SlideShare a Scribd company logo
1 of 34
The Optimal Patient-Specific
Placement of the Reverse
Shoulder Component
1
Supervisor: Prof C. Scheffer
Consultant: Dr J. De Beer
Masters Student: Mr S. Delport
Review of Discussion
1. Introduction
2. Motivation
3. Objectives
4. Reverse Shoulder
Simulation Software
5. Simulation Results
6. Future Work
7. Conclusion
Humeral
Head
Glenoid
Humerus
Clavicle
Scapula
Introduction
• Shoulder replacement background
 Anatomy
1
Introduction
• Shoulder replacement background
 Anatomy
Subscapularis
Supraspinatus
Infraspinatus
Deltoid
2
Anterior Posterior
Humeral
Stem
Polyethylene
Insert
Glenosphere
Baseplate
Introduction
• Shoulder replacement background
 Hemiarthroplasty
 TSA
 RSA
3
Introduction
Study by Sperling et al. (2011)
• 261 shoulders
• 3 year follow-up
• Improvement after RSA
 Abduction, forward flexion, pain relief
• High number of complications (mean, 24.4%)
 Scapular notching, glenoid and humeral
dissociations, glenohumeral dislocation,
nerve injury
4
Introduction
DeFranco and Walch (2012)
• RSA clinical outcome factors
 Pre-operative diagnosis
 Function of deltoid and rotator cuff muscles
 Prosthesis biomechanical design
 Orientation and position of the reverse
shoulder components
5
Motivation
Effects of reverse shoulder component placement
• Previous studies
 Glenohumeral motion
 Single elevation plane
• Current study
 Shoulder complex motion
 Coronal, scapular and sagittal elevation planes
6
Objectives
• Develop a simulation package to determine
optimal patient-specific placement of the
reverse shoulder components
• Analyse the influence of the placement of
the reverse shoulder components on
humerothoracic ROM and adduction deficit
• Analyse the influence of the design of the
reverse shoulder components on
humerothoracic ROM and adduction deficit
7
Reverse Shoulder Simulation Software
• Work Flow
Start
Import
Patient Data
Setup
Patient
Position
Implant
Simulate
Desired
ROM
Achieved
Generate
Report
End
no
yes
8
• Matlab software
 Graphical User Interface Design Environment
• Patient data
 CT scan
 Sternum, C7 & T8, clavicle, scapula and
humerus
 Mimics software – STL files
Reverse Shoulder Simulation Software
9
Reverse Shoulder Simulation Software
• Implant data
Tornier Aequalis® – Reversed II System
Glenoid Components Humeral Components
Glenosphere Baseplate Stem Polyethylene Insert
Ø 36 mm – concentric
Ø 36 mm – 4 mm inferior
Ø 36 mm – 3 mm lateral
Ø 42 mm – concentric
Ø 42 mm – 4 mm inferior
Ø 42 mm – 3 mm lateral
Ø 25 mm
Ø 29 mm
Ø 36 mm – concentric
Ø 36 mm – 2 mm inferior
Ø 36/42 mm – combination
6 mm, 9 mm or 12 mm
6 mm, 9 mm or 12 mm
6 mm, 9 mm or 12 mm
10
Shoulder coordinate systems
• International Society of Biomechanics
 Thorax coordinate system
Reverse Shoulder Simulation Software
11
C7 IJ
PX
C7
T8
Shoulder coordinate systems
• International Society of Biomechanics
 Clavicle coordinate system
Reverse Shoulder Simulation Software
12
AC
SC
Shoulder coordinate systems
• International Society of Biomechanics
 Scapula coordinate systems
Reverse Shoulder Simulation Software
13
AA
AI
SCS1 SCS2
AI
TS
TS
Glenoid
Centre
Shoulder coordinate systems
• Boileau and Walch (1997)
 Humerus coordinate system
Reverse Shoulder Simulation Software
14
GH
ME
LE
Upper Shaft
Centre Line
• Shoulder complex motion
 Sternoclavicular

 Scapulothoracic
Upward RotationInternal Rotation Posterior Tilting
Acromioclavicular
Joint
ElevationProtraction Posterior Rotation
Scapulothoracic
Joint
Reverse Shoulder Simulation Software
15
• Shoulder complex motion
 Humerothoracic
Reverse Shoulder Simulation Software
16
ElevationElevation Plane
Glenohumeral
Rotation Centre
Reverse Shoulder Simulation Software
Shoulder complex motion data
• Ludewig et al. (2009)
 Normal shoulders
 12 subjects
 Coronal, scapular and sagittal elevation planes
 0 º – 120 º humerothoracic elevation
 ISB standards
• Motion equations
17
Reverse Shoulder Simulation Software
• Shoulder complex motion simulation
 Combined AD
 Combined humerothoracic ROM
18
Impingement
Adduction
Deficit
Humerothoracic
ROM
Simulation Results
• Simulation tests
 Validated shoulder model
 Glenoid component inclination angle
 Humeral component retroversion angle
 Reaming depth
 Component combinations
 Implant design changes
19
Simulation Results
• Glenoid component inclination
20
-10 º -5 º 0 º 5 º 10 º
• Humeral component angles
LE ME
Humerus
Retroversion
Head and
Neck AxisHead and
Neck Axis
Neck-shaft
Angle
Upper Shaft
Centre Line
Simulation Results
21
Simulation Results
• Humeral component retroversion
35
30
15
10
15 20 25 35 45
Frequency
Humeral Component Retroversion Angle [º]
40
5
30 40
0
20
25
22
Simulation Results
• 42 mm glenosphere
330
300
270
240
-10 -5 0 5 10
CombinedHumerothoracicROM[º]
Glenoid Inclination Angle [º]
Concentric; 29 mm
Inferior; 29 mm
Lateral; 29 mm
Concentric; 25 mm
Inferior; 25 mm
Lateral; 25 mm
360
210
23
Simulation Results
• 42 mm glenosphere
90
60
30
0
-10 -5 0 5 10
CombinedAD[º]
Glenoid Inclination Angle [º]
Concentric; 29 mm
Inferior; 29 mm
Lateral; 29 mm
Concentric; 25 mm
Inferior; 25 mm
Lateral; 25 mm
120
24
Simulation Results
• Eccentricity design change
300
270
240
210
36 mm 42 mm
CombinedHumerothoracicROM[º]
Glenosphere
Inferior
Lateral
Inferior & Lateral
360
25
330
Simulation Results
• Eccentricity design change
60
40
20
0
36 mm 42 mm
CombinedAD[º]
Glenosphere
Inferior
Lateral
Inferior & Lateral
100
26
80
Simulation Results
• Inclination force distribution – Gutiérrez et al.
27
Most
Desirable
Concentric
Lateral
Eccentric
Inferior
Eccentric
Acceptable
Least
Desirable
Simulation Results
• 25 mm baseplate
• 42 mm glenosphere
• Inferior eccentric with superior inclination
• Combined eccentricity for neutral inclination
28
Future Work
• Post-operative active ROM clinical study
• Include different reverse shoulder component
types
• Record large number of simulation data
• Determine patient-specific humeral
component retroversion angle
29
Conclusion
• Objectives were addressed and successfully
achieved
• May assist surgeons in pre-operative
implant selection and placement
• More inexperienced surgeons can attempt a
RSA with greater confidence
• Reduce surgery cost and time
• May improve implant survival rates and
long-term clinical outcomes
30
Thank you

More Related Content

What's hot

RETURN TO PLAY AFTER SPORTS INJURY I Dr.RAJAT JANGIR JAIPUR
RETURN TO PLAY AFTER SPORTS INJURY  I Dr.RAJAT JANGIR JAIPURRETURN TO PLAY AFTER SPORTS INJURY  I Dr.RAJAT JANGIR JAIPUR
RETURN TO PLAY AFTER SPORTS INJURY I Dr.RAJAT JANGIR JAIPUR
Dr.RAJAT JANGIR Orthopaedic surgeon Jaipur
 
ACL Repair and Return To Play
ACL Repair and Return To PlayACL Repair and Return To Play
ACL Repair and Return To Play
Peter Batz
 
Zmpczm019000.11.01
Zmpczm019000.11.01 Zmpczm019000.11.01
Zmpczm019000.11.01
painezeeman
 
Acl rehab3
Acl rehab3Acl rehab3
Acl rehab3
scottz16
 
Common Injuries in Javelin
Common Injuries in JavelinCommon Injuries in Javelin
Common Injuries in Javelin
kelz45
 
role of biomechanic
role of biomechanicrole of biomechanic
role of biomechanic
edd Hardy
 
Overuse injurues in overhead athletes 3
Overuse injurues in overhead athletes 3Overuse injurues in overhead athletes 3
Overuse injurues in overhead athletes 3
vineet bansal
 
BB Qualitative Analysis PP
BB Qualitative Analysis PPBB Qualitative Analysis PP
BB Qualitative Analysis PP
Amanda Tangen
 

What's hot (20)

RETURN TO PLAY AFTER SPORTS INJURY I Dr.RAJAT JANGIR JAIPUR
RETURN TO PLAY AFTER SPORTS INJURY  I Dr.RAJAT JANGIR JAIPURRETURN TO PLAY AFTER SPORTS INJURY  I Dr.RAJAT JANGIR JAIPUR
RETURN TO PLAY AFTER SPORTS INJURY I Dr.RAJAT JANGIR JAIPUR
 
Anthony Shield - is nmi a risk factor for hamstring strain injury
Anthony Shield - is nmi a risk factor for hamstring strain injury Anthony Shield - is nmi a risk factor for hamstring strain injury
Anthony Shield - is nmi a risk factor for hamstring strain injury
 
ACL Repair and Return To Play
ACL Repair and Return To PlayACL Repair and Return To Play
ACL Repair and Return To Play
 
Neuromuscular plasticity in quadriceps functions in response to training
Neuromuscular plasticity in quadriceps functions in response to trainingNeuromuscular plasticity in quadriceps functions in response to training
Neuromuscular plasticity in quadriceps functions in response to training
 
ERGONOMIC DESIGN OF VDT WORKPLACE FOR INDIAN SOFTWARE PROFESSIONALS
ERGONOMIC DESIGN OF VDT WORKPLACE FOR INDIAN SOFTWARE PROFESSIONALSERGONOMIC DESIGN OF VDT WORKPLACE FOR INDIAN SOFTWARE PROFESSIONALS
ERGONOMIC DESIGN OF VDT WORKPLACE FOR INDIAN SOFTWARE PROFESSIONALS
 
Johannes Tol - hamstring injuries- PRP
Johannes Tol - hamstring injuries-  PRPJohannes Tol - hamstring injuries-  PRP
Johannes Tol - hamstring injuries- PRP
 
Anders Hauge Engebretsen - Hamstring Injuries
Anders Hauge Engebretsen - Hamstring InjuriesAnders Hauge Engebretsen - Hamstring Injuries
Anders Hauge Engebretsen - Hamstring Injuries
 
Methods of movements analysis
Methods of movements analysisMethods of movements analysis
Methods of movements analysis
 
Return to play in rectus femoris muscle injuries. Our experience with profess...
Return to play in rectus femoris muscle injuries. Our experience with profess...Return to play in rectus femoris muscle injuries. Our experience with profess...
Return to play in rectus femoris muscle injuries. Our experience with profess...
 
Comparions of Some Antropometric and Morphological Characteristics Between I...
Comparions of Some Antropometric and Morphological Characteristics  Between I...Comparions of Some Antropometric and Morphological Characteristics  Between I...
Comparions of Some Antropometric and Morphological Characteristics Between I...
 
Carl Askling - Lengthening type of exercises are effective
Carl Askling - Lengthening type of exercises are effectiveCarl Askling - Lengthening type of exercises are effective
Carl Askling - Lengthening type of exercises are effective
 
Hip Strength and Functional Deficits after ACL Reconstruction Return-to-Play ...
Hip Strength and Functional Deficits after ACL Reconstruction Return-to-Play ...Hip Strength and Functional Deficits after ACL Reconstruction Return-to-Play ...
Hip Strength and Functional Deficits after ACL Reconstruction Return-to-Play ...
 
Zmpczm019000.11.01
Zmpczm019000.11.01 Zmpczm019000.11.01
Zmpczm019000.11.01
 
Acl rehab3
Acl rehab3Acl rehab3
Acl rehab3
 
Common Injuries in Javelin
Common Injuries in JavelinCommon Injuries in Javelin
Common Injuries in Javelin
 
Guus Reurink - Therapeutic interventions
Guus Reurink - Therapeutic interventionsGuus Reurink - Therapeutic interventions
Guus Reurink - Therapeutic interventions
 
role of biomechanic
role of biomechanicrole of biomechanic
role of biomechanic
 
Internal and external load in biomechanics
Internal and external load in biomechanicsInternal and external load in biomechanics
Internal and external load in biomechanics
 
Overuse injurues in overhead athletes 3
Overuse injurues in overhead athletes 3Overuse injurues in overhead athletes 3
Overuse injurues in overhead athletes 3
 
BB Qualitative Analysis PP
BB Qualitative Analysis PPBB Qualitative Analysis PP
BB Qualitative Analysis PP
 

Similar to The Optimal Patient-Specific Placement of the Reverse Shoulder Component

Pritam Patil Knee Project
Pritam Patil Knee ProjectPritam Patil Knee Project
Pritam Patil Knee Project
pritampatil
 
ME450T9_Design_Expo_Poster
ME450T9_Design_Expo_PosterME450T9_Design_Expo_Poster
ME450T9_Design_Expo_Poster
Nicholas Montes
 
AxioMed Technology 2014 vFinale
AxioMed Technology 2014 vFinaleAxioMed Technology 2014 vFinale
AxioMed Technology 2014 vFinale
James Kuras
 

Similar to The Optimal Patient-Specific Placement of the Reverse Shoulder Component (20)

Reverse shoulder biomechanics
Reverse shoulder biomechanicsReverse shoulder biomechanics
Reverse shoulder biomechanics
 
A Comparative Study of the Clinical and Functional Outcome Anterior Cruciate ...
A Comparative Study of the Clinical and Functional Outcome Anterior Cruciate ...A Comparative Study of the Clinical and Functional Outcome Anterior Cruciate ...
A Comparative Study of the Clinical and Functional Outcome Anterior Cruciate ...
 
Circular versus contour orbits for brain SPECT imaging
Circular versus contour orbits for brain SPECT imaging Circular versus contour orbits for brain SPECT imaging
Circular versus contour orbits for brain SPECT imaging
 
Exactech Innovations in Shoulder Replacement
Exactech Innovations in Shoulder ReplacementExactech Innovations in Shoulder Replacement
Exactech Innovations in Shoulder Replacement
 
Specialized Transfemoral External Prosthetic Support PowerPoint Presentation
Specialized Transfemoral External Prosthetic Support PowerPoint PresentationSpecialized Transfemoral External Prosthetic Support PowerPoint Presentation
Specialized Transfemoral External Prosthetic Support PowerPoint Presentation
 
ApiFix treatment for Adolescent Idiopathic Scoliosis (AIS): The importance of...
ApiFix treatment for Adolescent Idiopathic Scoliosis (AIS): The importance of...ApiFix treatment for Adolescent Idiopathic Scoliosis (AIS): The importance of...
ApiFix treatment for Adolescent Idiopathic Scoliosis (AIS): The importance of...
 
Pritam Patil Knee Project
Pritam Patil Knee ProjectPritam Patil Knee Project
Pritam Patil Knee Project
 
Comparison of Head Immobilization with a Metal Frame and Two Different Models...
Comparison of Head Immobilization with a Metal Frame and Two Different Models...Comparison of Head Immobilization with a Metal Frame and Two Different Models...
Comparison of Head Immobilization with a Metal Frame and Two Different Models...
 
Virgin Galactic Redesign
Virgin Galactic RedesignVirgin Galactic Redesign
Virgin Galactic Redesign
 
New advance shoulder arthroplasty
New advance shoulder arthroplastyNew advance shoulder arthroplasty
New advance shoulder arthroplasty
 
ME450T9_Design_Expo_Poster
ME450T9_Design_Expo_PosterME450T9_Design_Expo_Poster
ME450T9_Design_Expo_Poster
 
3nd CDA Lecture - Dr Adamo - May 7, 2015 - Oquendo Center
3nd CDA Lecture - Dr Adamo - May 7, 2015 -  Oquendo Center3nd CDA Lecture - Dr Adamo - May 7, 2015 -  Oquendo Center
3nd CDA Lecture - Dr Adamo - May 7, 2015 - Oquendo Center
 
Glenoid in Total Shoulder Replacement
Glenoid in Total Shoulder ReplacementGlenoid in Total Shoulder Replacement
Glenoid in Total Shoulder Replacement
 
Capstone
CapstoneCapstone
Capstone
 
Design review of a car seat for ergonomics
Design review of a car seat for ergonomicsDesign review of a car seat for ergonomics
Design review of a car seat for ergonomics
 
Apifix presentation english version
Apifix presentation english versionApifix presentation english version
Apifix presentation english version
 
MATTHIAS HONL SilentHip TM inventor
MATTHIAS HONL SilentHip TM inventorMATTHIAS HONL SilentHip TM inventor
MATTHIAS HONL SilentHip TM inventor
 
3D Scan Based Design in Product Development Process
3D Scan Based Design in Product Development Process3D Scan Based Design in Product Development Process
3D Scan Based Design in Product Development Process
 
Hydrodistension outcomes 2017
Hydrodistension outcomes 2017Hydrodistension outcomes 2017
Hydrodistension outcomes 2017
 
AxioMed Technology 2014 vFinale
AxioMed Technology 2014 vFinaleAxioMed Technology 2014 vFinale
AxioMed Technology 2014 vFinale
 

The Optimal Patient-Specific Placement of the Reverse Shoulder Component

  • 1. The Optimal Patient-Specific Placement of the Reverse Shoulder Component 1
  • 2. Supervisor: Prof C. Scheffer Consultant: Dr J. De Beer Masters Student: Mr S. Delport
  • 3. Review of Discussion 1. Introduction 2. Motivation 3. Objectives 4. Reverse Shoulder Simulation Software 5. Simulation Results 6. Future Work 7. Conclusion
  • 5. Introduction • Shoulder replacement background  Anatomy Subscapularis Supraspinatus Infraspinatus Deltoid 2 Anterior Posterior
  • 7. Introduction Study by Sperling et al. (2011) • 261 shoulders • 3 year follow-up • Improvement after RSA  Abduction, forward flexion, pain relief • High number of complications (mean, 24.4%)  Scapular notching, glenoid and humeral dissociations, glenohumeral dislocation, nerve injury 4
  • 8. Introduction DeFranco and Walch (2012) • RSA clinical outcome factors  Pre-operative diagnosis  Function of deltoid and rotator cuff muscles  Prosthesis biomechanical design  Orientation and position of the reverse shoulder components 5
  • 9. Motivation Effects of reverse shoulder component placement • Previous studies  Glenohumeral motion  Single elevation plane • Current study  Shoulder complex motion  Coronal, scapular and sagittal elevation planes 6
  • 10. Objectives • Develop a simulation package to determine optimal patient-specific placement of the reverse shoulder components • Analyse the influence of the placement of the reverse shoulder components on humerothoracic ROM and adduction deficit • Analyse the influence of the design of the reverse shoulder components on humerothoracic ROM and adduction deficit 7
  • 11. Reverse Shoulder Simulation Software • Work Flow Start Import Patient Data Setup Patient Position Implant Simulate Desired ROM Achieved Generate Report End no yes 8
  • 12. • Matlab software  Graphical User Interface Design Environment • Patient data  CT scan  Sternum, C7 & T8, clavicle, scapula and humerus  Mimics software – STL files Reverse Shoulder Simulation Software 9
  • 13. Reverse Shoulder Simulation Software • Implant data Tornier Aequalis® – Reversed II System Glenoid Components Humeral Components Glenosphere Baseplate Stem Polyethylene Insert Ø 36 mm – concentric Ø 36 mm – 4 mm inferior Ø 36 mm – 3 mm lateral Ø 42 mm – concentric Ø 42 mm – 4 mm inferior Ø 42 mm – 3 mm lateral Ø 25 mm Ø 29 mm Ø 36 mm – concentric Ø 36 mm – 2 mm inferior Ø 36/42 mm – combination 6 mm, 9 mm or 12 mm 6 mm, 9 mm or 12 mm 6 mm, 9 mm or 12 mm 10
  • 14. Shoulder coordinate systems • International Society of Biomechanics  Thorax coordinate system Reverse Shoulder Simulation Software 11 C7 IJ PX C7 T8
  • 15. Shoulder coordinate systems • International Society of Biomechanics  Clavicle coordinate system Reverse Shoulder Simulation Software 12 AC SC
  • 16. Shoulder coordinate systems • International Society of Biomechanics  Scapula coordinate systems Reverse Shoulder Simulation Software 13 AA AI SCS1 SCS2 AI TS TS Glenoid Centre
  • 17. Shoulder coordinate systems • Boileau and Walch (1997)  Humerus coordinate system Reverse Shoulder Simulation Software 14 GH ME LE Upper Shaft Centre Line
  • 18. • Shoulder complex motion  Sternoclavicular   Scapulothoracic Upward RotationInternal Rotation Posterior Tilting Acromioclavicular Joint ElevationProtraction Posterior Rotation Scapulothoracic Joint Reverse Shoulder Simulation Software 15
  • 19. • Shoulder complex motion  Humerothoracic Reverse Shoulder Simulation Software 16 ElevationElevation Plane Glenohumeral Rotation Centre
  • 20. Reverse Shoulder Simulation Software Shoulder complex motion data • Ludewig et al. (2009)  Normal shoulders  12 subjects  Coronal, scapular and sagittal elevation planes  0 º – 120 º humerothoracic elevation  ISB standards • Motion equations 17
  • 21. Reverse Shoulder Simulation Software • Shoulder complex motion simulation  Combined AD  Combined humerothoracic ROM 18 Impingement Adduction Deficit Humerothoracic ROM
  • 22. Simulation Results • Simulation tests  Validated shoulder model  Glenoid component inclination angle  Humeral component retroversion angle  Reaming depth  Component combinations  Implant design changes 19
  • 23. Simulation Results • Glenoid component inclination 20 -10 º -5 º 0 º 5 º 10 º • Humeral component angles LE ME Humerus Retroversion Head and Neck AxisHead and Neck Axis Neck-shaft Angle Upper Shaft Centre Line
  • 25. Simulation Results • Humeral component retroversion 35 30 15 10 15 20 25 35 45 Frequency Humeral Component Retroversion Angle [º] 40 5 30 40 0 20 25 22
  • 26. Simulation Results • 42 mm glenosphere 330 300 270 240 -10 -5 0 5 10 CombinedHumerothoracicROM[º] Glenoid Inclination Angle [º] Concentric; 29 mm Inferior; 29 mm Lateral; 29 mm Concentric; 25 mm Inferior; 25 mm Lateral; 25 mm 360 210 23
  • 27. Simulation Results • 42 mm glenosphere 90 60 30 0 -10 -5 0 5 10 CombinedAD[º] Glenoid Inclination Angle [º] Concentric; 29 mm Inferior; 29 mm Lateral; 29 mm Concentric; 25 mm Inferior; 25 mm Lateral; 25 mm 120 24
  • 28. Simulation Results • Eccentricity design change 300 270 240 210 36 mm 42 mm CombinedHumerothoracicROM[º] Glenosphere Inferior Lateral Inferior & Lateral 360 25 330
  • 29. Simulation Results • Eccentricity design change 60 40 20 0 36 mm 42 mm CombinedAD[º] Glenosphere Inferior Lateral Inferior & Lateral 100 26 80
  • 30. Simulation Results • Inclination force distribution – Gutiérrez et al. 27 Most Desirable Concentric Lateral Eccentric Inferior Eccentric Acceptable Least Desirable
  • 31. Simulation Results • 25 mm baseplate • 42 mm glenosphere • Inferior eccentric with superior inclination • Combined eccentricity for neutral inclination 28
  • 32. Future Work • Post-operative active ROM clinical study • Include different reverse shoulder component types • Record large number of simulation data • Determine patient-specific humeral component retroversion angle 29
  • 33. Conclusion • Objectives were addressed and successfully achieved • May assist surgeons in pre-operative implant selection and placement • More inexperienced surgeons can attempt a RSA with greater confidence • Reduce surgery cost and time • May improve implant survival rates and long-term clinical outcomes 30