 USD/hr Plant tag 0 m Workers per field TBD count HOME Customer Requirements to Engineering Specifications Use this worksheet to create list of competitive design features, concept features, and the associated performance parameters. (HINT: Use the Market Benchmarking to identify features/functions that need to be present to satisfy customer needs/wants. Use manufacturer data or reverse engineering to identify target values.) Resources: [1] UAV: http://www.precisionhawk.com/ [2] https://en.wikipedia.org/wiki/Soybean [3] https://www.deere.com/en_US/products/equipment/tractors/utility_tractors/5e_series_h/5085e/5085e-2015.page?#viewTabs [4] http://www.nxp.com/files/sensors/doc/data_sheet/MPL3115A2.pdf
  • 28. Concept 2: UAV Precision Hawk Concept 3: John Deere Tractor Concept 4: Improved Manual Ground Vehicle Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit Feature 1 Value 1 Unit F2 V2 Unit F3 V3 Unit Little human interaction TBD hrs/day GPS +/- 1 [1] m In flight auto correction Yes [1] Y/N Hyperspectral on board 1 [1] count Altimeter accuracy 0.3 [4] m Run time hrs Sufficient Plant Clearance Yes [1] Y/N Low maintenance 1 hrs/week Data Collection Rate TBD Plants/hr Tools Required 0 count On Board computer Yes Y/N Cost 25,000 USD Wingspan 1.5 m 3D mapping Yes Y/N Training Time 1 days Little human interaction 8 hrs/day Engine power 85 hp turning radius 3.54 m weight 7055 kg wheel base 92.5 in Fuel Tank 25 gal Tire size (front) 43.5 in Low maintenance 2 hrs/week Data Collection Rate TBD Plants/hr Assemnbly time 0 hrs Cost 48,000 USD Little human interaction 8 hrs/day Camera Pitch +/- 10 degrees Tire Spacing 77 cm Fuel Tank TBD gal Low maintenance 1 hrs/week Data Collection Rate TBD Plants/hr Tools Required TBD count Cost TBD USD Chassis Height 1 m
  • 29.
  • 30.
  • 31.
  • 32. Some systems may require more than one QFD. Often it is TR1 Tracks 2 Strong Positive Impact Left to Bottom 1 Moderate Positive Impact Left to Bottom 0 No Impact separated by systems or subsystems. See you instructor for TR2 TR2 Tires TR3 Engine "CTRL" key and click on the worksheet tab and drag across TR4 -2 TR4 Camera ‐1 Moderate Negative Impact Bottom to Left to duplicate. TR5 2 TR5 Automated Controls -2 Strong Negative Impact Bottom to Left TR10 1 0 1 2 TR10 Electric Motor Power gTR11 2 2 2 2 2 TR11 Consistant Straight Steerin TR17 TR18 TR17 0 TR18 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12 TR13 TR14 TR15 TR16 TR17 TR18 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) Dr. Mountable Maintains Consistant James Chad Dr. Dr. Ganapathysubrama Automated Protect from camera level Generator Electric Straight Motor Sensors for Heise Garber Singh Singh nian Tracks Tires Engine Camera Controls enviornment systems platform Power Motor Power Steering Suspension Chassis Mount Autonomy Fixed frame Articulating Manual Rocker with arms with Labor MGV Goals Wheel suspention suspension 9 9 9 9 9 9 9 1 9 9 9 9 9 3 1 9 9 9 9 9 9 9 9 3 3 9 9 3 9 9 3 1 9 9 9 9 9 9 3 1 1 9 9 9 9 9 9 9 9 3 9 3 9 9 9 3 9 3 9 9 9 3 9 3 3 3 3 9 9 9 9 3 3 9 9 3 9 3 3 1 9 9 9 9 9 3 3 1 9 1 9 3 9 9 3 3 3 3 9 3 9 9 3 9 3 9 9 9 3 1 3 1 3 9 3 9 3 9 9 9 9 9 9 9 3 9 3 9 9 1 1 3 9 9 3 anking: 6% 6% 5 % 5% 10% 3% 11% 4% 3% 6% 6% 7% 13% 6% 10% 3035 4353 4151 4229 7428 5898 6402 0 8. Benchmark Data - Engineering Specifications (Metrics) 4. Market 0 43.5 85 1 Yes Yes No +/- 25 No 0 +/- 2 Yes Yes Yes Yes John Deere Tractor 0 0 0 2 Yes No No +/- 20 No 1 +/- 10 No No No Yes Precision Hawk UAV 0 0 0 3 No No No N/A No 0 +/- 1 No No No No Manual Labor 0 0 18 3 No Yes Yes +/- 10 No 0 +/- 0.5 Yes Yes Yes Yes MGV Goals - Engineering Specifications 0 20 0 3 Yes Yes Yes +/- 10 Yes 4 +/- 0.5 Yes Yes Yes Yes Rocker Wheel 0 20 0 3 Yes Yes Yes +/- 15 Yes 4 +/- 0.5 Yes Yes Yes Yes Fixed frame with suspention 0 20 0 3 Yes Yes Yes +/- 10 Yes 4 +/- 0.5 Yes Yes Yes Yes Articulating arms with suspension 0 Units: in in hp ct Yes/No Yes/No Yes/No degrees Yes/No ct F eet Yes/No Yes/No Yes/No Yes/No 3. Importance 2. Customer Requirements 9 9 9 Must be fully autonomous 1 1 3 9 9 9 9 Must be able to link data with particular plants 9 9 3 9 9 9 9 Must be able to keep cameras stable and level 3 3 1 9 9 9 9 9 9 Must be able to mount the hyperspectral camera 9 3 9 9 9 Must be able to mount the Kinect Camera 9 3 9 9 9 Must be able to mount at least 1 GoPro camera 9 3 9 9 9 Must be able to traverse various terrain/weather conditions 9 9 3 3 3 9 9 9 Must not damage plants 9 9 3 3 3 9 9 9 9 Must operate for extended periods of time 3 3 9 9 9 3 9 9 9 Must gather consistent and accurate plant data 3 3 9 3 9 9 9 9 9 9 Should have enough clearance for full plant height 3 3 9 3 9 9 9 Should be compatible with the MGV camera mount system 3 9 9 9 9 Should be compatible with the MGV shading system 3 3 1 3 3 9 9 9 9 Should be easy to maintain, store, and operate 3 3 3 9 9 3 9 9 9 Should greatly increase data collection rate 9 9 9 9 9 9 3 3 3 3 Should be easy to assemble/manufacture 9 9 3 3 3 3 3 3 Should be easy to access computers and data on board 1 3 9 9 9 Should be cost effective 3 3 3 9 3 Note: QUALITY FUNCTION DEPLOYMENT (QFD) 9. Function vs. Function - Trade-offs Key more information. To copy this worksheet just hold the TR3 TR6 ‐1 1 TR6 Protect from enviornment TR7 0 2 TR7 Mountablecamera systems If not related, leave blank TR8 2 -1 -2 2 1 1 TR8 Maintains level platform TR9 2 0 2 TR9 Generator Power TR12 2 -1 -1 2 2 2 2 TR12 Suspension TR13 1 1 1 1 1 2 2 2 2 TR13 Chassis TR14 2 2 1 2 -1 2 2 TR14 Motor Mount TR15 2 2 1 1 2 1 2 1 -1 TR15 Sensors for Autonomy TR16 TR16 0 0 1. Customer Direction of Improvement (+/-) 6. Product Features (Functions) 4. Competition Market 4. Concepts John Deere Precision 7. Meets Requirements? 1 1 1 1 1 1 1 1 1 1 Tractor Hawk UAV 5. Meets Reqmts? 1 9 9 3 3 5. Meets Reqmts? 1 1 9 3 1 1 3 9 9 9 9 1 1 9 1 1 9 3 3 1 9 9 3 3 3 9 1 1 9 1 1 9 1 1 9 9 1 9 3 9 9 9 1 1 3 1 1 3 3 9 3 1 9 9 3 1 1 1 1 1 1 1 1 1 9 1 1 3 3 R
  • 33. John Deer e Trac tor Prec ision Haw k UAV Man ual Labo r MG V Goal s Roc ker Whe el d fram e with susp ulati ng arms with susp 0 WvH sum Decision Matrix Calculations 59 531 531 59 59 531 531 531 0 48 144 48 432 432 432 432 432 0 70 210 210 630 630 630 210 630 0 24 24 216 72 216 216 216 216 0 24 24 24 72 216 216 216 216 0 24 24 24 72 216 216 216 216 0 54 486 0 486 162 486 162 486 0 51 51 459 459 153 153 153 459 0 78 702 702 702 234 702 234 234 0 87 261 261 783 783 783 261 783 0 36 36 324 0 108 324 324 324 0 40 0 0 0 0 360 360 360 0 41 0 0 0 0 369 369 123 0 46 46 414 0 138 414 414 138 0 96 288 864 96 288 864 864 864 0 34 34 102 0 306 102 306 102 0 13 117 117 117 117 117 117 117 0 57 57 57 171 171 513 513 171 0 3035 4353 4151 4229 7428 5898 6402 0 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR11 TR12 TR13 TR14 TR15 TR16 TR17 TR18 5.8 5.8 5.8 17.4 52.2 52.2 52.2 52.2 52.2 52.2 5.8 52.2 52.2 17.4 52.2 52.2 52.2 5.8 17.4 17.4 5.8 52.2 52.2 52.2 52.2 52.2 52.2 52.2 5.8 52.2 17.4 52.2 17.4 5.8 52.2 17.4 52.2 17.4 5.8 52.2 17.4 52.2 17.4 5.8 52.2 52.2 17.4 17.4 17.4 52.2 52.2 52.2 5.8 52.2 52.2 17.4 17.4 17.4 52.2 52.2 17.4 17.4 5.8 17.4 17.4 52.2 52.2 52.2 17.4 52.2 52.2 17.4 52.2 17.4 52.2 5.8 17.4 17.4 52.2 17.4 52.2 52.2 52.2 17.4 17.4 52.2 52.2 52.2 52.2 5.8 17.4 17.4 52.2 17.4 52.2 52.2 5.8 17.4 52.2 17.4 17.4 5.8 52.2 17.4 52.2 5.8 17.4 17.4 5.8 17.4 17.4 52.2 17.4 17.4 52.2 17.4 5.8 5.8 17.4 17.4 17.4 52.2 52.2 17.4 17.4 17.4 5.8 52.2 5.8 52.2 52.2 52.2 52.2 52.2 52.2 17.4 17.4 17.4 17.4 52.2 17.4 52.2 52.2 2.2 19.8 19.8 6.6 6.6 6.6 6.6 2.2 6.6 2.2 2.2 6.6 19.8 17.4 17.4 17.4 52.2 17.4 17.4 52.2 17.4 52.2 17.4 52.2 6% 6% 5% 5% 10% 3% 11% 4% 3% 6% 6% 7% 13% 6% 10% Prioritization Calculations Artic (3) Avg V (3 x 6) => 5.8 < Decision Matrix Priority =>
  • 34. Product Name: Autonomous Roving Vehicle Responsible: Bobby Bromberek Prepared by:Bobby Bromberek Page 1 of 1 DFMEA Date (Orig) March 8, 2016 (Rev) Line No: Device Function System, subsystem, or Part Description System, Subsystem, or Part Function Potential Failure Mode Potential Failure Effects SEV Root Cause OCC Current Design Evaluation or Control DET RPN Actions Recommended Resp. Actions Taken SEV OC C DE T RPN Line No: What are the primary functions of the device? What is the system, subsystem or part under evaluation? What is the Function Provided by the system, subsystem or part? In what ways does this function lose its functionality? What is the impact to the Customer? (internal or external) How Severe is the effect to the cusotmer? What root cause of the loss of function? How often does the root cause or failure mode occur? What are the tests, methods or techniques to discover the root cause before design release? How well can you detect cause or failure mode? What are the actions for reducing the occurrance of the Cause, or improving detection? Should have actions only on high RPN's or easy fixes. Whose Responsible for the recommended action? What are the completed actions taken with the recalculated RPN? Be sure to include completion month/year 1 Locomotion Tires Mobilize vehicle, contact with ground Sinking/slipping on soil ARV cannot perform task of capturing plant data 8 Improper balance between weight and traction/surface area 4 Numerical Analysis, Prototype testing 7 224 Increase contact surface area in design, test under worst terrain case scenario 0 2 Locomotion Tires Mobilize vehicle, contact with ground Sinking/slipping on soil ARV cannot perform task of capturing plant data 8 Tread wear, deflated tire, flat tire 3 Tire warrenty and expected lifetime analysis 2 48 Advise end user to replace tires every lifecycle and to check before operation (same as a car) 0 3 Locomotion Tires Mobilize vehicle, contact with ground Sinking/slipping on soil ARV cannot perform task of capturing plant data 8 Vehicle bottoms out 2 Model simulations and math calculations 2 32 Design clearances such that vehicle will not bottom out in expected conditions 0 4 Locomotion Tires Mobilize vehicle, contact with ground Resistance to rotation Inefficient energy use = shorter operation periods, inability to move 7 Debris caught in wheels or gears 4 Design for appropriate protection 5 140 Cover wheels to shield debris and gear train, design so that debris falls out naturally 0 5 Locomotion Tires Mobilize vehicle, contact with ground Excessive contact with plants Misrepresents plant health and status 7 Plants caught in wheels 4 Design for appropriate protection 7 196 Cover the wheels with shield to deflect plants with minimal impact with plants 0 6 Locomotion Motors Power the wheels electrical failure or short ARV cannot move, potential damage to computer harware 8 water leaking into motor 3 Design for appropriate protection 5 120 Seal motor off from elements or choose a motor with water resistance built in 0 7 Locomotion motors Power the wheels Overheating ARV loses power and the motors degrade 7 insufficient cooling of motor 7 Design for appropriate heat management 2 98 Include heatsink or cooling system for motors along with thermisters to detect dangerous heat levels 0 8 Data Capture Camera System Capture pictures repeatably Angled pictures (>10 degrees) Data is less valuable 7 Camera package is unlevel 5 Design and test a leveling 2 70 Include suspension in addition to camera package leveling 0 9 Locomotion Controls and breaking correspondence Position cameras directly above plant Break too early or too late Data is less valuable 7 GPS and sensors are not accurate or controls are not calibrated 3 Performance test for timing and location accuracy 2 42 Minimize tolerance in location accuracy, plan controls measures to combat problem 0 10 Frame Supports Hold up weight of ARV Bend or break ARV cannot operate, damage to camera equipment 9 Design or material not strong enough to hold weight over repeated cycles 2 Strength and reliability analysis 3 54 Calculate stresses at critical areas, calculate for high life cycle, run FEA if possible, choose appropriate material 0 11 Frame Supports Hold up weight of ARV Bend or break ARV cannot operate, damage to camera equipment 9 Material loses strength due to weathering/wear 2 Include weathering/wear factors in strength and reliability analysis 6 108 Research effects of weathering and choose material or coating to prevent 0 12 Stability Weight distribution Remain stable, do not tip over Tip over Plant and equipment destruction 9 Center of gravity is too high or unsymmetrical 2 Numerical Analysis 1 18 Calculate center of gravity, do a force analysis including inclines and wind effects 0 13 Power Generator Supply power to batteries Fuel runs out early ARV cannot operate 8 Inadequate design for required load 3 Numerical Analysis 1 24 Accurate math model to spec power requirements 0 14 Power Generator Supply power to batteries Fuel runs out early ARV cannot operate 8 Fuel leak 2 Performance test for leaks 1 16 Add a fuel gauge to design 0 15 Power Batteries Supply power to motor Battery charge runs out early ARV cannot operate 8 Inadequate design for required load 2 Numerical Analysis 1 16 Accurate math model to spec power requirements 0 16 Power Batteries Supply power to motor Battery charge runs out early ARV cannot operate 8 Age of batteries 2 Reliability Analysis 3 48 Advise end user to replace every lifecycle an to check regularly d 0
  • 35. Priority Title Description Probability of Impact Schedule Risk Scope Risk Quality Risk Cost Risk Planned Risk Mitigation Actions Activity Since Last Report 1 Misunderstanding of sponsor's needs/wants 1) Sponser's key interests in the robotic rover's design may be misunderstood by the design team. 2) Sponsor's do not communicate the major design features to the design team. Medium High High Low Medium The team will maintian effective communication with design team members, sponsors, and professors to verify there is not a misunderstanding between the sponsors and the design team. The project charter and spec sheet provided by the sponsors for the robotic rover's design will be referenced. N/A 2 Limited funding The limited funding will force DC1 to determine what design functions of the robotic rover require the most costly components. This may result in potential failures during operation. High Medium Medium High High The design team will determine what components that will require the most funding. These components will be analyzed to determined their overall influence in the design of the robotic rover. The team will not sacrifice quality as the funding will be allocated to various design elements. Appropriate documentation and justification will be used to back up the decisions made by the design team. N/A 3 Maintain Schedule Potential increase in time allocation to major design features may extend float time past the allowable time. These delays will impede the progression of other project tasks. High High High High High In the circumstance the project's schedule is at risk the design team will reallocate the resource of man hours to ensure no team member is overloaded and an equilibrium of work load is developed amongst each team member. Schedule risks will be addressesed with the sponsor so the quality of the design develops efficiently. The sponsor will be informed if the man hours exceeds what is possible. N/A 4 Failure to meet project scope Design team experiences losses in time to complete the contracted requirements of the robotic rover. Potential overload of man hours for individual design team members. High High High Medium Medium The design team will utilize the gantt chart and project schedule to maintain a timely completion of the tasks required to achieve the contracted scope of the project with the sponsors. If there are misunderstandings of the scope the design team will refer to the project charter and the customer requirements so the final design contains all desired features. Constant communication between the sponsors and the design team will be maintained so the scope of the project is met. N/A 5 Designs are untested Robotic rover's function features fail to operate as desired High Low Medium High High The design team will understand the time demand of the project and determine which functions are in the highest demand of being tested. Those functions which will not be capable of being tested will need to be analyzed through design models to understand their capability to perform the desired tasks. N/A 6 Lack of technical ability of team Team members lack experience and expertise to effectively develope a design to meet the functional requirements of the robtoic rover. Medium Medium Low Medium Medium The areas which the design team may lack technical ability will be over came by reasearching and learning the concepts which are not yet understood. The design team will communicate with the sponsor about potential delays and purchasing systems to help reduse man hours, but the design team will need to undersatnd the cost of taking such avenues. N/A HOME Risk Register
  • 36. DMADVR_MASTER_Planning_Phase_Review_DC1 - Editable.xlsx WBS M E Capstone 3/10/2016 Page A1-1 HOME WORK BREAKDOWN STRUCTURE Follow recommended steps for defining project task structure 1 Divide project into managable subsystems and subtasks, use PFSB (at right) to help with task definition 2 Fit specific project tasks within each phase area; insert rows as needed. 3 Determine expected durations for each task either in effort hours or days duration (indicate which) 4 If known, specify 'must start' and/or 'must end' dates 5 Transfer contents to 'Critical Path' worksheet Phase Task Step Task Description Must Start Date Must End Date Expected Duration Define-Measure 1 Team Roster/Skill Survey and project preferences 1/12/2016 1/12/2016 1 2 Team Norms 1/19/2016 1/21/2016 2 3 Project Charter 1/24/2016 1/28/2016 4 4 Preliminary WBS and schedule 1/31/2016 2/4/2016 4 5 Benchmarking and Customer Requirements 2/13/2016 2/17/2016 4 6 Stakeholder Analysis 2/15/2016 2/17/2016 2 7 Initiation Phase Review 2/18/2016 2/18/2016 1 Analyze 8 ARV Function tree defined and verified with MGV team 3/2/2016 3/3/2016 1 9 Solutions brainstormed for ARV subfunctions 3/2/2016 3/3/2016 1 10 Design concepts from combined solutions using Morphological Matrix 3/2/2016 3/3/2016 1 11 Functional Analysis with QFD Chart 2/29/2016 3/3/2016 3 12 Risk Management Plan with DFMEA 2/29/2016 3/3/2016 3 13 Select a design concept based on Decision Matrix and/or Pugh Chart 3/1/2016 3/3/2016 2 14 Peer Assessment 1 2/18/2016 2/18/2016 1 15 Design WBS, Critical Path, and Schedule 3/6/2016 3/8/2016 2 16 Engineering Specifications 2/20/2016 2/23/2016 3 17 Planning Phase Review 3/10/2016 3/10/2016 1 Design 18 Design Chassis 4/10/2016 4/26/2016 16 19 Design Traction/Locomotion 4/2/2016 4/26/2016 24 20 Design Power Source 4/18/2016 4/26/2016 8 21 Design/Ensure Camera Package Compatibility 4/18/2016 4/26/2016 8 22 Design Controls 4/22/2016 4/26/2016 4 23 Design Integration 4/8/2016 4/26/2016 18 24 Peer Assessment 2 3/31/2016 3/31/2016 1 25 System Model 4/2/2016 4/5/2016 3 26 Final Design and Drawings 4/18/2016 4/26/2016 8 27 Bill of Materials and production costs 4/21/2016 4/26/2016 5 Report 28 Create Design Expo Poster 4/15/2016 4/19/2016 4 29 Prepare Final Presentation 4/22/2016 4/26/2016 4 30 Write Final Report 4/28/2016 5/5/2016 8 31 Final Phase Review 4/26/2016 4/26/2016 1 32 Design Expo 4/26/2016 4/26/2016 1 33 Final Presentation 4/26/2016 4/26/2016 1 34 Peer Assessment 3 4/28/2016 4/28/2016 1 35 Final Report 5/5/2016 5/5/2016 1 36 All project files to SharePoint/ All materials ready to ship 5/5/2016 5/5/2016 1 153
  • 37. DMADVR_MASTER_Planning_Phase_Review_DC1 - Editable.xlsx WBS M E Capstone 3/10/2016 Page A1-2 WBS LEVEL 1 1 Autonomous Roving Vehicle (ARV) 153 1 WBS LEVEL 2 ARV 153 1 WBS LEVEL 3 ARV 153 WBS LEVEL 4 1.1 Chassis 16 1.1 Chassis 16 1.2 Traction/Locomotion 24 1.1.1 Frame 4 1.3 Power Source 8 1.1.2 Camera Package Mount 2 1.4 Camera Package Compatability 8 1.1.3 Power Source Mount 2 1.5 Controls 4 1.1.4 Track Mount 8 1.6 Integration 18 1.2 Traction/Locomotion 24 1.7 Project Mgt. 75 1.2.1 Track System 8 1.2.2 Steering 6 1.2.3 Suspension 5 1.2.4 Motors 3 1.2.5 Motor Mount 2 1.3 Power Source 8 1.4 Camera Package Compatability 8 1.5 Controls 4 1.5.1 Sensors 4 1.6 Integration 18 1.6.1 Concept 4 1.6.2 Verify with MGV team 4 1.6.3 Design 10 1.7 Project Mgt. 75
  • 38. Enter Status Phrase per key (see below) Do not enter dates in these columns. Auto format based on ES/ME dates and Duration value. Float Duration is calculated. Phase Task Step Task Description Team Member(s) Assigned Status Early Start Date Duration (days) Late Start Date Early End Date Float Duration Must End Date Define-Measure 1 Team Roster/Skill Survey and project preferences Ryan COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED 1/12/16 1 1/12/16 1/12/16 0 1/12/2016 2 Team Norms Travis 1/20/16 2 1/20/16 1/21/16 0 1/21/2016 3 Project Charter Todd 1/24/16 4 1/24/16 1/28/16 0 1/28/2016 4 Preliminary WBS and schedule Bobby 1/29/16 4 1/31/16 2/2/16 2 2/4/2016 5 Benchmarking and Customer Requirements Zheng 2/5/16 4 2/19/16 2/9/16 14 2/23/2016 6 Stakeholder Analysis Ryan 2/5/16 2 2/15/16 2/7/16 10 2/17/2016 9 Initiation Phase Review Ryan 2/18/16 1 2/18/16 2/18/16 0 2/18/2016 Analyze 10 ARV Function tree defined and verified with MGV team Travis 2/9/16 1 3/2/16 2/10/16 22 3/3/2016 11 Solutions brainstormed for ARV subfunctions Todd 2/10/16 1 3/2/16 2/11/16 21 3/3/2016 12 Design concepts from combined solutions using Morphological Matrix Bobby 2/11/16 1 3/2/16 2/12/16 20 3/3/2016 13 Functional Analysis with House of Quality Zheng 2/12/16 3 2/29/16 2/15/16 17 3/3/2016 14 Risk Management Plan with DFMEA Ryan 2/16/16 3 2/29/16 2/19/16 13 3/3/2016 15 Select a design concept based on Decision Matrix and/or Pugh Chart Travis 2/15/16 2 3/1/16 2/17/16 15 3/3/2016 16 Peer Assessment 1 Ryan 2/18/16 1 2/18/16 2/18/16 0 2/18/2016 17 Design WBS, Critical Path, and Schedule Todd 2/17/16 2 3/6/16 2/19/16 18 3/8/2016 18 Engineering Specifications Bobby 2/10/16 3 2/20/16 2/13/16 10 2/23/2016 19 Planning Phase Review Ryan MILESTONE 3/10/16 1 3/10/16 3/10/16 0 3/10/2016 Design 20 Design Chassis Bobby PLANNED 3/10/16 16 4/10/16 3/26/16 31 4/26/2016 21 Design Traction/Locomotion Ryan PLANNED 3/10/16 24 4/2/16 4/3/16 23 4/26/2016 22 Design Power Source Travis PLANNED 3/10/16 4 4/22/16 3/14/16 43 4/26/2016 23 Design/Ensure Camera Package Compatibility Zheng PLANNED 3/10/16 8 4/18/16 3/18/16 39 4/26/2016 24 Design Controls Todd PLANNED 3/10/16 4 4/22/16 3/14/16 43 4/26/2016 25 Design Integration Ryan PLANNED 3/10/16 18 4/8/16 3/28/16 29 4/26/2016 26 Peer Assessment 2 Ryan PLANNED 3/31/16 1 3/31/16 3/31/16 0 3/31/2016 27 System Model Todd PLANNED 3/18/16 3 4/2/16 3/21/16 15 4/5/2016 28 Final Design and Drawings Travis MILESTONE 4/3/16 8 4/18/16 4/11/16 15 4/26/2016 29 Bill of Materials and production costs Bobby PLANNED 4/3/16 5 4/21/16 4/8/16 18 4/26/2016 Report 30 Create Design Expo Poster Zheng PLANNED 4/11/16 4 4/15/16 4/15/16 4 4/19/2016 31 Prepare Final Presentation Ryan PLANNED 4/8/16 4 4/22/16 4/12/16 14 4/26/2016 32 Write Final Report Travis PLANNED 4/8/16 8 4/27/16 4/16/16 19 5/5/2016 33 Final Phase Review Ryan MILESTONE 4/26/16 1 4/26/16 4/26/16 0 4/26/2016 34 Design Expo Ryan MILESTONE MILESTONE 4/26/16 1 4/26/16 4/26/16 0 4/26/2016 35 Final Presentation Ryan 4/26/16 1 4/26/16 4/26/16 0 4/26/2016 36 Peer Assessment 3 Ryan PLANNED 4/28/16 1 4/28/16 4/28/16 0 4/28/2016 37 Final Report Ryan MILESTONE 5/5/16 1 5/5/16 5/5/16 0 5/5/2016 38 All project files to SharePoint/ All materials ready to ship Ryan MILESTONE 5/5/16 1 5/5/16 5/5/16 0 5/5/2016 HOME Project Schedule BY: Zheng Yi Liew, Travis Heidrich, Todd Heidrich, Bobby Bromberek, Ryan Tweedt Date: Status Key: PLANNED MILESTONE ON TIME CRITICAL/LATE COMPLETED DMADVR_MASTER_Planning_Phase_Review_DC1 - Editable.xlsx Schedule M E Capstone 3/10/2016 Page A1-1
  • 39. TASKSEQUENCEProject Schedule DATE (Mo/Date) 1/11/2016 1/18/2016 1/25/2016 2/1/2016 2/8/2016 2/15/2016 2/22/2016 2/29/2016 3/7/2016 3/14/2016 3/21/2016 3/28/2016 4/4/2016 4/11/2016 4/18/2016 4/25/2016 5/2/2016 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 DMADVR_MASTER.xlsm Schedule M E Capstone 3/8/2016 Page A1-2
  • 40. Task Step Task Description Must Start Date Must End Date Expected Duration Activity 1 Team Roster/Skill Survey and project preferences 1/12/2016 1/12/2016 1 A 2 Team Norms 1/19/2016 1/21/2016 2 B 3 Project Charter 1/24/2016 1/28/2016 4 C 4 Preliminary WBS and schedule 1/31/2016 2/4/2016 4 F 5 Benchmarking and Customer Requirements 2/13/2016 2/17/2016 4 D 6 Stakeholder Analysis 2/15/2016 2/17/2016 2 E 7 Initiation Phase Review 2/18/2016 2/18/2016 1 G 8 ARV Function tree defined and verified with MGV team 3/2/2016 3/3/2016 1 H 9 Solutions brainstormed for ARV subfunctions 3/2/2016 3/3/2016 1 I 10 Design concepts from combined solutions using Morphological Matrix 3/2/2016 3/3/2016 1 J 11 Functional Analysis with QFD Chart 2/29/2016 3/3/2016 3 L 12 Risk Management Plan with DFMEA 2/29/2016 3/3/2016 3 O 13 Select a design concept based on Decision Matrix and/or Pugh Chart 3/1/2016 3/3/2016 2 M 14 Peer Assessment 1 2/18/2016 2/18/2016 1 15 Design WBS, Critical Path, and Schedule 3/6/2016 3/8/2016 2 N 16 Engineering Specifications 2/20/2016 2/23/2016 3 K 17 Planning Phase Review 3/10/2016 3/10/2016 1 P 18 Design Chassis 4/10/2016 4/26/2016 16 Q 19 Design Traction/Locomotion 4/2/2016 4/26/2016 24 R 20 Design Power Source 4/18/2016 4/26/2016 8 S 21 Design/Ensure Camera Package Compatibility 4/18/2016 4/26/2016 8 T 22 Design Controls 4/22/2016 4/26/2016 4 U 23 Design Integration 4/8/2016 4/26/2016 18 V 24 Peer Assessment 2 3/31/2016 3/31/2016 1 25 System Model 4/2/2016 4/5/2016 3 W 26 Final Design and Drawings 4/18/2016 4/26/2016 8 Y 27 Bill of Materials and production costs 4/21/2016 4/26/2016 5 X 28 Create Design Expo Poster 4/15/2016 4/19/2016 4 Z 29 Prepare Final Presentation 4/22/2016 4/26/2016 4 AB 30 Write Final Report 4/28/2016 5/5/2016 8 AE 31 Final Phase Review 4/26/2016 4/26/2016 1 AD 32 Design Expo 4/26/2016 4/26/2016 1 AA 33 Final Presentation 4/26/2016 4/26/2016 1 AC 34 Peer Assessment 3 4/28/2016 4/28/2016 1 35 Final Report 5/5/2016 5/5/2016 1 AF 36 All project files to SharePoint/ All materials ready to ship 5/5/2016 5/5/2016 1 AG CRITICAL PATH ANALYSIS Follow recommended steps for defining project schedule 1 Copy WBS from previous worksheet 2 Determine task links (predecessors) 3 Construct workpath entities (Hint: 'Events' are transition dates between 'Activities') 4 Calculate workpath durations and dates 5 Determine critical workpaths based on durations, 'must start' and 'must end' requirements 6 Determine 'float' time non-critical workpaths 7 Transfer information back to WBS and on to Gantt Chart
  • 41. Event Activity LS 20 - 19 AG 83 19 - 18 AF 82 18 - 15 AE 74 19 - 15 AD 82 19 - 17 AC 82 17 - 15 AB 78 19 - 16 AA 82 16 - 15 Z 78 15 - 14 Y 66 14 - 12 X 61 14 - 12 W 63 14 - 13 V 48 13 - 12 U 44 13 - 12 T 40 13 - 12 S 40 13 - 12 R 24 13 - 12 Q 32 12 - 11 P 23 11 - 10 O 20 11 - 10 N 21 10 - 9 M 18 9 - 8 L 15 8 - 6 K 12 8 - 7 J 14 7 - 6 I 13 6 - 4 H 11 6 - 5 G 11 5 - 3 F 7 5 - 3 E 9 5 - 4 D 7 4 - 3 C 3 3 - 2 B 1 2 - 1 A 0 Activity LS ES TF A 0 0 0 B 1 1 0 C 3 3 0 D 7 7 0 E 9 3 6 F 7 3 4 G 11 11 0 H 11 7 4 I 13 12 1 J 14 13 1 K 12 12 0 L 15 15 0 M 18 18 0 N 21 20 1 O 20 20 0 P 23 23 0 Q 32 24 8 R 24 24 0 S 40 24 16 T 40 24 16 U 44 24 20 V 48 48 0 W 63 24 39 X 61 24 37 Y 66 66 0 Z 78 74 4 AA 82 78 4 AB 78 74 4 AC 82 78 4 AD 82 74 8 AE 74 74 0 AF 82 82 0 AG 83 83 0 Total Float Analysis - Forward Pass - Early Start Analysis Backward Pass - Late Start Analysis Items with '0' Float are critical path Event Activity ES Path 1 A 0 ES1 2 B 1 ES2 = ES1 + 1 3 C, E, F 3 ES3 = ES2 +2 4 D, H 7 ES4 = ES3 + 4 5 G 11 ES5 = ES4 + 4 6 I, K 12 ES6 = ES5 + 1 7 J 13 ES7 = ES6 +1 8 L 15 ES8 = ES6 +3 9 M 18 ES9 = ES8 + 3 10 N, O 20 ES10 = ES9 + 2 11 P 23 ES11 = ES10 + 3 12 Q, R, S, T, U, W, X 24 ES12 = ES11 + 1 13 V 48 ES13 = ES12 + 24 14 Y 66 ES14 = ES13 + 18 15 Z, AB, AD, AE 74 ES15 = ES14 + 8 16 AA 78 ES16 = ES15 + 4 17 AC 78 ES17 = ES15 + 4 18 AF 82 ES18 = ES15 + 8 19 AG 83 ES19 = ES18 + 1 20 84 ES20 = ES19 + 1 WORKPATH FLOW DIAGRAM
  • 42. References [1] http://www.mattracks.com/tracks/litefoot/xt/xt/ [2] http://www.worldatlas.com/r/w728-h425-c728x425/upload/49/1c/b3/soybean-farm.jpg [3] Iowa State University Departments of Agronomy & Mechanical Engineering ME 415 Section C Team DC2 [4]https://www.deere.co.in/en_IN/products/equipment/tractors/d_series/5045_d_4wd_45_hp/504 5_d_4wd_45_hp.page [5] http://www.ilsoyadvisor.com/diagnostics/2014/july/video-how-to-stage-a-soybean-plant/ 21