SlideShare a Scribd company logo
1 of 11
Download to read offline
http://ajs.sagepub.com
Medicine
American Journal of Sports
DOI: 10.1177/0363546506298279
2007; 35; 897 originally published online Feb 16, 2007;Am. J. Sports Med.
Karin GrÀvare Silbernagel, Roland Thomeé, Bengt I. Eriksson and Jon Karlsson
Achilles Tendinopathy: A Randomized Controlled Study
Continued Sports Activity, Using a Pain-Monitoring Model, During Rehabilitation in Patients With
http://ajs.sagepub.com/cgi/content/abstract/35/6/897
The online version of this article can be found at:
Published by:
http://www.sagepublications.com
On behalf of:
American Orthopaedic Society for Sports Medicine
can be found at:American Journal of Sports MedicineAdditional services and information for
http://ajs.sagepub.com/cgi/alertsEmail Alerts:
http://ajs.sagepub.com/subscriptionsSubscriptions:
http://www.sagepub.com/journalsReprints.navReprints:
http://www.sagepub.com/journalsPermissions.navPermissions:
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
Achilles tendinopathy is a common overuse injury, espe-
cially among athletes involved in activities that include
running and jumping.10,15,30,42
Achilles tendinopathy
causes many patients to decrease their physical activity
level, with a potentially negative effect on their overall
health and general well-being.10,15,28
The literature describes various types of treatment for
patients with Achilles tendinopathy, including rest, heat,
ultrasound, electrical stimulation, anti-inflammatory medica-
tions, exercise, and surgery.1,10,11,28
Despite the high incidence
of Achilles tendon disorder and the various recommended
treatment protocols, there are, to the best of our knowledge,
only 9 randomized trials on various treatments in the
Continued Sports Activity, Using a Pain-
Monitoring Model, During Rehabilitation in
Patients With Achilles Tendinopathy
A Randomized Controlled Study
Karin GrÀvare Silbernagel,*
†‡
PT, ATC, PhD, Roland Thomeé,
†‡
PT, PhD,
Bengt I. Eriksson,
†
MD, PhD, and Jon Karlsson,
†
MD, PhD
From the
†
Lundberg Laboratory of Orthopaedic Research, Department of Orthopaedics,
Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden, and
‡
SportRehab–Physical Therapy & Sports Medicine Clinic, Göteborg, Sweden
Background: Achilles tendinopathy is a common overuse injury, especially among athletes involved in activities that include run-
ning and jumping. Often an initial period of rest from the pain-provoking activity is recommended.
Purpose: To prospectively evaluate if continued running and jumping during treatment with an Achilles tendon-loading strength-
ening program has an effect on the outcome.
Study Design: Randomized clinical control trial; Level of evidence, 1.
Methods: Thirty-eight patients with Achilles tendinopathy were randomly allocated to 2 different treatment groups. The exercise
training group (n = 19) was allowed, with the use of a pain-monitoring model, to continue Achilles tendon-loading activity, such
as running and jumping, whereas the active rest group (n = 19) had to stop such activities during the first 6 weeks. All patients
were rehabilitated according to an identical rehabilitation program. The primary outcome measures were the Swedish version of
the Victorian Institute of Sports Assessment–Achilles questionnaire (VISA-A-S) and the pain level during tendon-loading activity.
Results: No significant differences in the rate of improvements were found between the groups. Both groups showed, however,
significant (P < .01) improvements, compared with baseline, on the primary outcome measure at all the evaluations. The exer-
cise training group had a mean (standard deviation) VISA-A-S score of 57 (15.8) at baseline and 85 (12.7) at the 12-month
follow-up (P < .01). The active rest group had a mean (standard deviation) VISA-A-S score of 57 (15.7) at baseline and 91 (8.2)
at the 12-month follow-up (P < .01).
Conclusions: No negative effects could be demonstrated from continuing Achilles tendon-loading activity, such as running and
jumping, with the use of a pain-monitoring model, during treatment. Our treatment protocol for patients with Achilles tendinopathy,
which gradually increases the load on the Achilles tendon and calf muscle, demonstrated significant improvements. A training reg-
imen of continued, pain-monitored, tendon-loading physical activity might therefore represent a valuable option for patients with
Achilles tendinopathy.
Keywords: Achilles tendon; Victorian Institute of Sports Assessment–Achilles questionnaire; functional evaluation; pain-monitoring
model
897
*Address correspondence to Karin GrÀvare Silbernagel, PT, ATC, PhD,
Lundberg Laboratory of Orthopaedic Research, Department of Orthopaedics,
Göteborg University, Sahlgrenska University Hospital, Gröna StrÄket 12, 413
45 Göteborg, Sweden (e-mail: karin.gravare-silbernagel@orthop.gu.se).
No potential conflict of interest declared.
The American Journal of Sports Medicine, Vol. 35, No. 6
DOI: 10.1177/0363546506298279
© 2007 American Orthopaedic Society for Sports Medicine
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
898 Silbernagel et al The American Journal of Sports Medicine
published literature.
4,19,21,23,26,32,33,36,41
It is also unclear which
type of treatment is most effective for patients with Achilles
tendinopathy and what criteria to use when choosing treat-
ment.1,10,11,28
The effects of exercise training appear to be
promising, and the consensus today seems to be that all
patients should be treated with an exercise program for 3 to
6 months.1,3,5,7,11,21,26,36,41
Even with other types of treatments
such as surgery, sclerosing injections, heat, ultrasound, elec-
trical stimulation, and medications, some type of exercise is
recommended as a complement to the treatment.2,23,29,31,38,43
Historically, a period of rest from the pain-provoking
physical activity (usually running and jumping) has been
recommended when initiating treatment.7,30,42
Nichols
25
recommends that the rest period should depend on the
severity and duration of injury. The literature is, however,
generally vague when recommending some type of modi-
fied rest in which the pain-provoking activity should be
limited or avoided.11,28,42
Because these patients are gener-
ally very physically active people, an over-long period of
rest or decrease in physical activity may have a negative
effect on their quality of life and sporting performance.8
Furthermore, an interesting and unanswered question is
whether a rest period has a negative or a positive effect on
the healing process. Likewise, is it harmful to continue the
pain-provoking activity, or could it even be beneficial with
an adjusted physical activity?
To our knowledge, the effect of continued tendon-loading
activity (such as running and jumping) on treatment in
patients with Achilles tendinopathy has not been studied.
We have previously used a pain-monitoring model, orig-
inally described by Thomeé,44
as a guideline for the patient
and clinician during treatment.41
The purpose of this study was to prospectively evaluate
if continued running and jumping during treatment with
an Achilles tendon-loading strengthening program would
have an effect on the outcome.
MATERIALS AND METHODS
Study Design
This was a prospective, randomized, controlled study to
assess the outcome of 2 different rehabilitation protocols in
patients with Achilles tendinopathy. Patients who fulfilled
the entry criteria as defined by the study protocol were ran-
domized into the 2 different treatment groups—exercise
training group and active rest group—during the first 6
weeks of rehabilitation. All patients were rehabilitated
according to an identical rehabilitation program: a progres-
sive Achilles tendon-loading strengthening program for
12 weeks to 6 months.
The randomization list was generated by a computer
that was run by an independent statistician. The random-
ization list was not known to anyone in the study. The spe-
cific treatment was indicated in numbered opaque
envelopes given to patients in the order of inclusion. The
treating physical therapist opened the envelopes at the
start of treatment and at that time informed the patients
of their treatment group.
The outcome was evaluated by patient-administered
questionnaires for symptoms with physical activity and by
muscle-tendon functional evaluations at baseline and 6
weeks, 3, 6, and 12 months after initiation of the treat-
ment. The classification system of physical activity used
was that of Grimby9
(Table 1). All the evaluations were
blinded and performed by 1 physical therapist who was not
involved in the rehabilitation of the patients and was
unaware of which treatment group the patients belonged
to. Instructions for the exercise program and criteria for
the treatment groups were provided by physical therapists
working at the SportRehab physical therapy clinic in
Göteborg, Sweden. The patients were in contact with the
physical therapists on average once a week for the first 6
weeks and then as often as the physical therapist and
patient deemed necessary.
All patients received oral and written information about
the purpose and procedure of the study, and written
informed consent was obtained. Ethics approval was
obtained from the Human Ethics Committee at the
Medical Faculty, Göteborg University, Sweden.
Inclusion and Exclusion Criteria
The patients were recruited through mailings to hospitals,
orthopaedic surgeons, physical therapy clinics, and
orthopaedic technicians in the Göteborg area. They were
referred by their physician or initiated contact themselves.
Initially, the patients were examined by an experienced
licensed physical therapist who determined if the patients
met the required criteria to participate in the study. Men
and women 20 to 60 years of age with Achilles tendinopa-
thy and duration of pain for more than 2 months were
included. The definition of Achilles tendinopathy used was
the clinical diagnosis, which is a combination of Achilles
tendon pain, swelling, and impaired performance, as
TABLE 1
Physical Activity Level Scale
a
Level Activity Description
1 Hardly any physical activity
2 Mostly sitting, sometimes a walk, easy
gardening, or similar tasks
3 Light physical exercise ~2-4 h/wk, eg, walks
(including to and from shops), fishing,
dancing, ordinary gardening
4 Moderate exercise 1-2 h/wk, eg, jogging,
swimming, gymnastics, heavier gardening,
home repair, or easier physical
activities >4 h/wk
5 Moderate exercise at least 3 h/wk, eg, tennis,
swimming, jogging
6 Hard or very hard exercise regularly (several
times a week), in which the physical exertion
is great, eg, jogging, skiing
a
Adapted with permission from Grimby G. Physical activity and
muscle training in the elderly. Acta Med Scand Suppl.
1986;711:233-237.
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 899
recommended in the literature.
11,20,28
Ultrasonography
evaluation was not used to determine inclusion or exclu-
sion criteria. The exclusion criteria were injury to the foot,
knee, hip, or back and/or history of rheumatoid arthritis or
any other illness or injury thought to interfere with the
participation in the study. Patients with insertional
tendinopathy were also excluded.
Patients
From January 2004 to December 2004, 42 patients with a
total of 57 injured tendons were included in the study. Two
of the patients included in the exercise training group were
excluded after the initial evaluation. One was excluded
because he was not able to attend any of the other evalu-
ations or physical therapy visits because of illness in
the family, and the other patient developed pain in the
ankle and knee that hindered participation in the study.
Two patients included in the active rest group were
also excluded after the initial evaluation. One subject
requested exclusion because of self-reported noncompli-
ance and difficulty with attending the evaluations and
physical therapy sessions because of work conflicts. The
other patient was excluded because of illness that did not
allow him to start treatment or attend the 6-week and
3-month evaluations.
The final study group thus consisted of 38 patients (18
women, 20 men) with a total of 51 injured tendons (Table 2).
The exercise training group consisted of 19 patients (7
women, 12 men) with a total of 26 injured tendons. The
active rest group consisted of 19 patients (11 women, 8 men)
with a total of 25 injured tendons. There were no significant
differences between the groups with respect to age, height,
weight, gender, number of patients with bilateral symptoms,
duration of symptoms, and physical activity level.9
The
majority of the patients reported the injury to be due to
overuse (87%) and were injured doing physical activity
(84%).
Physical Activity Criteria for the 2 Groups
The exercise training group was allowed to continue
Achilles tendon-loading activity for the first 6 weeks of
rehabilitation. The patients used the pain-monitoring
model, described by Thomeé44
and modified by Silbernagel
et al,41
as a guide to the level of physical activity. According
to the pain-monitoring model, the pain was allowed to
reach level 5 on the visual analog scale (VAS), where 0 is
no pain and 10 is the worst pain imaginable, during the
exercise training. The pain after the exercise program was
allowed to reach 5 on the VAS but should have subsided by
the following morning. Pain and stiffness in the Achilles
tendon were not allowed to increase from week to week.
The active rest group was not allowed to perform the
physical activity that caused the symptoms or any other
Achilles tendon-loading activity involving running or
jumping during the first 6 weeks of rehabilitation. If they
wanted to, they were allowed to swim, run in deep water
using a buoyancy vest, bike, or walk as daily activity (but
not to walk for exercise).
Training Diaries
Both groups kept a training diary for 0 to 12 weeks, in
which they documented their rehabilitation exercises,
other physical activities, symptoms, or other comments.
The training diary was used by the treating physical ther-
apists to assess compliance to treatment group.
Treatment Protocol
All patients were rehabilitated according to an identical
rehabilitation program—a progressive Achilles tendon-
loading strengthening program for 12 weeks to 6 months.
The Achilles tendon and calf muscle strengthening proto-
col was based on our previous study,41
but it has been
modified in the clinic over the years (Table 3). The exer-
cises were performed once a day, and the intensity and
number of repetitions were based on the patients’ status.
TABLE 2
Patient Demographics
a
Parameter Exercise Training Group Active Rest Group
Total included 19 (7 + 12) 19 (11 + 8)
(women + men)
Involved side
Right 5 6
Left 7 7
Both 7 6
Involved tendons 26 25
Age (y)
Mean 44 48
SD 8.8 6.8
Range 30-58 38-58
Height (cm)
Mean 179 177
SD 9 8
Range 158.5-193 163.5-194.5
Weight (kg)
Mean 80.7 78.7
SD 15 11.6
Range 59.7-113.2 61.7-102.6
Duration of
symptoms (mo)
Mean 48 24.4
SD 84.5 40.8
Range 3-360 3-168
How injured
Overuse 16 17
Acute injury 3 2
Injured doing
Exercise 17 15
Leisure 0 1
Work 1 1
Other 1 2
Physical activity
level before injury
Mean 4.3 4.6
SD 1.3 0.6
Range 1-6 3-5
a
No significant differences were found between the groups. SD,
standard deviation.
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
900 Silbernagel et al The American Journal of Sports Medicine
The exercises consisted mainly of 2-legged, 1-legged, eccen-
tric, and fast-rebounding toe raises. The intensity was
increased successively by increasing the range of motion
(starting standing on the floor and then performing the exer-
cise standing on stairs), increasing the number of repetitions
(starting at 3 sets of maximum amount tolerated, up to 15
repetitions maximum per set), and increasing the load (with
use of either a backpack or weight machine and by increas-
ing the speed of loading). In phase 3 of the rehabilitation pro-
gram, the patients started plyometric training. Phase 1 was
continued for 1 to 2 weeks, phase 2 for 2 to 5 weeks, and phase
3 for 3 to 12 weeks, or longer if needed to achieve the patient
status required for phase 4. Phase 4 was continued from 12
weeks to 6 months from the start of the treatment or longer if
needed, until the patient had no symptoms. The progression
of the exercise program was monitored by the treating physi-
cal therapists, and both groups followed the treatment proto-
col (Table 3).
Outcome Measures
The primary outcome measures were the Swedish version
of the Victorian Institute of Sports Assessment–Achilles
questionnaire (VISA-A-S)35,40
and pain level during tendon-
loading activity (hopping). For pain documentation, the
VAS was used, where 0 is equal to no pain and 10 is the
worst pain imaginable.
Functional Evaluations
The secondary outcome measures were the functional eval-
uations. The functional evaluations consisted of ankle dor-
siflexion range of motion and a test battery developed to
evaluate lower leg function in patients with Achilles
tendinopathy.39
The test battery consisted of 3 different
jump tests, 2 different strength tests, and 1 endurance test.
The jump tests were a countermovement jump (CMJ), a
drop CMJ, and hopping. The CMJ was a vertical jump in
which the starting position was an upright posture with
hands placed behind the back. For the drop CMJ, the
patients started by standing on 1 leg on a 20-cm-high
wooden box. The patients were instructed to “fall” down
onto the floor and, directly on landing, to perform a maxi-
mum vertical 1-legged jump. The strength tests were a
concentric toe raise and an eccentric-concentric toe raise,
and the endurance test was a standing toe raise test with
10% of the body weight added with a weight belt. The test
battery was done exactly as described in the original arti-
cle.39
The functional tests have previously been shown to
have good reliability in healthy subjects.39
The functional
tests have also been shown to have good validity for
patients with Achilles tendinopathy and the ability to
detect clinically relevant differences in function between
the injured and healthy leg as well as between the more
symptomatic and less symptomatic leg.39
Ultrasonography Measures
To establish a diagnosis of Achilles tendon injury, ultra-
sonography was performed using a real-time scanner, with
a 7.5-MHz linear array probe. Both tendons were scanned
in all patients, in the longitudinal as well as the axial
plane. The tendon injury was registered as heterogeneity
and/or hypoechoic areas in the tendon. Tendon edema and
tendon thickening were also documented.
TABLE 3
Treatment Protocol
Phase 1: Weeks 1-2
Patient status: Pain and difficulty with all activities, difficulty
performing ten 1-legged toe raises
Goal: Start to exercise, gain understanding of their injury and of
pain-monitoring model
Treatment program: Perform exercises every day
‱ Pain-monitoring model information and advice on exercise
activity
‱ Circulation exercises (moving foot up/down)
‱ 2-legged toe raises standing on the floor (3 sets × 10-15
repetitions/set)
‱ 1-legged toe raises standing on the floor (3 × 10)
‱ Sitting toe raises (3 × 10)
‱ Eccentric toe raises standing on the floor (3 × 10)
Phase 2: Weeks 2-5
Patient status: Pain with exercise, morning stiffness, pain when
performing toe raises
Goal: Start strengthening
Treatment program: Perform exercises every day
‱ 2-legged toe raises standing on edge of stair (3 × 15)
‱ 1-legged toe raises standing on edge of stair (3 × 15)
‱ Sitting toe raises (3 × 15)
‱ Eccentric toe raises standing on edge of stair (3 × 15)
‱ Quick-rebounding toe raises (3 × 20)
Phase 3: Weeks 3–12 (longer if needed)
Patient status: Handled the phase 2 exercise program, no pain
distally in tendon insertion, possibly decreased or increased morn-
ing stiffness
Goal: Heavier strength training, increase or start running and/or
jumping activity
Treatment program: Perform exercises every day and with
heavier load 2-3 times/week
‱ 1-legged toe raises standing on edge of stair with added
weight (3 × 15)
‱ Sitting toe raises (3 × 15)
‱ Eccentric toe raises standing on edge of stair with added
weight (3 × 15)
‱ Quick-rebounding toe raises (3 × 20)
‱ Plyometric training
Phase 4: Week 12–6 months (longer if needed)
Patient status: Minimal symptoms, morning stiffness not
every day, can participate in sports without difficulty
Goal: Maintenance exercise, no symptoms
Treatment program: Perform exercises 2-3 times/week
‱ 1-legged toe raises standing on edge of stair with added
weight (3 × 15)
‱ Eccentric toe raises standing on edge of stair with added
weight (3 × 15)
‱ Quick-rebounding toe raises (3 × 20)
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 901
Statistical Analysis
A power analysis was carried out before the study. It was
determined that a total of 40 patients were needed to detect a
clinically significant mean score difference of 10 points in the
VISA-A-S score with 80% power and at P = .05. All the evalu-
ations were performed based on intention-to-treat analysis.
This was done to safely deal with noncompliance in the
groups. Nonparametric statistics were used in cases where we
could not be sure that the data were normally distributed. To
compare the groups, the differences in results of the injured
tendons between the initial evaluation and the results on the
6-week, 3-, 6-, and 12-month evaluations were used. The
groups were then compared using the Mann-Whitney U test.
The Mann-Whitney U test was also used to compare the
groups at baseline. To evaluate improvements from baseline,
the Wilcoxon signed rank test was used. A Spearman rank
correlation coefficient was used to evaluate the correlation
between improvement and severity of symptoms and dura-
tion of symptoms. Values are reported as mean ± standard
deviation (SD).
RESULTS
The exercise training group had a mean (SD) VISA-A-S
score of 57 (15.8) at baseline and 85 (12.7) at the 12-month
follow-up (P < .01). The active rest group had a mean (SD)
VISA-A-S score of 57 (15.7) at baseline and 91 (8.2) at the
12-month follow-up (P < .01).
The ultrasonography revealed pathologic changes in 39
of 51 tendons, while 12 of 51 tendons were judged to have
minimal or no changes. Similar pathological changes, that
is, heterogeneity and/or hypoechoic areas within the ten-
don, were found in 7 contralateral symptom-free tendons.
Furthermore, there were no significant differences
between the groups in baseline characteristics for any of
the measured parameters.
Comparison Between Groups
For the primary outcomes, VISA-A-S score and pain during
hopping, there were no significant differences in the change
in scores/pain level compared with baseline between the
groups at any of the follow-ups (Table 4). There were, more-
over, no significant differences in the rate of improvement
between the groups in any of the functional evaluations.
Change Over Time Within Groups
Both groups showed significant (P < .01) improvements on the
VISA-A-S score (Table 5 and Figure 1) and decrease in pain
during hopping (Table 6) at 6 weeks and at 3-, 6-, and
12-month evaluations. Both groups improved significantly
(P < .05) in the total amount of work (in joules) performed dur-
ing the toe-raise test performed at all follow-ups compared
with baseline (Table 7). The active rest group had significant
(P < .05) improvement in the eccentric-concentric toe-raise
power at 6 weeks, but the exercise training group had signif-
icant improvements at the other follow-ups (Table 7). The
exercise training group showed significant (P < .05) improve-
ments in drop CMJ height and hopping quotient at the 6-
month follow-up not seen in the active rest group (Table 7).
Neither group had any significant improvements in CMJ
height and concentric toe-raise power at any of the 4 evalua-
tions (Table 7). There was no increase in range of motion of
dorsiflexion in either group; instead, the exercise training
group had a significant (P < .05) decrease in range of
motion at 6 weeks and 6 months (Table 7).
TABLE 4
VISA-A-S Scores and Hopping Pain Changes Between Baseline Evaluation and 6-Week, 3-Month, and 6-Month
Evaluations
a
Score Change
0-6 Weeks 0-3 Months 0-6 Months 0-12 Months
Exercise Active Exercise Active Exercise Active Exercise Active
Group Training Rest Training Rest Training Rest Training Rest
VISA-A-S score
n 26 23 25 24 26 23 26 24
Mean 13 16 18 20 23 25 28 34
SD 17 12 18 20 20 17 17 17
95% CI 6-20 10-21 10-25 12-28 15-31 17-32 21-34 27-41
Median 10.5 16 16 19 20.5 21 26.5 31.5
IQR 18 11 20 26.5 21.5 26 20 29.5
Hopping pain (VAS)
n 26 23 25 24 25 23 22 23
Mean −1.3 –2.3 –2.2 –2.6 –2.8 –3.0 –3.2 –3.4
SD 2.1 2.0 2.6 2.5 2.7 2.3 2.7 2.7
95% CI –2.2 to –0.5 –3.2 to –1.4 –3.3 to –1.1 –3.7 to –1.6 –3.9 to –1.6 –3.9 to –1.6 –4.4 to –2.0 –4.6 to –2.3
Median –1.0 –2.5 –2.0 –2.7 –2.0 –3.0 –3.5 –4.0
IQR 3.0 4.0 4.2 5.0 4.0 5.0 4.0 5.0
a
Mean, standard deviation (SD), 95% confidence interval (CI), median, and interquartile range (IQR) are provided. There were no signif-
icant differences (P < .05) between the groups on any of the occasions. VISA-A-S, Swedish version of the Victorian Institute of Sports
Assessment -Achilles questionnaire; VAS, visual analog scale.
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
902 Silbernagel et al The American Journal of Sports Medicine
There were significant (P < .05) correlations between the
initial VISA-A-S score and the improvements in VISA-A-S
score seen at the subsequent evaluations: 0 to 6 weeks,
r = –.292; 0 to 3 months, r = –.470; 0 to 6 months, r = –.459;
and 0 to 12 months, r = –.756.
The same significant (P < .05) correlations were seen
when comparing the initial pain level with hopping and the
improvements seen in pain level at the subsequent evalua-
tions: 0 to 6 weeks, r = –.498; 0 to 3 months, r = –.591; 0 to
6 months, r = –.681; and 0 to 12 months, r = –.823.
There were no significant correlations between the dura-
tion of symptoms and the change in VISA-A-S score or
change in pain level with hopping at any of the evaluations.
DISCUSSION
This randomized study could not demonstrate any nega-
tive effects from allowing the patients to continue Achilles
tendon-loading activity (such as running and jumping)
when using the pain-monitoring model during rehabilita-
tion for Achilles tendinopathy.
Furthermore, this randomized treatment study confirms
earlier results that strengthening exercises of the Achilles
tendon, gastrocnemius, and soleus muscle complex cause
significant improvements in symptoms and muscle-tendon
function in patients with Achilles tendinopathy.5,21,26,36,41
Historically, in the literature, initial rest from pain-
provoking activity has been recommended for Achilles
tendinopathy,7,30,42
but it appears that this might not be
necessary. The patients in this study could safely continue
with their activity of choice as long as they followed the
pain-monitoring model. The pain-monitoring model states
that exercise activity that does not cause pain above 5 of
10 on a VAS is safe. Because most of the patients with
Achilles tendinopathy are middle-aged, physically active
individuals, the allowance of continued exercise activity
may have positive effects on their general health and qual-
ity of life. Also, athletes with Achilles tendinopathy would
potentially benefit from being able to continue their sports
activity in order to avoid significant deterioration in sport-
ing performance. As in the present study, Visnes et al45
also
allowed continued physical activity during treatment in
their study on athletes with patellar tendinopathy. They
could not, however, show any positive effect of eccentric
training when elite volleyball players with patellar
tendinopathy continued their normal in-season training.
No physical activity-monitoring model, such as the pain-
monitoring model used in the present study, was used by
Visnes et al45
; this might explain the lack of improvement.
It cannot be excluded in the present study that the lack
of treatment differences found between the 2 treatment
groups for the functional secondary outcome evaluations
represents a type II error. The power calculation made was
for the primary and not for the secondary outcomes. Thus,
no definite conclusions can be drawn from the results for
the functional evaluations.
The literature states that Achilles tendinopathy mostly
occurs in middle-aged men. In our study, as well in others, it
can be seen that there is a change over the years in the per-
centage of women included. In the often-cited study by
Kvist,14
it was reported that 89% of the patients with
Achilles tendinopathy were men. In a review of several more
recent treatment studies, the percentage of women was
between 14% and 55%, with the higher percentages seen in
the later studies.4-7,21,24,27,29-31,38
Because previous studies on
Achilles tendinopathy include both men and women, we also
included both men and women in the present study. At the
time we planned the study, we did not expect to have as high
as 50% women and did not expect that there would be a
need for controlling the ratio between men and women in
each group to get an equal number. Even though there are 7
women in the exercise training group and 11 women in the
active rest group, there is no significant difference in the
number of women in the 2 treatment groups. However, we
recognize that the numbers are low and the chance to detect
a difference with statistics is small. Further, statistical
analysis comparing the 4 groups (women and exercise train-
ing, women and active rest, men and exercise training, men
and active rest) on the main outcome (change in VISA-A-S
score) using the Kruskal-Wallis test did not show any sta-
tistical differences between the groups. We acknowledge
that gender could be a confounding factor; however, we have
no indication that this factor has affected the outcome of the
present study. Therefore, we do not believe that the validity
of our results is affected by the ratio of men and women in
the different treatment groups.
Even though our results appear similar to earlier stud-
ies on the effect of exercise on Achilles tendinopathy,
direct comparisons between treatment studies are diffi-
cult to make because of variations in outcome meas-
ures.5,21,26,36,41
The VISA-A-S questionnaire, used in the
present study, measures important aspects of the
Figure 1. Mean VISA-A-S scores with 95% confidence inter-
val, at 0 and 6 weeks and at 3-, 6-, and 12-month evaluations.
VISA-A-S, Swedish version of the Victorian Institute of Sports
Assessment–Achilles questionnaire.
40
50
60
70
80
90
100
0 w 6 w 3 m 6 m 12 m
VISA-A-Sscore
Exercise Active rest
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 903
patients’ symptoms and the effect of their injuries on
their physical activity.40
In this study, the VISA-A-S ques-
tionnaire showed good responsiveness; that is, it was sen-
sitive for clinically important changes over time with
treatment, easy for the patients to fill out, and the data
were easily handled. We therefore recommend the use of
the VISA-A questionnaire in future studies for evaluating
the effect of treatment on patients with Achilles
tendinopathy. The results from different studies using the
VISA-A questionnaire can then easily be compared with
each other.
The treatment protocol used in the present study caused
significant improvements in patients’ symptoms at the
6-week evaluation, with continued improvement up to the
12-month evaluation. This strengthens earlier recommen-
dations that the treatment of Achilles tendinopathy should
be exercise-based.1,3,5,7,11,21,26,36,41
The treatment protocol in
this study was a strengthening program including both
TABLE 5
VISA-A-S Scores at Testing Occasions
a
VISA-A-S Scores 0 Weeks 6 Weeks 3 Months 6 Months 12 Months
Exercise training group
n 26 26 25 26 26
Mean 57 70
b
74
b
80
b
85
b
SD 15.8 16.3 16.3 14.2 12.7
95% CI 51-64 64-77 68-81 75-86 80-90
Median 59 66 77 82 86
IQR 20.2 27.8 22.0 25.5 21.5
Active rest group
n 25 23 24 23 24
Mean 58 75
b
77
b
82
b
91
b
SD 15.7 14.7 18.2 17.9 8.2
95% CI 51-64 69-81 69-84 74-89 87-94
Median 59 75 83.5 87 94
IQR 32 17 23 18 12.7
a
Mean, standard deviation (SD), 95% confidence interval (CI), median, and interquartile range (IQR) are provided for the different test
occasions. VISA-A-S, Swedish version of the Victorian Institute of Sports Assessment–Achilles questionnaire.
b
Indicates a significant improvement (P < .01) compared with the baseline evaluation.
TABLE 6
Pain Level With Hopping
a
VAS Pain Level With Hopping 0 Weeks 6 Weeks 3 Months 6 Months 12 Months
Exercise training group
n 26 26 25 25 22
Mean 3.9 2.6
b
1.7
b
1.2
b
0.9
b
SD 2.5 2.5 0.7 1.9 1.7
95% CI 2.9-4.9 1.6-3.6 1.4-2.0 0.4-2.0 0.2-1.6
Median 5 2 1 0 0
IQR 4.1 5 3 2 1
Active rest group
n 25 23 24 23 23
Mean 4.1 2.0
b
1.7
b
1.3
b
0.7
b
SD 2.8 2.2 2.6 2.1 1.3
95% CI 3.0-5.3 1.0-3.0 0.6-2.8 0.4-2.2 0.2-1.3
Median 5 2 0 0 0
IQR 5 4 2.7 3 1
a
Mean, standard deviation (SD), 95% confidence interval (CI), median, and interquartile range (IQR) are provided for the different test
occasions. VAS, visual analog scale.
b
Indicates a significant improvement (P < .01) compared with the baseline evaluation.
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
904 Silbernagel et al The American Journal of Sports Medicine
TABLE 7
Results of the Functional Evaluations
a
Measurement Before 6 Weeks 3 Months 6 Months 12 Months
Endurance toe-raise
test (work, J)
Exercise training group
n 25 23 25 25 23
Mean ± SD 1909 ± 942 2427 ± 1154
b
2455 ± 1228
b
2471 ± 1133
b
2431 ± 1170
b
Active rest group
n 25 23 24 23 22
Mean ± SD 1716 ± 1021 2146 ± 1049
b
2051 ± 1020 2122 ± 1041
b
2058 ± 914
b
Eccentric-concentric
toe raise (power)
Exercise training group
n 26 26 25 25 23
Mean ± SD 313 ± 126 350 ± 157 393 ± 178
b
390 ± 178
b
366 ± 179
b
Active rest group
n 21 21 24 23 23
Mean ± SD 277 ± 144 336 ± 128
b
303 ± 183 308 ± 153 289 ± 143
Concentric toe raise (power)
Exercise training group
n 26 26 25 25 23
Mean ± SD 227 ± 90 251 ± 117 244 ± 99 249 ± 124 229 ± 104
Active rest group
n 25 23 24 23 23
Mean ± SD 202 ± 108 205 ± 93 204 ± 98 203 ± 88 193 ± 88
Drop CMJ (height, cm)
Exercise training group
n 26 26 25 25 22
Mean ± SD 10.63 ± 4.17 10.40 ± 3.96 11.03 ± 4.73 11.77 ± 4.18
b
11.17 ± 4.31
Active rest group
n 25 23 24 23 23
Mean ± SD 9.86 ± 5.23 11.12 ± 4.63 10.28 ± 5.14 10.30 ± 4.54 10.13 ± 4.63
Hopping (quotient)
Exercise training group
n 26 26 25 25 21
Mean ± SD 0.403 ± 0.136 0.437 ± 0.092 0.447 ± 0.112 0.512 ± 0.129
b
0.475 ± 0.112
Active rest group
n 25 23 24 23 23
Mean ± SD 0.419 ± 0.232 0.492 ± 0.166 0.419 ± 0.234 0.447 ± 0.144 0.470 ± 0.175
CMJ (height, cm)
Exercise training group
n 26 26 25 25 22
Mean ± SD 11.60 ± 4.88 11.64 ± 4.76 11.58 ± 5.05 11.69 ± 4.96 11.74 ± 4.55
Active rest group
n 25 23 24 23 23
Mean ± SD 10.31 ± 5.07 11.28 ± 4.71 10.33 ± 4.57 10.48 ± 4.99 10.39 ± 4.74
Range of motion
dorsiflexion
Exercise training group
n 26 22 21 21 23
Mean ± SD 35 ± 4.2 33.5 ± 3.8
b
34 ± 3.7 33 ± 3.0
b
35 ± 3.5
Active rest group
n 23 22 24 23 23
Mean ± SD 34 ± 5.3 34 ± 4.8 33 ± 5.4 34 ± 4.6 34.5 ± 3.8
a
SD, standard deviation; CMJ, countermovement jump.
b
Indicates a significant (P < .05) difference compared with before treatment.
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 905
concentric and eccentric types of exercises. We believe the
improvements seen were due to the high level of intensity of
training, with daily exercises and a gradual increase of the
load creating positive effects on both the muscle and tendon.
Mafi et al21
compared concentric and eccentric calf muscle
training in patients with Achilles tendinopathy and found
similar improvements in symptoms (pain level with physi-
cal activity on VAS) in their eccentric training group, as seen
in both the exercise training and active rest groups in the
present study. There appear to be no negative effects from
performing strengthening both concentrically and eccentri-
cally. Mafi et al21
seem to have used a lower intensity in the
concentric group, not starting strengthening with body
weight until week 3 and never increasing the load beyond
the body weight. The lower load used by Mafi et al21
might
be the reason for their inferior result in the concentric train-
ing group. We believe that important key factors in improve-
ment are both the intensity and type of loading. The
underlying effects of exercise are not fully known, but
mechanical loading on tendons appears to be important in
both the healing process and in improving strength of the
tendons.12,34,37
In several studies, Langberg et al
16-18
have
shown that exercise activity on tendons in healthy individ-
uals produces an acute increase in the tendon collagen
synthesis. It has also been shown convincingly that immo-
bilization causes negative effects on tendons.12,13
Greater
strength of the triceps surae musculature has also been
reported to be related to a greater ability of the Achilles ten-
don to store elastic energy.22
Mechanical loading through
exercise in patients with Achilles tendinopathy appears,
therefore, to be important. Exactly how the exercise pro-
gram should be designed and progressed, however, needs to
be investigated further. To improve muscle-tendon function
and prevent reinjury, it is suggested that aspects of motor
control, proprioception, strength, malalignment, and flexi-
bility all have to be addressed.
CONCLUSION
There was no significant difference between the treatment
groups concerning the main outcome variables. No negative
effects could be demonstrated from continuing Achilles tendon-
loading activity, such as running and jumping, with the use of a
pain-monitoring model during treatment. Our treatment
protocol for patients with Achilles tendinopathy, which
gradually increases the load on the Achilles tendon and
calf muscle, monitored by a pain-monitoring model,
demonstrated significant symptomatic improvements.
A training regimen of continued, pain-monitored, tendon-
loading physical activity might therefore represent a valu-
able option for patients with Achilles tendinopathy.
ACKNOWLEDGMENT
The authors thank the physical therapists at SportRehab–
Physical Therapy & Sports Medicine Clinic for assistance in
the study. This study was supported by grants from the
Swedish National Centre for Research in Sports and the
local Research and Development Council of Gothenburg
and Southern BohuslÀn.
REFERENCES
1. Alfredson H. Chronic midportion Achilles tendinopathy: an update on
research and treatment. Clin Sports Med. 2003;22:727-741.
2. Alfredson H. The chronic painful Achilles and patellar tendon:
research on basic biology and treatment. Scand J Med Sci Sports.
2005;15:252-259.
3. Alfredson H, Lorentzon R. Chronic Achilles tendinosis: recommenda-
tions for treatment and prevention. Sports Med. 2000;29:135-146.
4. Alfredson H, Öhberg L. Sclerosing injections to areas of neo-vasculari-
sation reduce pain in chronic Achilles tendinopathy: a double-blind ran-
domised controlled trial. Knee Surg Sports Traumatol Arthrosc. 2005;
13:338-344.
5. Alfredson H, PietilÀ T, Jonsson P, Lorentzon R. Heavy-load eccentric
calf muscle training for the treatment of chronic Achilles tendinosis.
Am J Sports Med. 1998;26:360-366.
6. Alfredson H, PietilĂ€ T, Öhberg L, Lorentzon R. Achilles tendinosis and
calf muscle strength. The effect of short-term immobilization after
surgical treatment. Am J Sports Med. 1998;26:166-171.
7. Angermann P, Hovgaard D. Chronic Achilles tendinopathy in athletic
individuals: results of nonsurgical treatment. Foot Ankle Int.
1999;20:304-306.
8. Ekblom B, Nilsson J. Aktivt liv: Vetenskap och Praktik. Farsta Malmö:
SISU idrottsböcker; 2000.
9. Grimby G. Physical activity and muscle training in the elderly. Acta
Med Scand Suppl. 1986;711:233-237.
10. JĂłzsa L, Kannus P. Human Tendons: Anatomy, Physiology, and
Pathology. Champaign, Ill: Human Kinetics; 1997.
11. Kader D, Saxena A, Movin T, Maffulli N. Achilles tendinopathy: some
aspects of basic science and clinical management. Br J Sports Med.
2002;36:239-249.
12. Kannus P, Jozsa L, Natri A, JĂ€rvinen M. Effects of training, immobi-
lization and remobilization on tendons. Scand J Med Sci Sports.
1997;7:67-71.
13. Kubo K, Akima H, Kouzaki M, et al. Changes in the elastic properties
of tendon structures following 20 days bed-rest in humans. Eur J Appl
Physiol. 2000;83:463-468.
14. Kvist M. Achilles tendon injuries in athletes. Ann Chir Gynaecol.
1991;80:188-201.
15. Kvist M. Achilles tendon injuries in athletes. Sports Med.
1994;18:173-201.
16. Langberg H, Rosendal L, Kjaer M. Training-induced changes in peri-
tendinous type I collagen turnover determined by microdialysis in
humans. J Physiol. 2001;534(Pt 1):297-302.
17. Langberg H, Skovgaard D, Asp S, Kjaer M. Time pattern of exercise-
induced changes in type I collagen turnover after prolonged
endurance exercise in humans. Calcif Tissue Int. 2000;67:41-44.
18. Langberg H, Skovgaard D, Petersen LJ, Bulow J, Kjaer M. Type I col-
lagen synthesis and degradation in peritendinous tissue after exercise
determined by microdialysis in humans. J Physiol. 1999;521(Pt
1):299-306.
19. Lowdon A, Bader DL, Mowat AG. The effect of heel pads on the treat-
ment of Achilles tendinitis: a double blind trial. Am J Sports Med.
1984;12:431-435.
20. Maffulli N, Kenward MG, Testa V, Capasso G, Regine R, King JB.
Clinical diagnosis of Achilles tendinopathy with tendinosis. Clin J
Sport Med. 2003;13:11-15.
21. Mafi N, Lorentzon R, Alfredson H. Superior short-term results with
eccentric calf muscle training compared to concentric training in a ran-
domized prospective multicenter study on patients with chronic Achilles
tendinosis. Knee Surg Sports Traumatol Arthrosc. 2001;9:42-47.
22. Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H. Elastic properties
of human Achilles tendon are correlated to muscle strength. J Appl
Physiol. 2005;99:665-669.
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
906 Silbernagel et al The American Journal of Sports Medicine
23. Neeter C, Thomeé R, Silbernagel KG, Thomeé P, Karlsson J.
Iontophoresis with or without dexamethazone in the treatment of acute
Achilles tendon pain. Scand J Med Sci Sports. 2003;13:376-382.
24. Nelen G, Martens M, Burssens A. Surgical treatment of chronic
Achilles tendinitis. Am J Sports Med. 1989;17:754-759.
25. Nichols AW. Achilles tendinitis in running athletes. J Am Board Fam
Pract. 1989;2:196-203.
26. Niesen-Vertommen S, Taunton J, Clement D, Mosher R. The effect of
eccentric versus concentric exercise in the management of Achilles
tendonitis. Clin J Sport Med. 1992;2:109-113.
27. Öhberg L, Alfredson H. Ultrasound guided sclerosis of neovessels in
painful chronic Achilles tendinosis: pilot study of a new treatment. Br
J Sports Med. 2002;36:173-177.
28. Paavola M, Kannus P, JĂ€rvinen TA, Khan K, Jozsa L, JĂ€rvinen M.
Achilles tendinopathy. J Bone Joint Surg Am. 2002;84:2062-2076.
29. Paavola M, Kannus P, Orava S, Pasanen M, JĂ€rvinen M. Surgical
treatment for chronic Achilles tendinopathy: a prospective seven
month follow up study. Br J Sports Med. 2002;36:178-182.
30. Paavola M, Kannus P, Paakkala T, Pasanen M, JĂ€rvinen M. Long-term
prognosis of patients with Achilles tendinopathy. An observational
8-year follow-up study. Am J Sports Med. 2000;28:634-642.
31. Paavola M, Orava S, Leppilahti J, Kannus P, JĂ€rvinen M. Chronic
Achilles tendon overuse injury: complications after surgical treatment.
An analysis of 432 consecutive patients. Am J Sports Med.
2000;28:77-82.
32. Paoloni JA, Appleyard RC, Nelson J, Murrell GA. Topical glyceryl trini-
trate treatment of chronic noninsertional achilles tendinopathy. A ran-
domized, double-blind, placebo-controlled trial. J Bone Joint Surg
Am. 2004;86:916-922.
33. Peers K. Extracorporeal Shock Wave Therapy in Chronic Achilles
and Patellar Tendinopathy [Dissertation]. Leuven, Belgium: Leuven
University Press, Leuven University; 2003.
34. Riley GP. Gene expression and matrix turnover in overused and dam-
aged tendons. Scand J Med Sci Sports. 2005;15:241-251.
35. Robinson JM, Cook JL, Purdam C, et al. The VISA-A questionnaire: a
valid and reliable index of the clinical severity of Achilles tendinopa-
thy. Br J Sports Med. 2001;35:335-341.
36. Roos EM, Engström M, Lagerquist A, Söderberg B. Clinical improve-
ment after 6 weeks of eccentric exercise in patients with mid-portion
Achilles tendinopathy—a randomized trial with 1-year follow-up.
Scand J Med Sci Sports. 2004;14:286-295.
37. Sarasa-Renedo A, Chiquet M. Mechanical signals regulating extra-
cellular matrix gene expression in fibroblasts. Scand J Med Sci
Sports. 2005;15:223-230.
38. Schepsis AA, Wagner C, Leach RE. Surgical management of Achilles
tendon overuse injuries. A long-term follow-up study. Am J Sports
Med. 1994;22:611-619.
39. Silbernagel KG, Gustavsson A, Thomeé R, Karlsson J. Evaluation of
lower leg function in patients with Achilles tendinopathy. Knee Surg
Sports Traumatol Arthrosc. 2006;14:1207-1217.
40. Silbernagel KG, Thomeé R, Karlsson J. Cross-cultural adaptation of
the VISA-A questionnaire, an index of clinical severity for patients with
Achilles tendinopathy, with reliability, validity and structure evalua-
tions. BMC Musculoskelet Disord. 2005;6:12.
41. Silbernagel KG, Thomeé R, Thomeé P, Karlsson J. Eccentric overload
training for patients with chronic Achilles tendon pain—a randomised
controlled study with reliability testing of the evaluation methods.
Scand J Med Sci Sports. 2001;11:197-206.
42. Stanish WD, Curwin S, Mandell S. Tendinitis: Its Etiology and
Treatment. New York: Oxford University Press; 2000.
43. Testa V, Capasso G, Benazzo F, Maffulli N. Management of Achilles
tendinopathy by ultrasound-guided percutaneous tenotomy. Med Sci
Sports Exerc. 2002;34:573-580.
44. Thomeé R. A comprehensive treatment approach for patellofemoral
pain syndrome in young women. Phys Ther. 1997;77:1690-1703.
45. Visnes H, Hoksrud A, Cook J, Bahr R. No effect of eccentric training
on jumper’s knee in volleyball players during the competitive season:
a randomized clinical trial. Clin J Sport Med. 2005;15:227-234.
at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from

More Related Content

What's hot

PMR Buzz Volume 4.2021
PMR Buzz Volume 4.2021PMR Buzz Volume 4.2021
PMR Buzz Volume 4.2021mrinal joshi
 
20181121 aquatic exercises vs knee osteoarthritis
20181121 aquatic exercises vs knee osteoarthritis20181121 aquatic exercises vs knee osteoarthritis
20181121 aquatic exercises vs knee osteoarthritisJulie Tzeng
 
Objective_Assessment_of_Strength_Training.26-1
Objective_Assessment_of_Strength_Training.26-1Objective_Assessment_of_Strength_Training.26-1
Objective_Assessment_of_Strength_Training.26-1Scott Fulkerson
 
Study of functional outcome following arthroscopic anatomical ACL reconstruct...
Study of functional outcome following arthroscopic anatomical ACL reconstruct...Study of functional outcome following arthroscopic anatomical ACL reconstruct...
Study of functional outcome following arthroscopic anatomical ACL reconstruct...Dr.Avinash Rao Gundavarapu
 
Clinical portfolio
Clinical portfolioClinical portfolio
Clinical portfolioBen Gonano
 
Effects of Wii versus traditional supervised exercise on the functional fitne...
Effects of Wii versus traditional supervised exercise on the functional fitne...Effects of Wii versus traditional supervised exercise on the functional fitne...
Effects of Wii versus traditional supervised exercise on the functional fitne...spastudent
 
Andersen jc 2005 alongamento preepostreino
Andersen jc 2005  alongamento preepostreinoAndersen jc 2005  alongamento preepostreino
Andersen jc 2005 alongamento preepostreinoAlexandra Nurhan
 
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...Henrik Illerström
 
Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...
Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...
Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...CrimsonpublishersMedical
 
Hamstring strain prevention in elite soccer players
Hamstring strain prevention in elite soccer playersHamstring strain prevention in elite soccer players
Hamstring strain prevention in elite soccer playersFernando Farias
 
Effects of exercise for people with osteoarthritis
Effects of exercise for people with osteoarthritisEffects of exercise for people with osteoarthritis
Effects of exercise for people with osteoarthritisJulia Poynter
 
Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...
Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...
Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...jayanta Jayanta0074U
 
Inservice Table
Inservice TableInservice Table
Inservice TableDarcy James
 
Edited_Case Study Jared Barnes
Edited_Case Study Jared BarnesEdited_Case Study Jared Barnes
Edited_Case Study Jared BarnesAlonzo Gonzalez
 

What's hot (20)

PMR Buzz Volume 4.2021
PMR Buzz Volume 4.2021PMR Buzz Volume 4.2021
PMR Buzz Volume 4.2021
 
Dynamic balance-pain-and-functional-performance-in-cruciate-retaining-posteri...
Dynamic balance-pain-and-functional-performance-in-cruciate-retaining-posteri...Dynamic balance-pain-and-functional-performance-in-cruciate-retaining-posteri...
Dynamic balance-pain-and-functional-performance-in-cruciate-retaining-posteri...
 
20181121 aquatic exercises vs knee osteoarthritis
20181121 aquatic exercises vs knee osteoarthritis20181121 aquatic exercises vs knee osteoarthritis
20181121 aquatic exercises vs knee osteoarthritis
 
RPG em discinesia escapular associada a dor no pescoço
RPG em discinesia escapular associada a dor no pescoçoRPG em discinesia escapular associada a dor no pescoço
RPG em discinesia escapular associada a dor no pescoço
 
Nijs2006
Nijs2006Nijs2006
Nijs2006
 
Objective_Assessment_of_Strength_Training.26-1
Objective_Assessment_of_Strength_Training.26-1Objective_Assessment_of_Strength_Training.26-1
Objective_Assessment_of_Strength_Training.26-1
 
Study of functional outcome following arthroscopic anatomical ACL reconstruct...
Study of functional outcome following arthroscopic anatomical ACL reconstruct...Study of functional outcome following arthroscopic anatomical ACL reconstruct...
Study of functional outcome following arthroscopic anatomical ACL reconstruct...
 
Clinical portfolio
Clinical portfolioClinical portfolio
Clinical portfolio
 
Effects of Wii versus traditional supervised exercise on the functional fitne...
Effects of Wii versus traditional supervised exercise on the functional fitne...Effects of Wii versus traditional supervised exercise on the functional fitne...
Effects of Wii versus traditional supervised exercise on the functional fitne...
 
Andersen jc 2005 alongamento preepostreino
Andersen jc 2005  alongamento preepostreinoAndersen jc 2005  alongamento preepostreino
Andersen jc 2005 alongamento preepostreino
 
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
Difference in Early Results Between Sub-Acute and Delayed ACL reconstruction:...
 
Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...
Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...
Crimson Publishers - Efficacy of Core Strengthening Exercise on a Geriatric S...
 
Hamstring strain prevention in elite soccer players
Hamstring strain prevention in elite soccer playersHamstring strain prevention in elite soccer players
Hamstring strain prevention in elite soccer players
 
Effects of exercise for people with osteoarthritis
Effects of exercise for people with osteoarthritisEffects of exercise for people with osteoarthritis
Effects of exercise for people with osteoarthritis
 
Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...
Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...
Sub153105.pdf my article Outcome Measurement of Electrical Stimulation on Qua...
 
Inservice Table
Inservice TableInservice Table
Inservice Table
 
Randomized Controlled Trial Comparing Isolated Bone-Patellar Tendon-Bone Graf...
Randomized Controlled Trial Comparing Isolated Bone-Patellar Tendon-Bone Graf...Randomized Controlled Trial Comparing Isolated Bone-Patellar Tendon-Bone Graf...
Randomized Controlled Trial Comparing Isolated Bone-Patellar Tendon-Bone Graf...
 
17
1717
17
 
Edited_Case Study Jared Barnes
Edited_Case Study Jared BarnesEdited_Case Study Jared Barnes
Edited_Case Study Jared Barnes
 
Hs rehab
Hs rehabHs rehab
Hs rehab
 

Similar to Silbernagel kg continued 2007 ajsm(2) (3)

Long-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docxLong-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docxwkyra78
 
Long-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docxLong-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docxcroysierkathey
 
PMR Buzz Magazine_Oct 2022.pdf
PMR Buzz Magazine_Oct 2022.pdfPMR Buzz Magazine_Oct 2022.pdf
PMR Buzz Magazine_Oct 2022.pdfmrinal joshi
 
Pilot Study of Massage in Veterans with Knee Osteoarthritis
Pilot Study of Massage in Veterans with Knee OsteoarthritisPilot Study of Massage in Veterans with Knee Osteoarthritis
Pilot Study of Massage in Veterans with Knee OsteoarthritisMichael Juberg
 
Evaluación sf36 lumbalgia y rpg
Evaluación sf36 lumbalgia y rpgEvaluación sf36 lumbalgia y rpg
Evaluación sf36 lumbalgia y rpgRPG-LATAM
 
Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...
Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...
Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...ijtsrd
 
Preoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplastyPreoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplastyFUAD HAZIME
 
11. Frozen shoulder and Hydroplasty
11.  Frozen shoulder and Hydroplasty11.  Frozen shoulder and Hydroplasty
11. Frozen shoulder and Hydroplastydrajun
 
Outcome of Lumbar Fusion
Outcome of Lumbar FusionOutcome of Lumbar Fusion
Outcome of Lumbar FusionPaul Coelho, MD
 
Kinesiology taping
Kinesiology tapingKinesiology taping
Kinesiology tapingoeboda00
 
2007 comparison of general exercise, motor control exercise and spinal manipu...
2007 comparison of general exercise, motor control exercise and spinal manipu...2007 comparison of general exercise, motor control exercise and spinal manipu...
2007 comparison of general exercise, motor control exercise and spinal manipu...Fisio2012
 
paper presentation DR.GOLDY JAIN .pptx
paper presentation DR.GOLDY JAIN  .pptxpaper presentation DR.GOLDY JAIN  .pptx
paper presentation DR.GOLDY JAIN .pptxDr Goldy Jain
 
Adult complex congential heart disease
Adult complex congential heart diseaseAdult complex congential heart disease
Adult complex congential heart diseasemeshalejaz
 
Global health 2018_3_30_70034
Global health 2018_3_30_70034Global health 2018_3_30_70034
Global health 2018_3_30_70034Zahra SADEK
 
protocol of shakers swallwing.docx
protocol of shakers swallwing.docxprotocol of shakers swallwing.docx
protocol of shakers swallwing.docxZeinabGamal14
 

Similar to Silbernagel kg continued 2007 ajsm(2) (3) (20)

Long-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docxLong-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docx
 
Long-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docxLong-Term Effect of Exercise Therapyand Patient Education on.docx
Long-Term Effect of Exercise Therapyand Patient Education on.docx
 
PMR Buzz Magazine_Oct 2022.pdf
PMR Buzz Magazine_Oct 2022.pdfPMR Buzz Magazine_Oct 2022.pdf
PMR Buzz Magazine_Oct 2022.pdf
 
Pilot Study of Massage in Veterans with Knee Osteoarthritis
Pilot Study of Massage in Veterans with Knee OsteoarthritisPilot Study of Massage in Veterans with Knee Osteoarthritis
Pilot Study of Massage in Veterans with Knee Osteoarthritis
 
Evaluación sf36 lumbalgia y rpg
Evaluación sf36 lumbalgia y rpgEvaluación sf36 lumbalgia y rpg
Evaluación sf36 lumbalgia y rpg
 
Pilates na lombalgia
Pilates na lombalgiaPilates na lombalgia
Pilates na lombalgia
 
Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...
Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...
Comparison between Effectiveness of Hand Arm Bimanual Intensive Training and ...
 
Exercise-and-MS-(1).pptx
Exercise-and-MS-(1).pptxExercise-and-MS-(1).pptx
Exercise-and-MS-(1).pptx
 
Preoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplastyPreoperative physical therapy in primary total knee arthroplasty
Preoperative physical therapy in primary total knee arthroplasty
 
DYNAMIC MONITORING OF THE EFFECT OF SPECIAL KINESITHERAPEUTIC PROGRAM ON PAIN...
DYNAMIC MONITORING OF THE EFFECT OF SPECIAL KINESITHERAPEUTIC PROGRAM ON PAIN...DYNAMIC MONITORING OF THE EFFECT OF SPECIAL KINESITHERAPEUTIC PROGRAM ON PAIN...
DYNAMIC MONITORING OF THE EFFECT OF SPECIAL KINESITHERAPEUTIC PROGRAM ON PAIN...
 
PHYSICAL ACTIVITY AND POLIO
PHYSICAL ACTIVITY AND POLIOPHYSICAL ACTIVITY AND POLIO
PHYSICAL ACTIVITY AND POLIO
 
11. Frozen shoulder and Hydroplasty
11.  Frozen shoulder and Hydroplasty11.  Frozen shoulder and Hydroplasty
11. Frozen shoulder and Hydroplasty
 
Outcome of Lumbar Fusion
Outcome of Lumbar FusionOutcome of Lumbar Fusion
Outcome of Lumbar Fusion
 
IJPR.2015.138
IJPR.2015.138IJPR.2015.138
IJPR.2015.138
 
Kinesiology taping
Kinesiology tapingKinesiology taping
Kinesiology taping
 
2007 comparison of general exercise, motor control exercise and spinal manipu...
2007 comparison of general exercise, motor control exercise and spinal manipu...2007 comparison of general exercise, motor control exercise and spinal manipu...
2007 comparison of general exercise, motor control exercise and spinal manipu...
 
paper presentation DR.GOLDY JAIN .pptx
paper presentation DR.GOLDY JAIN  .pptxpaper presentation DR.GOLDY JAIN  .pptx
paper presentation DR.GOLDY JAIN .pptx
 
Adult complex congential heart disease
Adult complex congential heart diseaseAdult complex congential heart disease
Adult complex congential heart disease
 
Global health 2018_3_30_70034
Global health 2018_3_30_70034Global health 2018_3_30_70034
Global health 2018_3_30_70034
 
protocol of shakers swallwing.docx
protocol of shakers swallwing.docxprotocol of shakers swallwing.docx
protocol of shakers swallwing.docx
 

More from Satoshi Kajiyama

Biomechanics of the thorax research evidence and clinical expertise
Biomechanics of the thorax   research evidence and clinical expertiseBiomechanics of the thorax   research evidence and clinical expertise
Biomechanics of the thorax research evidence and clinical expertiseSatoshi Kajiyama
 
Prp and hamstring injury
Prp and hamstring injuryPrp and hamstring injury
Prp and hamstring injurySatoshi Kajiyama
 
Chornic pain and the thracic spine
Chornic pain and the thracic spineChornic pain and the thracic spine
Chornic pain and the thracic spineSatoshi Kajiyama
 
Regional interdependence and manual therapy directed at the thoracic spine
Regional interdependence and manual therapy directed at the thoracic spineRegional interdependence and manual therapy directed at the thoracic spine
Regional interdependence and manual therapy directed at the thoracic spineSatoshi Kajiyama
 
Clin infect dis. 2014-stevens-cid ciu296
Clin infect dis. 2014-stevens-cid ciu296Clin infect dis. 2014-stevens-cid ciu296
Clin infect dis. 2014-stevens-cid ciu296Satoshi Kajiyama
 
Br j sports med 2013-scott-536-44
Br j sports med 2013-scott-536-44Br j sports med 2013-scott-536-44
Br j sports med 2013-scott-536-44Satoshi Kajiyama
 
Basics of soft tissue examination
Basics of soft tissue examinationBasics of soft tissue examination
Basics of soft tissue examinationSatoshi Kajiyama
 
Baseball ue injuries
Baseball ue injuriesBaseball ue injuries
Baseball ue injuriesSatoshi Kajiyama
 
Athletic pubalgia mgmt
Athletic pubalgia mgmtAthletic pubalgia mgmt
Athletic pubalgia mgmtSatoshi Kajiyama
 
Assorted handouts #2
Assorted handouts #2Assorted handouts #2
Assorted handouts #2Satoshi Kajiyama
 
A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...
A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...
A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...Satoshi Kajiyama
 
Proteinuria treatment algorithm
Proteinuria treatment algorithmProteinuria treatment algorithm
Proteinuria treatment algorithmSatoshi Kajiyama
 
Treatment of sacroiliac_joint_dysfunction_nata
Treatment of sacroiliac_joint_dysfunction_nataTreatment of sacroiliac_joint_dysfunction_nata
Treatment of sacroiliac_joint_dysfunction_nataSatoshi Kajiyama
 
Stride length for mlb pitchers march 2014
Stride length for mlb pitchers march 2014Stride length for mlb pitchers march 2014
Stride length for mlb pitchers march 2014Satoshi Kajiyama
 
Tendon anatomy diagram
Tendon anatomy diagramTendon anatomy diagram
Tendon anatomy diagramSatoshi Kajiyama
 
Sports health overhead athlete part 1 and 2
Sports health overhead athlete part 1 and 2Sports health overhead athlete part 1 and 2
Sports health overhead athlete part 1 and 2Satoshi Kajiyama
 
The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7Satoshi Kajiyama
 
Laudner kajiyama the relationship between anterior gh laxity and propriocepti...
Laudner kajiyama the relationship between anterior gh laxity and propriocepti...Laudner kajiyama the relationship between anterior gh laxity and propriocepti...
Laudner kajiyama the relationship between anterior gh laxity and propriocepti...Satoshi Kajiyama
 

More from Satoshi Kajiyama (20)

Biomechanics of the thorax research evidence and clinical expertise
Biomechanics of the thorax   research evidence and clinical expertiseBiomechanics of the thorax   research evidence and clinical expertise
Biomechanics of the thorax research evidence and clinical expertise
 
Prp and hamstring injury
Prp and hamstring injuryPrp and hamstring injury
Prp and hamstring injury
 
Chornic pain and the thracic spine
Chornic pain and the thracic spineChornic pain and the thracic spine
Chornic pain and the thracic spine
 
Regional interdependence and manual therapy directed at the thoracic spine
Regional interdependence and manual therapy directed at the thoracic spineRegional interdependence and manual therapy directed at the thoracic spine
Regional interdependence and manual therapy directed at the thoracic spine
 
Hs rehab 2
Hs rehab 2Hs rehab 2
Hs rehab 2
 
Clin infect dis. 2014-stevens-cid ciu296
Clin infect dis. 2014-stevens-cid ciu296Clin infect dis. 2014-stevens-cid ciu296
Clin infect dis. 2014-stevens-cid ciu296
 
Br j sports med 2013-scott-536-44
Br j sports med 2013-scott-536-44Br j sports med 2013-scott-536-44
Br j sports med 2013-scott-536-44
 
Basics of soft tissue examination
Basics of soft tissue examinationBasics of soft tissue examination
Basics of soft tissue examination
 
Baseball ue injuries
Baseball ue injuriesBaseball ue injuries
Baseball ue injuries
 
Athletic pubalgia mgmt
Athletic pubalgia mgmtAthletic pubalgia mgmt
Athletic pubalgia mgmt
 
Assorted handouts #2
Assorted handouts #2Assorted handouts #2
Assorted handouts #2
 
A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...
A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...
A neuroscience approach_to_managing_athletes_with_low_back_pain_puentedura_ph...
 
Proteinuria treatment algorithm
Proteinuria treatment algorithmProteinuria treatment algorithm
Proteinuria treatment algorithm
 
Treatment of sacroiliac_joint_dysfunction_nata
Treatment of sacroiliac_joint_dysfunction_nataTreatment of sacroiliac_joint_dysfunction_nata
Treatment of sacroiliac_joint_dysfunction_nata
 
Stride length for mlb pitchers march 2014
Stride length for mlb pitchers march 2014Stride length for mlb pitchers march 2014
Stride length for mlb pitchers march 2014
 
Tendon anatomy diagram
Tendon anatomy diagramTendon anatomy diagram
Tendon anatomy diagram
 
Sports health overhead athlete part 1 and 2
Sports health overhead athlete part 1 and 2Sports health overhead athlete part 1 and 2
Sports health overhead athlete part 1 and 2
 
Sleep article
Sleep articleSleep article
Sleep article
 
The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7The role of_rotational_mobility_and_power_on 7
The role of_rotational_mobility_and_power_on 7
 
Laudner kajiyama the relationship between anterior gh laxity and propriocepti...
Laudner kajiyama the relationship between anterior gh laxity and propriocepti...Laudner kajiyama the relationship between anterior gh laxity and propriocepti...
Laudner kajiyama the relationship between anterior gh laxity and propriocepti...
 

Recently uploaded

Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000aliya bhat
 
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Servicemakika9823
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...Garima Khatri
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Modelssonalikaur4
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...CALL GIRLS
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalorenarwatsonia7
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 

Recently uploaded (20)

Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
 
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hebbal Just Call 7001305949 Top Class Call Girl Service Available
 
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls ServiceKesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
Kesar Bagh Call Girl Price 9548273370 , Lucknow Call Girls Service
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
 
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎ 8250192130 Independent Escort Service Coimbatore
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira â€ïžđŸ‘ 8250192130 👄 Independent Escort Service ...
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
 
Russian Call Girls in Delhi Tanvi âžĄïž 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi âžĄïž 9711199012 💋📞 Independent Escort Service...Russian Call Girls in Delhi Tanvi âžĄïž 9711199012 💋📞 Independent Escort Service...
Russian Call Girls in Delhi Tanvi âžĄïž 9711199012 💋📞 Independent Escort Service...
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Marathahalli 📞 9907093804 High Profile Service 100% Safe
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
 

Silbernagel kg continued 2007 ajsm(2) (3)

  • 1. http://ajs.sagepub.com Medicine American Journal of Sports DOI: 10.1177/0363546506298279 2007; 35; 897 originally published online Feb 16, 2007;Am. J. Sports Med. Karin GrĂ€vare Silbernagel, Roland ThomeĂ©, Bengt I. Eriksson and Jon Karlsson Achilles Tendinopathy: A Randomized Controlled Study Continued Sports Activity, Using a Pain-Monitoring Model, During Rehabilitation in Patients With http://ajs.sagepub.com/cgi/content/abstract/35/6/897 The online version of this article can be found at: Published by: http://www.sagepublications.com On behalf of: American Orthopaedic Society for Sports Medicine can be found at:American Journal of Sports MedicineAdditional services and information for http://ajs.sagepub.com/cgi/alertsEmail Alerts: http://ajs.sagepub.com/subscriptionsSubscriptions: http://www.sagepub.com/journalsReprints.navReprints: http://www.sagepub.com/journalsPermissions.navPermissions: at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 2. Achilles tendinopathy is a common overuse injury, espe- cially among athletes involved in activities that include running and jumping.10,15,30,42 Achilles tendinopathy causes many patients to decrease their physical activity level, with a potentially negative effect on their overall health and general well-being.10,15,28 The literature describes various types of treatment for patients with Achilles tendinopathy, including rest, heat, ultrasound, electrical stimulation, anti-inflammatory medica- tions, exercise, and surgery.1,10,11,28 Despite the high incidence of Achilles tendon disorder and the various recommended treatment protocols, there are, to the best of our knowledge, only 9 randomized trials on various treatments in the Continued Sports Activity, Using a Pain- Monitoring Model, During Rehabilitation in Patients With Achilles Tendinopathy A Randomized Controlled Study Karin GrĂ€vare Silbernagel,* †‡ PT, ATC, PhD, Roland ThomeĂ©, †‡ PT, PhD, Bengt I. Eriksson, † MD, PhD, and Jon Karlsson, † MD, PhD From the † Lundberg Laboratory of Orthopaedic Research, Department of Orthopaedics, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden, and ‡ SportRehab–Physical Therapy & Sports Medicine Clinic, Göteborg, Sweden Background: Achilles tendinopathy is a common overuse injury, especially among athletes involved in activities that include run- ning and jumping. Often an initial period of rest from the pain-provoking activity is recommended. Purpose: To prospectively evaluate if continued running and jumping during treatment with an Achilles tendon-loading strength- ening program has an effect on the outcome. Study Design: Randomized clinical control trial; Level of evidence, 1. Methods: Thirty-eight patients with Achilles tendinopathy were randomly allocated to 2 different treatment groups. The exercise training group (n = 19) was allowed, with the use of a pain-monitoring model, to continue Achilles tendon-loading activity, such as running and jumping, whereas the active rest group (n = 19) had to stop such activities during the first 6 weeks. All patients were rehabilitated according to an identical rehabilitation program. The primary outcome measures were the Swedish version of the Victorian Institute of Sports Assessment–Achilles questionnaire (VISA-A-S) and the pain level during tendon-loading activity. Results: No significant differences in the rate of improvements were found between the groups. Both groups showed, however, significant (P < .01) improvements, compared with baseline, on the primary outcome measure at all the evaluations. The exer- cise training group had a mean (standard deviation) VISA-A-S score of 57 (15.8) at baseline and 85 (12.7) at the 12-month follow-up (P < .01). The active rest group had a mean (standard deviation) VISA-A-S score of 57 (15.7) at baseline and 91 (8.2) at the 12-month follow-up (P < .01). Conclusions: No negative effects could be demonstrated from continuing Achilles tendon-loading activity, such as running and jumping, with the use of a pain-monitoring model, during treatment. Our treatment protocol for patients with Achilles tendinopathy, which gradually increases the load on the Achilles tendon and calf muscle, demonstrated significant improvements. A training reg- imen of continued, pain-monitored, tendon-loading physical activity might therefore represent a valuable option for patients with Achilles tendinopathy. Keywords: Achilles tendon; Victorian Institute of Sports Assessment–Achilles questionnaire; functional evaluation; pain-monitoring model 897 *Address correspondence to Karin GrĂ€vare Silbernagel, PT, ATC, PhD, Lundberg Laboratory of Orthopaedic Research, Department of Orthopaedics, Göteborg University, Sahlgrenska University Hospital, Gröna StrĂ„ket 12, 413 45 Göteborg, Sweden (e-mail: karin.gravare-silbernagel@orthop.gu.se). No potential conflict of interest declared. The American Journal of Sports Medicine, Vol. 35, No. 6 DOI: 10.1177/0363546506298279 © 2007 American Orthopaedic Society for Sports Medicine at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 3. 898 Silbernagel et al The American Journal of Sports Medicine published literature. 4,19,21,23,26,32,33,36,41 It is also unclear which type of treatment is most effective for patients with Achilles tendinopathy and what criteria to use when choosing treat- ment.1,10,11,28 The effects of exercise training appear to be promising, and the consensus today seems to be that all patients should be treated with an exercise program for 3 to 6 months.1,3,5,7,11,21,26,36,41 Even with other types of treatments such as surgery, sclerosing injections, heat, ultrasound, elec- trical stimulation, and medications, some type of exercise is recommended as a complement to the treatment.2,23,29,31,38,43 Historically, a period of rest from the pain-provoking physical activity (usually running and jumping) has been recommended when initiating treatment.7,30,42 Nichols 25 recommends that the rest period should depend on the severity and duration of injury. The literature is, however, generally vague when recommending some type of modi- fied rest in which the pain-provoking activity should be limited or avoided.11,28,42 Because these patients are gener- ally very physically active people, an over-long period of rest or decrease in physical activity may have a negative effect on their quality of life and sporting performance.8 Furthermore, an interesting and unanswered question is whether a rest period has a negative or a positive effect on the healing process. Likewise, is it harmful to continue the pain-provoking activity, or could it even be beneficial with an adjusted physical activity? To our knowledge, the effect of continued tendon-loading activity (such as running and jumping) on treatment in patients with Achilles tendinopathy has not been studied. We have previously used a pain-monitoring model, orig- inally described by ThomeĂ©,44 as a guideline for the patient and clinician during treatment.41 The purpose of this study was to prospectively evaluate if continued running and jumping during treatment with an Achilles tendon-loading strengthening program would have an effect on the outcome. MATERIALS AND METHODS Study Design This was a prospective, randomized, controlled study to assess the outcome of 2 different rehabilitation protocols in patients with Achilles tendinopathy. Patients who fulfilled the entry criteria as defined by the study protocol were ran- domized into the 2 different treatment groups—exercise training group and active rest group—during the first 6 weeks of rehabilitation. All patients were rehabilitated according to an identical rehabilitation program: a progres- sive Achilles tendon-loading strengthening program for 12 weeks to 6 months. The randomization list was generated by a computer that was run by an independent statistician. The random- ization list was not known to anyone in the study. The spe- cific treatment was indicated in numbered opaque envelopes given to patients in the order of inclusion. The treating physical therapist opened the envelopes at the start of treatment and at that time informed the patients of their treatment group. The outcome was evaluated by patient-administered questionnaires for symptoms with physical activity and by muscle-tendon functional evaluations at baseline and 6 weeks, 3, 6, and 12 months after initiation of the treat- ment. The classification system of physical activity used was that of Grimby9 (Table 1). All the evaluations were blinded and performed by 1 physical therapist who was not involved in the rehabilitation of the patients and was unaware of which treatment group the patients belonged to. Instructions for the exercise program and criteria for the treatment groups were provided by physical therapists working at the SportRehab physical therapy clinic in Göteborg, Sweden. The patients were in contact with the physical therapists on average once a week for the first 6 weeks and then as often as the physical therapist and patient deemed necessary. All patients received oral and written information about the purpose and procedure of the study, and written informed consent was obtained. Ethics approval was obtained from the Human Ethics Committee at the Medical Faculty, Göteborg University, Sweden. Inclusion and Exclusion Criteria The patients were recruited through mailings to hospitals, orthopaedic surgeons, physical therapy clinics, and orthopaedic technicians in the Göteborg area. They were referred by their physician or initiated contact themselves. Initially, the patients were examined by an experienced licensed physical therapist who determined if the patients met the required criteria to participate in the study. Men and women 20 to 60 years of age with Achilles tendinopa- thy and duration of pain for more than 2 months were included. The definition of Achilles tendinopathy used was the clinical diagnosis, which is a combination of Achilles tendon pain, swelling, and impaired performance, as TABLE 1 Physical Activity Level Scale a Level Activity Description 1 Hardly any physical activity 2 Mostly sitting, sometimes a walk, easy gardening, or similar tasks 3 Light physical exercise ~2-4 h/wk, eg, walks (including to and from shops), fishing, dancing, ordinary gardening 4 Moderate exercise 1-2 h/wk, eg, jogging, swimming, gymnastics, heavier gardening, home repair, or easier physical activities >4 h/wk 5 Moderate exercise at least 3 h/wk, eg, tennis, swimming, jogging 6 Hard or very hard exercise regularly (several times a week), in which the physical exertion is great, eg, jogging, skiing a Adapted with permission from Grimby G. Physical activity and muscle training in the elderly. Acta Med Scand Suppl. 1986;711:233-237. at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 4. Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 899 recommended in the literature. 11,20,28 Ultrasonography evaluation was not used to determine inclusion or exclu- sion criteria. The exclusion criteria were injury to the foot, knee, hip, or back and/or history of rheumatoid arthritis or any other illness or injury thought to interfere with the participation in the study. Patients with insertional tendinopathy were also excluded. Patients From January 2004 to December 2004, 42 patients with a total of 57 injured tendons were included in the study. Two of the patients included in the exercise training group were excluded after the initial evaluation. One was excluded because he was not able to attend any of the other evalu- ations or physical therapy visits because of illness in the family, and the other patient developed pain in the ankle and knee that hindered participation in the study. Two patients included in the active rest group were also excluded after the initial evaluation. One subject requested exclusion because of self-reported noncompli- ance and difficulty with attending the evaluations and physical therapy sessions because of work conflicts. The other patient was excluded because of illness that did not allow him to start treatment or attend the 6-week and 3-month evaluations. The final study group thus consisted of 38 patients (18 women, 20 men) with a total of 51 injured tendons (Table 2). The exercise training group consisted of 19 patients (7 women, 12 men) with a total of 26 injured tendons. The active rest group consisted of 19 patients (11 women, 8 men) with a total of 25 injured tendons. There were no significant differences between the groups with respect to age, height, weight, gender, number of patients with bilateral symptoms, duration of symptoms, and physical activity level.9 The majority of the patients reported the injury to be due to overuse (87%) and were injured doing physical activity (84%). Physical Activity Criteria for the 2 Groups The exercise training group was allowed to continue Achilles tendon-loading activity for the first 6 weeks of rehabilitation. The patients used the pain-monitoring model, described by ThomeĂ©44 and modified by Silbernagel et al,41 as a guide to the level of physical activity. According to the pain-monitoring model, the pain was allowed to reach level 5 on the visual analog scale (VAS), where 0 is no pain and 10 is the worst pain imaginable, during the exercise training. The pain after the exercise program was allowed to reach 5 on the VAS but should have subsided by the following morning. Pain and stiffness in the Achilles tendon were not allowed to increase from week to week. The active rest group was not allowed to perform the physical activity that caused the symptoms or any other Achilles tendon-loading activity involving running or jumping during the first 6 weeks of rehabilitation. If they wanted to, they were allowed to swim, run in deep water using a buoyancy vest, bike, or walk as daily activity (but not to walk for exercise). Training Diaries Both groups kept a training diary for 0 to 12 weeks, in which they documented their rehabilitation exercises, other physical activities, symptoms, or other comments. The training diary was used by the treating physical ther- apists to assess compliance to treatment group. Treatment Protocol All patients were rehabilitated according to an identical rehabilitation program—a progressive Achilles tendon- loading strengthening program for 12 weeks to 6 months. The Achilles tendon and calf muscle strengthening proto- col was based on our previous study,41 but it has been modified in the clinic over the years (Table 3). The exer- cises were performed once a day, and the intensity and number of repetitions were based on the patients’ status. TABLE 2 Patient Demographics a Parameter Exercise Training Group Active Rest Group Total included 19 (7 + 12) 19 (11 + 8) (women + men) Involved side Right 5 6 Left 7 7 Both 7 6 Involved tendons 26 25 Age (y) Mean 44 48 SD 8.8 6.8 Range 30-58 38-58 Height (cm) Mean 179 177 SD 9 8 Range 158.5-193 163.5-194.5 Weight (kg) Mean 80.7 78.7 SD 15 11.6 Range 59.7-113.2 61.7-102.6 Duration of symptoms (mo) Mean 48 24.4 SD 84.5 40.8 Range 3-360 3-168 How injured Overuse 16 17 Acute injury 3 2 Injured doing Exercise 17 15 Leisure 0 1 Work 1 1 Other 1 2 Physical activity level before injury Mean 4.3 4.6 SD 1.3 0.6 Range 1-6 3-5 a No significant differences were found between the groups. SD, standard deviation. at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 5. 900 Silbernagel et al The American Journal of Sports Medicine The exercises consisted mainly of 2-legged, 1-legged, eccen- tric, and fast-rebounding toe raises. The intensity was increased successively by increasing the range of motion (starting standing on the floor and then performing the exer- cise standing on stairs), increasing the number of repetitions (starting at 3 sets of maximum amount tolerated, up to 15 repetitions maximum per set), and increasing the load (with use of either a backpack or weight machine and by increas- ing the speed of loading). In phase 3 of the rehabilitation pro- gram, the patients started plyometric training. Phase 1 was continued for 1 to 2 weeks, phase 2 for 2 to 5 weeks, and phase 3 for 3 to 12 weeks, or longer if needed to achieve the patient status required for phase 4. Phase 4 was continued from 12 weeks to 6 months from the start of the treatment or longer if needed, until the patient had no symptoms. The progression of the exercise program was monitored by the treating physi- cal therapists, and both groups followed the treatment proto- col (Table 3). Outcome Measures The primary outcome measures were the Swedish version of the Victorian Institute of Sports Assessment–Achilles questionnaire (VISA-A-S)35,40 and pain level during tendon- loading activity (hopping). For pain documentation, the VAS was used, where 0 is equal to no pain and 10 is the worst pain imaginable. Functional Evaluations The secondary outcome measures were the functional eval- uations. The functional evaluations consisted of ankle dor- siflexion range of motion and a test battery developed to evaluate lower leg function in patients with Achilles tendinopathy.39 The test battery consisted of 3 different jump tests, 2 different strength tests, and 1 endurance test. The jump tests were a countermovement jump (CMJ), a drop CMJ, and hopping. The CMJ was a vertical jump in which the starting position was an upright posture with hands placed behind the back. For the drop CMJ, the patients started by standing on 1 leg on a 20-cm-high wooden box. The patients were instructed to “fall” down onto the floor and, directly on landing, to perform a maxi- mum vertical 1-legged jump. The strength tests were a concentric toe raise and an eccentric-concentric toe raise, and the endurance test was a standing toe raise test with 10% of the body weight added with a weight belt. The test battery was done exactly as described in the original arti- cle.39 The functional tests have previously been shown to have good reliability in healthy subjects.39 The functional tests have also been shown to have good validity for patients with Achilles tendinopathy and the ability to detect clinically relevant differences in function between the injured and healthy leg as well as between the more symptomatic and less symptomatic leg.39 Ultrasonography Measures To establish a diagnosis of Achilles tendon injury, ultra- sonography was performed using a real-time scanner, with a 7.5-MHz linear array probe. Both tendons were scanned in all patients, in the longitudinal as well as the axial plane. The tendon injury was registered as heterogeneity and/or hypoechoic areas in the tendon. Tendon edema and tendon thickening were also documented. TABLE 3 Treatment Protocol Phase 1: Weeks 1-2 Patient status: Pain and difficulty with all activities, difficulty performing ten 1-legged toe raises Goal: Start to exercise, gain understanding of their injury and of pain-monitoring model Treatment program: Perform exercises every day ‱ Pain-monitoring model information and advice on exercise activity ‱ Circulation exercises (moving foot up/down) ‱ 2-legged toe raises standing on the floor (3 sets × 10-15 repetitions/set) ‱ 1-legged toe raises standing on the floor (3 × 10) ‱ Sitting toe raises (3 × 10) ‱ Eccentric toe raises standing on the floor (3 × 10) Phase 2: Weeks 2-5 Patient status: Pain with exercise, morning stiffness, pain when performing toe raises Goal: Start strengthening Treatment program: Perform exercises every day ‱ 2-legged toe raises standing on edge of stair (3 × 15) ‱ 1-legged toe raises standing on edge of stair (3 × 15) ‱ Sitting toe raises (3 × 15) ‱ Eccentric toe raises standing on edge of stair (3 × 15) ‱ Quick-rebounding toe raises (3 × 20) Phase 3: Weeks 3–12 (longer if needed) Patient status: Handled the phase 2 exercise program, no pain distally in tendon insertion, possibly decreased or increased morn- ing stiffness Goal: Heavier strength training, increase or start running and/or jumping activity Treatment program: Perform exercises every day and with heavier load 2-3 times/week ‱ 1-legged toe raises standing on edge of stair with added weight (3 × 15) ‱ Sitting toe raises (3 × 15) ‱ Eccentric toe raises standing on edge of stair with added weight (3 × 15) ‱ Quick-rebounding toe raises (3 × 20) ‱ Plyometric training Phase 4: Week 12–6 months (longer if needed) Patient status: Minimal symptoms, morning stiffness not every day, can participate in sports without difficulty Goal: Maintenance exercise, no symptoms Treatment program: Perform exercises 2-3 times/week ‱ 1-legged toe raises standing on edge of stair with added weight (3 × 15) ‱ Eccentric toe raises standing on edge of stair with added weight (3 × 15) ‱ Quick-rebounding toe raises (3 × 20) at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 6. Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 901 Statistical Analysis A power analysis was carried out before the study. It was determined that a total of 40 patients were needed to detect a clinically significant mean score difference of 10 points in the VISA-A-S score with 80% power and at P = .05. All the evalu- ations were performed based on intention-to-treat analysis. This was done to safely deal with noncompliance in the groups. Nonparametric statistics were used in cases where we could not be sure that the data were normally distributed. To compare the groups, the differences in results of the injured tendons between the initial evaluation and the results on the 6-week, 3-, 6-, and 12-month evaluations were used. The groups were then compared using the Mann-Whitney U test. The Mann-Whitney U test was also used to compare the groups at baseline. To evaluate improvements from baseline, the Wilcoxon signed rank test was used. A Spearman rank correlation coefficient was used to evaluate the correlation between improvement and severity of symptoms and dura- tion of symptoms. Values are reported as mean ± standard deviation (SD). RESULTS The exercise training group had a mean (SD) VISA-A-S score of 57 (15.8) at baseline and 85 (12.7) at the 12-month follow-up (P < .01). The active rest group had a mean (SD) VISA-A-S score of 57 (15.7) at baseline and 91 (8.2) at the 12-month follow-up (P < .01). The ultrasonography revealed pathologic changes in 39 of 51 tendons, while 12 of 51 tendons were judged to have minimal or no changes. Similar pathological changes, that is, heterogeneity and/or hypoechoic areas within the ten- don, were found in 7 contralateral symptom-free tendons. Furthermore, there were no significant differences between the groups in baseline characteristics for any of the measured parameters. Comparison Between Groups For the primary outcomes, VISA-A-S score and pain during hopping, there were no significant differences in the change in scores/pain level compared with baseline between the groups at any of the follow-ups (Table 4). There were, more- over, no significant differences in the rate of improvement between the groups in any of the functional evaluations. Change Over Time Within Groups Both groups showed significant (P < .01) improvements on the VISA-A-S score (Table 5 and Figure 1) and decrease in pain during hopping (Table 6) at 6 weeks and at 3-, 6-, and 12-month evaluations. Both groups improved significantly (P < .05) in the total amount of work (in joules) performed dur- ing the toe-raise test performed at all follow-ups compared with baseline (Table 7). The active rest group had significant (P < .05) improvement in the eccentric-concentric toe-raise power at 6 weeks, but the exercise training group had signif- icant improvements at the other follow-ups (Table 7). The exercise training group showed significant (P < .05) improve- ments in drop CMJ height and hopping quotient at the 6- month follow-up not seen in the active rest group (Table 7). Neither group had any significant improvements in CMJ height and concentric toe-raise power at any of the 4 evalua- tions (Table 7). There was no increase in range of motion of dorsiflexion in either group; instead, the exercise training group had a significant (P < .05) decrease in range of motion at 6 weeks and 6 months (Table 7). TABLE 4 VISA-A-S Scores and Hopping Pain Changes Between Baseline Evaluation and 6-Week, 3-Month, and 6-Month Evaluations a Score Change 0-6 Weeks 0-3 Months 0-6 Months 0-12 Months Exercise Active Exercise Active Exercise Active Exercise Active Group Training Rest Training Rest Training Rest Training Rest VISA-A-S score n 26 23 25 24 26 23 26 24 Mean 13 16 18 20 23 25 28 34 SD 17 12 18 20 20 17 17 17 95% CI 6-20 10-21 10-25 12-28 15-31 17-32 21-34 27-41 Median 10.5 16 16 19 20.5 21 26.5 31.5 IQR 18 11 20 26.5 21.5 26 20 29.5 Hopping pain (VAS) n 26 23 25 24 25 23 22 23 Mean −1.3 –2.3 –2.2 –2.6 –2.8 –3.0 –3.2 –3.4 SD 2.1 2.0 2.6 2.5 2.7 2.3 2.7 2.7 95% CI –2.2 to –0.5 –3.2 to –1.4 –3.3 to –1.1 –3.7 to –1.6 –3.9 to –1.6 –3.9 to –1.6 –4.4 to –2.0 –4.6 to –2.3 Median –1.0 –2.5 –2.0 –2.7 –2.0 –3.0 –3.5 –4.0 IQR 3.0 4.0 4.2 5.0 4.0 5.0 4.0 5.0 a Mean, standard deviation (SD), 95% confidence interval (CI), median, and interquartile range (IQR) are provided. There were no signif- icant differences (P < .05) between the groups on any of the occasions. VISA-A-S, Swedish version of the Victorian Institute of Sports Assessment -Achilles questionnaire; VAS, visual analog scale. at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 7. 902 Silbernagel et al The American Journal of Sports Medicine There were significant (P < .05) correlations between the initial VISA-A-S score and the improvements in VISA-A-S score seen at the subsequent evaluations: 0 to 6 weeks, r = –.292; 0 to 3 months, r = –.470; 0 to 6 months, r = –.459; and 0 to 12 months, r = –.756. The same significant (P < .05) correlations were seen when comparing the initial pain level with hopping and the improvements seen in pain level at the subsequent evalua- tions: 0 to 6 weeks, r = –.498; 0 to 3 months, r = –.591; 0 to 6 months, r = –.681; and 0 to 12 months, r = –.823. There were no significant correlations between the dura- tion of symptoms and the change in VISA-A-S score or change in pain level with hopping at any of the evaluations. DISCUSSION This randomized study could not demonstrate any nega- tive effects from allowing the patients to continue Achilles tendon-loading activity (such as running and jumping) when using the pain-monitoring model during rehabilita- tion for Achilles tendinopathy. Furthermore, this randomized treatment study confirms earlier results that strengthening exercises of the Achilles tendon, gastrocnemius, and soleus muscle complex cause significant improvements in symptoms and muscle-tendon function in patients with Achilles tendinopathy.5,21,26,36,41 Historically, in the literature, initial rest from pain- provoking activity has been recommended for Achilles tendinopathy,7,30,42 but it appears that this might not be necessary. The patients in this study could safely continue with their activity of choice as long as they followed the pain-monitoring model. The pain-monitoring model states that exercise activity that does not cause pain above 5 of 10 on a VAS is safe. Because most of the patients with Achilles tendinopathy are middle-aged, physically active individuals, the allowance of continued exercise activity may have positive effects on their general health and qual- ity of life. Also, athletes with Achilles tendinopathy would potentially benefit from being able to continue their sports activity in order to avoid significant deterioration in sport- ing performance. As in the present study, Visnes et al45 also allowed continued physical activity during treatment in their study on athletes with patellar tendinopathy. They could not, however, show any positive effect of eccentric training when elite volleyball players with patellar tendinopathy continued their normal in-season training. No physical activity-monitoring model, such as the pain- monitoring model used in the present study, was used by Visnes et al45 ; this might explain the lack of improvement. It cannot be excluded in the present study that the lack of treatment differences found between the 2 treatment groups for the functional secondary outcome evaluations represents a type II error. The power calculation made was for the primary and not for the secondary outcomes. Thus, no definite conclusions can be drawn from the results for the functional evaluations. The literature states that Achilles tendinopathy mostly occurs in middle-aged men. In our study, as well in others, it can be seen that there is a change over the years in the per- centage of women included. In the often-cited study by Kvist,14 it was reported that 89% of the patients with Achilles tendinopathy were men. In a review of several more recent treatment studies, the percentage of women was between 14% and 55%, with the higher percentages seen in the later studies.4-7,21,24,27,29-31,38 Because previous studies on Achilles tendinopathy include both men and women, we also included both men and women in the present study. At the time we planned the study, we did not expect to have as high as 50% women and did not expect that there would be a need for controlling the ratio between men and women in each group to get an equal number. Even though there are 7 women in the exercise training group and 11 women in the active rest group, there is no significant difference in the number of women in the 2 treatment groups. However, we recognize that the numbers are low and the chance to detect a difference with statistics is small. Further, statistical analysis comparing the 4 groups (women and exercise train- ing, women and active rest, men and exercise training, men and active rest) on the main outcome (change in VISA-A-S score) using the Kruskal-Wallis test did not show any sta- tistical differences between the groups. We acknowledge that gender could be a confounding factor; however, we have no indication that this factor has affected the outcome of the present study. Therefore, we do not believe that the validity of our results is affected by the ratio of men and women in the different treatment groups. Even though our results appear similar to earlier stud- ies on the effect of exercise on Achilles tendinopathy, direct comparisons between treatment studies are diffi- cult to make because of variations in outcome meas- ures.5,21,26,36,41 The VISA-A-S questionnaire, used in the present study, measures important aspects of the Figure 1. Mean VISA-A-S scores with 95% confidence inter- val, at 0 and 6 weeks and at 3-, 6-, and 12-month evaluations. VISA-A-S, Swedish version of the Victorian Institute of Sports Assessment–Achilles questionnaire. 40 50 60 70 80 90 100 0 w 6 w 3 m 6 m 12 m VISA-A-Sscore Exercise Active rest at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 8. Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 903 patients’ symptoms and the effect of their injuries on their physical activity.40 In this study, the VISA-A-S ques- tionnaire showed good responsiveness; that is, it was sen- sitive for clinically important changes over time with treatment, easy for the patients to fill out, and the data were easily handled. We therefore recommend the use of the VISA-A questionnaire in future studies for evaluating the effect of treatment on patients with Achilles tendinopathy. The results from different studies using the VISA-A questionnaire can then easily be compared with each other. The treatment protocol used in the present study caused significant improvements in patients’ symptoms at the 6-week evaluation, with continued improvement up to the 12-month evaluation. This strengthens earlier recommen- dations that the treatment of Achilles tendinopathy should be exercise-based.1,3,5,7,11,21,26,36,41 The treatment protocol in this study was a strengthening program including both TABLE 5 VISA-A-S Scores at Testing Occasions a VISA-A-S Scores 0 Weeks 6 Weeks 3 Months 6 Months 12 Months Exercise training group n 26 26 25 26 26 Mean 57 70 b 74 b 80 b 85 b SD 15.8 16.3 16.3 14.2 12.7 95% CI 51-64 64-77 68-81 75-86 80-90 Median 59 66 77 82 86 IQR 20.2 27.8 22.0 25.5 21.5 Active rest group n 25 23 24 23 24 Mean 58 75 b 77 b 82 b 91 b SD 15.7 14.7 18.2 17.9 8.2 95% CI 51-64 69-81 69-84 74-89 87-94 Median 59 75 83.5 87 94 IQR 32 17 23 18 12.7 a Mean, standard deviation (SD), 95% confidence interval (CI), median, and interquartile range (IQR) are provided for the different test occasions. VISA-A-S, Swedish version of the Victorian Institute of Sports Assessment–Achilles questionnaire. b Indicates a significant improvement (P < .01) compared with the baseline evaluation. TABLE 6 Pain Level With Hopping a VAS Pain Level With Hopping 0 Weeks 6 Weeks 3 Months 6 Months 12 Months Exercise training group n 26 26 25 25 22 Mean 3.9 2.6 b 1.7 b 1.2 b 0.9 b SD 2.5 2.5 0.7 1.9 1.7 95% CI 2.9-4.9 1.6-3.6 1.4-2.0 0.4-2.0 0.2-1.6 Median 5 2 1 0 0 IQR 4.1 5 3 2 1 Active rest group n 25 23 24 23 23 Mean 4.1 2.0 b 1.7 b 1.3 b 0.7 b SD 2.8 2.2 2.6 2.1 1.3 95% CI 3.0-5.3 1.0-3.0 0.6-2.8 0.4-2.2 0.2-1.3 Median 5 2 0 0 0 IQR 5 4 2.7 3 1 a Mean, standard deviation (SD), 95% confidence interval (CI), median, and interquartile range (IQR) are provided for the different test occasions. VAS, visual analog scale. b Indicates a significant improvement (P < .01) compared with the baseline evaluation. at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 9. 904 Silbernagel et al The American Journal of Sports Medicine TABLE 7 Results of the Functional Evaluations a Measurement Before 6 Weeks 3 Months 6 Months 12 Months Endurance toe-raise test (work, J) Exercise training group n 25 23 25 25 23 Mean ± SD 1909 ± 942 2427 ± 1154 b 2455 ± 1228 b 2471 ± 1133 b 2431 ± 1170 b Active rest group n 25 23 24 23 22 Mean ± SD 1716 ± 1021 2146 ± 1049 b 2051 ± 1020 2122 ± 1041 b 2058 ± 914 b Eccentric-concentric toe raise (power) Exercise training group n 26 26 25 25 23 Mean ± SD 313 ± 126 350 ± 157 393 ± 178 b 390 ± 178 b 366 ± 179 b Active rest group n 21 21 24 23 23 Mean ± SD 277 ± 144 336 ± 128 b 303 ± 183 308 ± 153 289 ± 143 Concentric toe raise (power) Exercise training group n 26 26 25 25 23 Mean ± SD 227 ± 90 251 ± 117 244 ± 99 249 ± 124 229 ± 104 Active rest group n 25 23 24 23 23 Mean ± SD 202 ± 108 205 ± 93 204 ± 98 203 ± 88 193 ± 88 Drop CMJ (height, cm) Exercise training group n 26 26 25 25 22 Mean ± SD 10.63 ± 4.17 10.40 ± 3.96 11.03 ± 4.73 11.77 ± 4.18 b 11.17 ± 4.31 Active rest group n 25 23 24 23 23 Mean ± SD 9.86 ± 5.23 11.12 ± 4.63 10.28 ± 5.14 10.30 ± 4.54 10.13 ± 4.63 Hopping (quotient) Exercise training group n 26 26 25 25 21 Mean ± SD 0.403 ± 0.136 0.437 ± 0.092 0.447 ± 0.112 0.512 ± 0.129 b 0.475 ± 0.112 Active rest group n 25 23 24 23 23 Mean ± SD 0.419 ± 0.232 0.492 ± 0.166 0.419 ± 0.234 0.447 ± 0.144 0.470 ± 0.175 CMJ (height, cm) Exercise training group n 26 26 25 25 22 Mean ± SD 11.60 ± 4.88 11.64 ± 4.76 11.58 ± 5.05 11.69 ± 4.96 11.74 ± 4.55 Active rest group n 25 23 24 23 23 Mean ± SD 10.31 ± 5.07 11.28 ± 4.71 10.33 ± 4.57 10.48 ± 4.99 10.39 ± 4.74 Range of motion dorsiflexion Exercise training group n 26 22 21 21 23 Mean ± SD 35 ± 4.2 33.5 ± 3.8 b 34 ± 3.7 33 ± 3.0 b 35 ± 3.5 Active rest group n 23 22 24 23 23 Mean ± SD 34 ± 5.3 34 ± 4.8 33 ± 5.4 34 ± 4.6 34.5 ± 3.8 a SD, standard deviation; CMJ, countermovement jump. b Indicates a significant (P < .05) difference compared with before treatment. at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 10. Vol. 35, No. 6, 2007 Rehabilitation in Patients With Achilles Tendinopathy 905 concentric and eccentric types of exercises. We believe the improvements seen were due to the high level of intensity of training, with daily exercises and a gradual increase of the load creating positive effects on both the muscle and tendon. Mafi et al21 compared concentric and eccentric calf muscle training in patients with Achilles tendinopathy and found similar improvements in symptoms (pain level with physi- cal activity on VAS) in their eccentric training group, as seen in both the exercise training and active rest groups in the present study. There appear to be no negative effects from performing strengthening both concentrically and eccentri- cally. Mafi et al21 seem to have used a lower intensity in the concentric group, not starting strengthening with body weight until week 3 and never increasing the load beyond the body weight. The lower load used by Mafi et al21 might be the reason for their inferior result in the concentric train- ing group. We believe that important key factors in improve- ment are both the intensity and type of loading. The underlying effects of exercise are not fully known, but mechanical loading on tendons appears to be important in both the healing process and in improving strength of the tendons.12,34,37 In several studies, Langberg et al 16-18 have shown that exercise activity on tendons in healthy individ- uals produces an acute increase in the tendon collagen synthesis. It has also been shown convincingly that immo- bilization causes negative effects on tendons.12,13 Greater strength of the triceps surae musculature has also been reported to be related to a greater ability of the Achilles ten- don to store elastic energy.22 Mechanical loading through exercise in patients with Achilles tendinopathy appears, therefore, to be important. Exactly how the exercise pro- gram should be designed and progressed, however, needs to be investigated further. To improve muscle-tendon function and prevent reinjury, it is suggested that aspects of motor control, proprioception, strength, malalignment, and flexi- bility all have to be addressed. CONCLUSION There was no significant difference between the treatment groups concerning the main outcome variables. No negative effects could be demonstrated from continuing Achilles tendon- loading activity, such as running and jumping, with the use of a pain-monitoring model during treatment. Our treatment protocol for patients with Achilles tendinopathy, which gradually increases the load on the Achilles tendon and calf muscle, monitored by a pain-monitoring model, demonstrated significant symptomatic improvements. A training regimen of continued, pain-monitored, tendon- loading physical activity might therefore represent a valu- able option for patients with Achilles tendinopathy. ACKNOWLEDGMENT The authors thank the physical therapists at SportRehab– Physical Therapy & Sports Medicine Clinic for assistance in the study. This study was supported by grants from the Swedish National Centre for Research in Sports and the local Research and Development Council of Gothenburg and Southern BohuslĂ€n. REFERENCES 1. Alfredson H. Chronic midportion Achilles tendinopathy: an update on research and treatment. Clin Sports Med. 2003;22:727-741. 2. Alfredson H. The chronic painful Achilles and patellar tendon: research on basic biology and treatment. Scand J Med Sci Sports. 2005;15:252-259. 3. Alfredson H, Lorentzon R. Chronic Achilles tendinosis: recommenda- tions for treatment and prevention. Sports Med. 2000;29:135-146. 4. Alfredson H, Öhberg L. Sclerosing injections to areas of neo-vasculari- sation reduce pain in chronic Achilles tendinopathy: a double-blind ran- domised controlled trial. Knee Surg Sports Traumatol Arthrosc. 2005; 13:338-344. 5. Alfredson H, PietilĂ€ T, Jonsson P, Lorentzon R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998;26:360-366. 6. Alfredson H, PietilĂ€ T, Öhberg L, Lorentzon R. Achilles tendinosis and calf muscle strength. The effect of short-term immobilization after surgical treatment. Am J Sports Med. 1998;26:166-171. 7. Angermann P, Hovgaard D. Chronic Achilles tendinopathy in athletic individuals: results of nonsurgical treatment. Foot Ankle Int. 1999;20:304-306. 8. Ekblom B, Nilsson J. Aktivt liv: Vetenskap och Praktik. Farsta Malmö: SISU idrottsböcker; 2000. 9. Grimby G. Physical activity and muscle training in the elderly. Acta Med Scand Suppl. 1986;711:233-237. 10. JĂłzsa L, Kannus P. Human Tendons: Anatomy, Physiology, and Pathology. Champaign, Ill: Human Kinetics; 1997. 11. Kader D, Saxena A, Movin T, Maffulli N. Achilles tendinopathy: some aspects of basic science and clinical management. Br J Sports Med. 2002;36:239-249. 12. Kannus P, Jozsa L, Natri A, JĂ€rvinen M. Effects of training, immobi- lization and remobilization on tendons. Scand J Med Sci Sports. 1997;7:67-71. 13. Kubo K, Akima H, Kouzaki M, et al. Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol. 2000;83:463-468. 14. Kvist M. Achilles tendon injuries in athletes. Ann Chir Gynaecol. 1991;80:188-201. 15. Kvist M. Achilles tendon injuries in athletes. Sports Med. 1994;18:173-201. 16. Langberg H, Rosendal L, Kjaer M. Training-induced changes in peri- tendinous type I collagen turnover determined by microdialysis in humans. J Physiol. 2001;534(Pt 1):297-302. 17. Langberg H, Skovgaard D, Asp S, Kjaer M. Time pattern of exercise- induced changes in type I collagen turnover after prolonged endurance exercise in humans. Calcif Tissue Int. 2000;67:41-44. 18. Langberg H, Skovgaard D, Petersen LJ, Bulow J, Kjaer M. Type I col- lagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol. 1999;521(Pt 1):299-306. 19. Lowdon A, Bader DL, Mowat AG. The effect of heel pads on the treat- ment of Achilles tendinitis: a double blind trial. Am J Sports Med. 1984;12:431-435. 20. Maffulli N, Kenward MG, Testa V, Capasso G, Regine R, King JB. Clinical diagnosis of Achilles tendinopathy with tendinosis. Clin J Sport Med. 2003;13:11-15. 21. Mafi N, Lorentzon R, Alfredson H. Superior short-term results with eccentric calf muscle training compared to concentric training in a ran- domized prospective multicenter study on patients with chronic Achilles tendinosis. Knee Surg Sports Traumatol Arthrosc. 2001;9:42-47. 22. Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H. Elastic properties of human Achilles tendon are correlated to muscle strength. J Appl Physiol. 2005;99:665-669. at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from
  • 11. 906 Silbernagel et al The American Journal of Sports Medicine 23. Neeter C, ThomeĂ© R, Silbernagel KG, ThomeĂ© P, Karlsson J. Iontophoresis with or without dexamethazone in the treatment of acute Achilles tendon pain. Scand J Med Sci Sports. 2003;13:376-382. 24. Nelen G, Martens M, Burssens A. Surgical treatment of chronic Achilles tendinitis. Am J Sports Med. 1989;17:754-759. 25. Nichols AW. Achilles tendinitis in running athletes. J Am Board Fam Pract. 1989;2:196-203. 26. Niesen-Vertommen S, Taunton J, Clement D, Mosher R. The effect of eccentric versus concentric exercise in the management of Achilles tendonitis. Clin J Sport Med. 1992;2:109-113. 27. Öhberg L, Alfredson H. Ultrasound guided sclerosis of neovessels in painful chronic Achilles tendinosis: pilot study of a new treatment. Br J Sports Med. 2002;36:173-177. 28. Paavola M, Kannus P, JĂ€rvinen TA, Khan K, Jozsa L, JĂ€rvinen M. Achilles tendinopathy. J Bone Joint Surg Am. 2002;84:2062-2076. 29. Paavola M, Kannus P, Orava S, Pasanen M, JĂ€rvinen M. Surgical treatment for chronic Achilles tendinopathy: a prospective seven month follow up study. Br J Sports Med. 2002;36:178-182. 30. Paavola M, Kannus P, Paakkala T, Pasanen M, JĂ€rvinen M. Long-term prognosis of patients with Achilles tendinopathy. An observational 8-year follow-up study. Am J Sports Med. 2000;28:634-642. 31. Paavola M, Orava S, Leppilahti J, Kannus P, JĂ€rvinen M. Chronic Achilles tendon overuse injury: complications after surgical treatment. An analysis of 432 consecutive patients. Am J Sports Med. 2000;28:77-82. 32. Paoloni JA, Appleyard RC, Nelson J, Murrell GA. Topical glyceryl trini- trate treatment of chronic noninsertional achilles tendinopathy. A ran- domized, double-blind, placebo-controlled trial. J Bone Joint Surg Am. 2004;86:916-922. 33. Peers K. Extracorporeal Shock Wave Therapy in Chronic Achilles and Patellar Tendinopathy [Dissertation]. Leuven, Belgium: Leuven University Press, Leuven University; 2003. 34. Riley GP. Gene expression and matrix turnover in overused and dam- aged tendons. Scand J Med Sci Sports. 2005;15:241-251. 35. Robinson JM, Cook JL, Purdam C, et al. The VISA-A questionnaire: a valid and reliable index of the clinical severity of Achilles tendinopa- thy. Br J Sports Med. 2001;35:335-341. 36. Roos EM, Engström M, Lagerquist A, Söderberg B. Clinical improve- ment after 6 weeks of eccentric exercise in patients with mid-portion Achilles tendinopathy—a randomized trial with 1-year follow-up. Scand J Med Sci Sports. 2004;14:286-295. 37. Sarasa-Renedo A, Chiquet M. Mechanical signals regulating extra- cellular matrix gene expression in fibroblasts. Scand J Med Sci Sports. 2005;15:223-230. 38. Schepsis AA, Wagner C, Leach RE. Surgical management of Achilles tendon overuse injuries. A long-term follow-up study. Am J Sports Med. 1994;22:611-619. 39. Silbernagel KG, Gustavsson A, ThomeĂ© R, Karlsson J. Evaluation of lower leg function in patients with Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2006;14:1207-1217. 40. Silbernagel KG, ThomeĂ© R, Karlsson J. Cross-cultural adaptation of the VISA-A questionnaire, an index of clinical severity for patients with Achilles tendinopathy, with reliability, validity and structure evalua- tions. BMC Musculoskelet Disord. 2005;6:12. 41. Silbernagel KG, ThomeĂ© R, ThomeĂ© P, Karlsson J. Eccentric overload training for patients with chronic Achilles tendon pain—a randomised controlled study with reliability testing of the evaluation methods. Scand J Med Sci Sports. 2001;11:197-206. 42. Stanish WD, Curwin S, Mandell S. Tendinitis: Its Etiology and Treatment. New York: Oxford University Press; 2000. 43. Testa V, Capasso G, Benazzo F, Maffulli N. Management of Achilles tendinopathy by ultrasound-guided percutaneous tenotomy. Med Sci Sports Exerc. 2002;34:573-580. 44. ThomeĂ© R. A comprehensive treatment approach for patellofemoral pain syndrome in young women. Phys Ther. 1997;77:1690-1703. 45. Visnes H, Hoksrud A, Cook J, Bahr R. No effect of eccentric training on jumper’s knee in volleyball players during the competitive season: a randomized clinical trial. Clin J Sport Med. 2005;15:227-234. at Goteborgs Univ.- bibliotek on January 4, 2009http://ajs.sagepub.comDownloaded from