SlideShare a Scribd company logo
1 of 15
Download to read offline
 
 
 
 
 
 
 
Structural International 
Structural Engineering 103 
 
Final Report: Luxury Vacation Home 
 
December 7, 2015 
 
Team 32 
Thunyathorn 
Chutinuntanakul 
(Eve) 
Khristian Decastro  Tak Lun Law  Pete Phathayakorn  Samuel Trejo (Sam) 
 
   
 
 
 
 
 
 
 
 
 
1 
Table of Contents 
Background and Purpose  2 
Conceptual Design  2 
Engineering Principles  3 
Structural Performance  4 
Aesthetics  7 
Project Challenges  8 
Team Responsibilities  8 
Conclusion  8 
Appendix  9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 
Background and Purpose 
The purpose of the project is to apply engineering concepts from class to design an elevated house in a                                     
certain location. The goal of the project was to build a lightweight substructure that can hold up the lux, withstand a                                         
minimum lateral load of 35 lbs, and be economically viable. For the house, Structural International’s goal was to                                   
build a structure that was both environmentally friendly and aesthetically pleasing. The roles of the team members                                 
were Tak Lun Law ​as the Design Lead, Samuel Trejo as the Construction Lead, Pete Phathayakorn as the Design                                     
Analyst, Eve Chutinuntanakul as the Lead Drafter, and Khristian Decastro as the Architect. The location was chosen                                 
to satisfy TRITONS Real Estate Investment Association (TREIA) in obtaining clients who love off­roading and dirt                               
biking during their vacation time. The location also gives the client the option of more relaxing activities such as                                     
golfing and walking in the state park. Moreover, the design of the structure allows the client to view the precious                                       
mountains for future adventures, the sunrise in the mornings as well as sunsets, and allow future clients to explore                                     
the area’s casinos and restaurants. Figure 1 shows the site plan for the project while Figure 2 shows the zoomed in                                         
view with dimensions. 
 
Conceptual Design 
The basis of the structure’s design consists of a                 
wooden frame with diagonal truss members for rigidity and                 
fixed restraints at the bottom of the substructure. The entire                   
structure was built using square balsa wood members that                 
were cut into appropriate lengths. The team’s design went                 
through a two­stage process due to unforeseen circumstances               
that occurred during construction.  
Initially, the team decided on a square base that was                   
5x5 inches with 4 tapering columns that would span the                   
height of the tower. The top of the columns were fixed to a                         
smaller square that was designed to be 2x2 inches. This                   
braced frame structure was built using 1/4x1/4 balsa wood                 
sticks. The tapering of the tower was designed to resist                   
lateral forces applied to the top. For example, when a                   
horizontal force is applied to the top of a vertical member that                       
is fixed at the bottom, the member becomes an axially­zero                   
force member and does not contribute to the rigidity of the                     
structure. This causes the majority of the load to be resisted                     
purely by a reactionary moment at the fixed joint. This                   
redistributes some of the load and causes less stress                 
concentration at the joint. Tapering the columns of the                 
substructure allows them to act as if they were truss members                     
themselves. This increases rigidity in cases where a lateral                 
load is applied to the top end of the substructure. 
The substructure was sectioned into 3 levels due to                 
requirements dictating that no member be more than 6 inches                   
long. Between each level were horizontal beams that braced the                   
columns to each other. These horizontal beams were made with                   
1/4x1/4 balsa wood sticks. Within each level, diagonal trusses of 1/8x1/8 were used to form cross braces that acted                                     
across each face of the structure. 
During construction of the structure, however, it was deemed difficult to properly construct a frame that                               
tapered all the way to the top given the initial planned dimensions. As everything was hand made, accuracy in                                     
obtaining the proper angles in 3 dimensions for the joints proved to be a struggle. After constructing the first level                                       
 
3 
which had a 5x5 square base that tapered to a 3.75x3.75 top, the team decided to continue on with the second and                                           
third levels with vertical columns instead of continuing to taper the columns upward. This modified design would                                 
not have the theorized benefits of the original design, however the team decided that the benefits from a tapered                                     
tower did not outweigh the risk of having improperly set joints and connections. As an extra precaution against joint                                     
failure, exposed surfaces of the joints were covered with thin slices of balsa wood, acting as gusset plates.  
The tower was fixed with aluminum plates on all four bottom sides.                         
These were glued on to the middle of the bottom horizontal beams with JB                           
Kwik epoxy on each face. Each plate then had 2 small holes,                       
approximately .10938 inches in diameter, drilled on opposite ends of the                     
plate’s length, both holes being .4 inches above the bottom of the plate and                           
their center. The holes are .5 inches away from the length ends. The top of                             
the structure featured 2 aluminum plates placed opposite to each other                     
and secured with JB Kwik. Each of the top plates had 2 holes                         
drilled into them, .25 inches in diameter, on opposite ends of the plate’s                         
length with each hole 1.5 inches away from the ends and in the center of                             
the plate’s width. Figure 3 shows the final design of the substructure 
 
                               Engineering Principle  
The team decided to apply slope­deflection concepts for the hand                     
calculations. The structure is a frame with trusses, yet the team had to                         
simply analyze at first in order to ensure SAP2000’s model match                     
theoretical values. Columns, beams, and diagonals were virtually separated                 
for analysis; given lateral, shear, and moment at each end. The team                       
decided to analyze a simple frame first in order to compare the accuracy of                           
SAP2000. Hand Calculations are in the Appendix. Figure 4 shows the                     
simple frame with each column and diagonal having fixed­ends. Table 1                     
shows the hand calculation and SAP2000’s result. Figures 5 and 6 show                       
SAP’s frame and deflection. 
 
Table 1 : Comparison of Hand Calculation and 
SAP2000 Calculation 
Hand Calculation (in)  SAP2000 calculation (in) 
9.75  9.68 
 
 
4 
 
Figure 5: Sample of Fixed 
Frame 
Figure 6: Sample 
Deflection of Frame 
Afterward, horizontal beams were attached and the             
same concept was applied. Later, the team created               
diagonals and connections to make up lateral             
systems. The purpose of this lateral system is to                 
transfer the lateral load, from where force was               
applied, to the ground without damaging the             
substructure. Using fixed­end moments for each           
member, the team determined the deflection for the               
test frame.  
To determine the ultimate failure mode of             
the structure, the stress and critical buckling for               
diagonal members were determined since they were             
constructed with a thinner cross sectional area. Since               
the   intersection   between  2  diagonals  were  glued 
together, the team assumed pinned­ends for the worst case scenario of the substructure. Each analyzed diagonal had                                 
half its length applied to the buckling equation since the intersection was considered a joint. This process was                                   
applied to members facing the most stress on SAP2000 and were compared to their critical buckling values that                                   
were determined by hand. 
Structural Performance 
By looking at the load combinations per ASCE 7­10, the team found that case 3, 1.2D+1.0E+L+0.2S,                               
governs the design. The values that the team used in finding the governed design are in Table 2. Figures 7 through 9                                           
show the pattern of deflection for every case and Table 3 shows the max deflection for each case. While comparing                                       
the deflections in Table 3 to the deflection the team obtained for the testing scenario with 35 lbs of lateral force and                                           
the weight of the plate, the team found that the max deflection for the substructure is 0.15 in. 
Table 2: Load Type and Value 
Wind Load (lb)  Live Load (lb)  Dead Load (lb)  Roof Live Load (lb)  Earthquake Load (lb) 
3  15.3  15.2  0.42  8 
 
 
 
Figure 7: Case 1 Combination 
 
 
Figure 8: Case 2 Combination 
 
 
Figure 9: Case 3 Combination 
 
 
5 
 
Table 3: Deflection for Different Load Combinations 
Case 1 Deflection (in)  Case 2 Deflection (in)  Case 3 Deflection (in) 
.0115  .0266  .0625 
 
The loads that were applied to the structure during the testing are the dead load of the top plate and the                                         
wind load applied by the actuator. From SAP2000 analysis, the team believed that the critical members would be the                                     
sloped columns in the side farther away from the applied load, one of the top crossed braces, and the bottom crossed                                         
braces from the two sides parallel to the direction of the wind load. These members would fail due to buckling when                                         
applying the wind loads. The top diagonal member would receive the most compressive force because it would                                 
resist the applied load. From the equation, ​, the critical load of this diagonal member is 15.56 lb. Due to              crP   = π EI2
(kL)2                          
the fact that the bottom diagonal members are longer than the rest, it would fail first. Their critical load is 9.7 lb.                                           
This judgement was based by their length and cross sectional area. Hand calculations were performed to determine                                 
the critical buckling force and only partial length was taken into account since the intersection of the diagonals was                                     
glued. Hand calculations are in the Appendix. After determining the buckling value, different loading cases were                               
applied onto the structure and the team looked at the max applied stress to determine its force. Theoretically, the                                     
substructure was able to handle over 35lbs of lateral load. Hence the team increased the load until reaching 40 lbs.                                       
The team decided to lower the max load to 37.5 lbs since it was believed that manufacturing error would occur.  
The load paths start at the top plate screwed into the structure. The wind load and the weight of the plate                                         
went to the beams connecting to the two aluminum sheets. This load went to the connections and then the diagonal                                       
members and the four columns. From the diagonal members, the load went through the bottom beams then onto the                                     
columns. This process continued until the load reached the ground. However, because the substructure was being                               
pushed on one side, the load path of the right side would go up, while the bottom reaction force is pulling that side                                             
down. Two of the diagonals in each floor would receive the upward load path as well because the columns would                                       
pull the diagonals. The team assumed that all the connections are fixed connections because the connections                               
transferred the moment to the members. The connections transferred both the axial force and bending force. The                                 
load path is shown in Figure 10 . 
During testing, the substructure failed in the contact between the testing apparatus and balsa                           
wood­aluminum sheet. This is because the team used JB Kwik instead of JB Weld glue; JB Kwik has significantly                                     
less adhesive strength. . Hence the member failed due to not sustaining the shear force traveling along the member. 
The applied load made half of the substructure receive                 
compression while the other half obtained tension. The side with                   
the applied force was in tension, as well as the blue diagonals in                         
Figure 12. The side farther away from the applied force was in                       
compression because the substructure deflected, as well as the                 
red diagonals in Figure 12. The critical connections of this                   
substructure were the connections between the slanted columns               
and vertical columns. These connections would receive the most                 
stress due to the tension and compression of the columns. These                     
connections were solely held together by glue, which could break                   
under heavy stress. 
 
Figure 10: Load Path of the Substructure 
The team’s estimated PI value is 9852. Table 4 shows all predicted and actual values. The possible failure                                   
modes were the buckling of the diagonal members and the breaking of the connections where the slanted columns                                   
meet the vertical ones. To minimize the effects of these failure modes, the team glued the diagonal members                                   
 
6 
together in order to reduce the length of the members, which in turn increased its critical load. To help reinforce the                                         
connections, the team added small gusset plates to the side of the columns. During experimentation, the substructure                                 
withstood 7.205 lbs. The experiment caused the bottom beam, which was parallel to the lateral force, to crack. The                                     
team believes cracking occurred due to the glue used to fix the aluminum plate onto the bottom beam. To minimize                                       
construction time, JB Kwik was used to contact the bottom beams with the aluminum plates. JB Kwik was                                   
fast­drying, but this quick curing time compromised the strength mixture of the epoxy. The analysis did not                                 
incorporate the aluminum plates in SAP2000 since the team believed no significant difference would occur.                             
Moreover, assuming no aluminum plates would provide the worst case scenario for the substructure.  
 
Table 4: Comparison between Predicted and Actual PI 
Cost ($)  Weight 
(g) 
Predicted 
Displ. (in) 
Predicted 
Force 
(lbs) 
Displ. 
(in) @ 
20 lbs 
Ultimate 
Displ. (in) 
Ultimate 
Force 
(lbs) 
Predicted 
PI 
Actual 
PI 
12,380  97.6  .150  37.5  1.5  .124  7.205  9852  170.63 
 
 
Figure 11: Failure Location of 
Substructure 
The result was fairly different from the predicted value                 
since the connections by JB Kwik did not perform as well as the                         
team predicted. When the JB Kwik epoxy gave in, the support                     
reaction moved inwards from the side of the structure. This caused                     
a bending moment in the the bottom horizontal member. Figure 11                     
shows the failure of the substructure under testing. 
Figures 12 and 13 show the expected performance of the                     
structure with the predicted connection, while Figures 14 and 15                   
show what happened in the experiment. The errors in the                   
prediction were caused by the wrong assumption of the strength of                     
the epoxy. If the team were to use JB Weld, the structure would                         
have a higher ultimate force than 20 lbs, giving a higher stiffness                       
factor. 
 
 
Figure 12: Predicted 
Force Diagram of the 
Substructure 
 
Figure 13: Predicted 
Deflection 
 
Figure 14: Estimated 
Force Diagram of the 
Substructure after 
Testing 
 
Figure 15: Estimated 
Testing Deflection 
 
   
 
7 
Aesthetics 
The structure was intended to blend into the desert environment to minimize disturbances to the natural                               
beauty of the surrounding landscapes. To do so, Structural International designed the truss system beneath the                               
structure to allow visitors to see the surrounding landscapes. Additionally, the team used sandstone on several walls                                 
to help further the home’s blending into the environment. Different earth tones were used in the structure as well.                                     
To keep up with the vastness of the desert environment, the architect designed vast open windows facing the east                                     
and west, as well as an open deck on the structure’s west side to allow the client to feel one with the environment as                                               
the sun rises and sets. To add on to this, each story has very high ceilings at a height of fifteen feet, and includes a                                                 
grand living and dining area that is two stories tall, as shown in Figure 16. 
The significant volume of natural light entering the structure helps decrease the amount of electricity                             
needed to produce light throughout the day. To compensate for the expected very cool evenings and nights, the                                   
two­story wall, facing east in the grand living room was painted black in order to absorb heat reflected off of the                                         
inner surfaces; the same was done for the roof of the structure. To prevent the interior of the structure from heating                                         
up too much, the team utilized tinted windows to prevent an uncomfortable amount of radiated heat from entering.                                   
The sandstone exteriors are also meant to reflect light and be a strong insulator so as to strengthen prevention against                                       
heat. The solar panels on top of the structure are curved in such a way that they follow the path of the sun’s                                             
movement throughout the day, as the sun in the northern hemisphere typically sits toward the south for most of the                                       
year. Figure 17 showcases the colors, textures, and environmental considerations in 3D from the Southwest. 
Despite all the effort put into blending the structure into the environment, the team still wanted to maintain                                   
a sense of uniqueness and did so by designing with hard lines and strong corners, thus providing the structure with a                                         
hierarchy of shape against the smooth curves of the surrounding mountains. The mere scale of the building and its                                     
elevation, also help stand out from the environment despite its desert­inspired colors and textures. Altogether, the                               
structure aims to be simultaneously harmonious with the surrounding landscape as well as eye­catching enough to                               
catch the attention of passersby. 
 
Figure 16: The Dimensions of the Structure from the South 
 
 
Figure 17: 3D Model of the Structure 
from the Southwest 
 
 
 
 
8 
Project Challenges 
One main challenge was trying to decrease the moment that the structure would experience from the lateral                                 
force. Slanting the column toward the wind force helps reduce the moment on the substructure since the force                                   
perpendicular to the cross sectional area of the column would decrease. The team realized that the more slanted the                                     
columns are, the better the structure can reduce the moment at the bottom of the structure. However, in the original                                       
design, the team could not decrease the angle anymore as doing so would risk decreasing the area at the top of the                                           
structure to hold the vacation house on top, hence they were placed at 83 degrees. 
Structural International faced a major setback during construction. Due to the complex geometry of the                             
original design, it was very difficult to construct the substructure with accuracy. After building the bottom section,                                 
the Construction Leader realized that the complex shape could jeopardize the given criteria. The team was also not                                   
well­equipped to accurately fabricate the beams needed to build the structure. In order to minimize costs, the Lead                                   
Analyst kept the bottom section the same and redesigned the rest of the structure. Both leaders realized that one of                                       
the most important elements of a structure under lateral is the connections. Having to conserve the cost and weight,                                     
the team used balsa wood with a small surface area, creating challenges to make strong connections. To ensure that                                     
the connections would not be a problem under loading, the team used TITEBOND III wood glue as well as adding                                       
reinforcements on the joints.  
The overall team dynamics on this project were outstanding. One challenge in team dynamics was that                               
there were strong opinions between team members on the design of the substructure. Samuel wanted a design that                                   
would perform better, while Pete wanted another design that is more cost efficient. The entire team met to find a                                       
design that satisfied each member’s preferences. The result was a design that can withstand sufficient force and was                                   
economically efficient.  
Team Responsibilities 
Tak and Sam were responsible for the original design of the substructure, while Pete and Eve redesigned it                                   
in order to reach a compromise between the team members’ interest. Sam was responsible for the SolidWorks model                                   
of the substructure with the assistance of Tak. Eve’s task was producing the site layout and drawings through                                   
AUTOCAD. Pete and Sam were responsible for the structural analysis and predictions. Khristian created the original                               
design of the house on SolidWorks, with revisions done by Pete and Tak to reach the final aesthetic design, which                                       
Khristian in turn again modeled within SolidWorks. Pete and Khristian went out to buy necessary materials for                                 
constructing the entire model. All the team members worked together throughout the construction of the entire                               
structure. The total hours the Eve, Pete, Sam, Tak, and Khristian put into this project are 48, 48, 49, 43,and 13 hours                                           
respectively.  
Conclusion 
The team learned a huge difference between the strength of JB Weld and JB Kwik epoxy. Moreover, they                                   
learned the importance of strong connections in the lateral system. Concepts such as Slope­Deflection were applied                               
for analysis to determine deflection and compare the accuracy of SAP2000. During the construction period, they                               
learned that the pre­construction planning is one of the most important processes for successfully constructing                             
without having to waste any time or material. Unfortunately the team was not able to test their structure to the full                                         
limit due the poor connection by JB Kwik. The actual PI was 170.63 while Structural International expected 9852.                                   
However the predicted PI assumes the entire structure was constructed properly. ​During the quarter, the team                               
became aware of how to accurately model in SAP2000 in order to maximize the efficiency of the program, how to                                       
draw site plans using AUTOCAD, and create solid parts and assemblies in SolidWorks. They also knew the                                 
limitations of computer programs and have taken that into account for their predictions, thus emphasizing the                               
importance of the engineer possessing knowledge and skills in the field in addition to computer analysis.   
 
9 
Appendix 
 
 
Figure 18: Substructure with Applied Fixed Frames 
 
Figure 19: Substructure During Experiment 
 
10 
 
Figure 20: Hand Calculations 
 
11 
 
Figure 21: Hand Calculations Cont. 
 
12 
 
Figure 22: Critical buckling for Predicted Failure Member 
 
 
 
Figure 23: West View of the Structure 
 
 
13 
 
 
Figure 24: East View of Structure 
 
 
14 
 
Figure 25: North View of Structure 
 
 

More Related Content

What's hot

Slab & Vault
Slab & VaultSlab & Vault
Slab & Vaultwinner
 
footing
footingfooting
footingillpa
 
Space frames-modular construction technology
Space frames-modular construction technologySpace frames-modular construction technology
Space frames-modular construction technologyAnjith Augustine
 
Long span structures in Concrete and Steel
Long span structures in Concrete and SteelLong span structures in Concrete and Steel
Long span structures in Concrete and SteelRithika Ravishankar
 
Bcon report - Tropical bus shelter
Bcon report - Tropical bus shelterBcon report - Tropical bus shelter
Bcon report - Tropical bus shelterJoe Onn Lim
 
Lecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiLecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiUrsachi Răzvan
 
Modeling procedure and Case study of ‘Gocheok Sky Dome’
Modeling procedure and Case study of  ‘Gocheok Sky Dome’Modeling procedure and Case study of  ‘Gocheok Sky Dome’
Modeling procedure and Case study of ‘Gocheok Sky Dome’chandrashekhar lakavath
 
Surface Structures, including SAP2000
Surface Structures, including SAP2000Surface Structures, including SAP2000
Surface Structures, including SAP2000Wolfgang Schueller
 
The space frame structure
The space frame structureThe space frame structure
The space frame structurebadekarbhavana
 
Portal frame 1
Portal  frame 1Portal  frame 1
Portal frame 1Est
 
Detailed design of portal frames
Detailed design of portal framesDetailed design of portal frames
Detailed design of portal frameskaran prabhakar
 
Building construction ii
Building construction iiBuilding construction ii
Building construction iiJia Xin Chee
 

What's hot (20)

235562808 coffered-slab
235562808 coffered-slab235562808 coffered-slab
235562808 coffered-slab
 
Slab & Vault
Slab & VaultSlab & Vault
Slab & Vault
 
footing
footingfooting
footing
 
Space frames-modular construction technology
Space frames-modular construction technologySpace frames-modular construction technology
Space frames-modular construction technology
 
Beams and columns
Beams and columns Beams and columns
Beams and columns
 
Long span structures in Concrete and Steel
Long span structures in Concrete and SteelLong span structures in Concrete and Steel
Long span structures in Concrete and Steel
 
Bcon report - Tropical bus shelter
Bcon report - Tropical bus shelterBcon report - Tropical bus shelter
Bcon report - Tropical bus shelter
 
Lecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering IaşiLecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
Lecture 7 s.s.iii Design of Steel Structures - Faculty of Civil Engineering Iaşi
 
Modeling procedure and Case study of ‘Gocheok Sky Dome’
Modeling procedure and Case study of  ‘Gocheok Sky Dome’Modeling procedure and Case study of  ‘Gocheok Sky Dome’
Modeling procedure and Case study of ‘Gocheok Sky Dome’
 
R.C.C. STAIRS
R.C.C. STAIRSR.C.C. STAIRS
R.C.C. STAIRS
 
B con 2
B con 2B con 2
B con 2
 
Space frame
Space frameSpace frame
Space frame
 
Tos syllabus
Tos syllabusTos syllabus
Tos syllabus
 
Surface Structures, including SAP2000
Surface Structures, including SAP2000Surface Structures, including SAP2000
Surface Structures, including SAP2000
 
The space frame structure
The space frame structureThe space frame structure
The space frame structure
 
Portal frame 1
Portal  frame 1Portal  frame 1
Portal frame 1
 
Detailed design of portal frames
Detailed design of portal framesDetailed design of portal frames
Detailed design of portal frames
 
The shell structure system
The shell structure systemThe shell structure system
The shell structure system
 
Presentation
PresentationPresentation
Presentation
 
Building construction ii
Building construction iiBuilding construction ii
Building construction ii
 

Viewers also liked

Team 32 Midterm Final Report
Team 32 Midterm  Final ReportTeam 32 Midterm  Final Report
Team 32 Midterm Final ReportSamuel Trejo
 
Team 32 Final Powerpoint
Team 32 Final PowerpointTeam 32 Final Powerpoint
Team 32 Final PowerpointSamuel Trejo
 
Enseñanza del alfabeto en inglés dentro del hogar a través de la canaima
Enseñanza del alfabeto en inglés dentro del hogar a través de la canaimaEnseñanza del alfabeto en inglés dentro del hogar a través de la canaima
Enseñanza del alfabeto en inglés dentro del hogar a través de la canaimaEva-94
 
Actors.Fall2016
Actors.Fall2016Actors.Fall2016
Actors.Fall2016sfreeman34
 
Licoes de pedagogia_empresarial
Licoes de pedagogia_empresarialLicoes de pedagogia_empresarial
Licoes de pedagogia_empresarialMariana Gonçalves
 
Costa Resume (2015-10)
Costa Resume (2015-10)Costa Resume (2015-10)
Costa Resume (2015-10)Jason Costa
 
Reunió 1r eso setembre 2017
Reunió 1r eso setembre 2017Reunió 1r eso setembre 2017
Reunió 1r eso setembre 2017insargentona
 
Como criar campanha paga no Waze
Como criar campanha paga no WazeComo criar campanha paga no Waze
Como criar campanha paga no WazeCRP Mango
 
UVC100_Fall16_Class3.1
UVC100_Fall16_Class3.1UVC100_Fall16_Class3.1
UVC100_Fall16_Class3.1Jennifer Burns
 
Publications Web of Science Scopus Stasiak-Betlejewska
Publications Web of Science Scopus Stasiak-BetlejewskaPublications Web of Science Scopus Stasiak-Betlejewska
Publications Web of Science Scopus Stasiak-BetlejewskaRenata Stasiak-Betlejewska
 

Viewers also liked (17)

Team 32 Midterm Final Report
Team 32 Midterm  Final ReportTeam 32 Midterm  Final Report
Team 32 Midterm Final Report
 
Team 32 Final Powerpoint
Team 32 Final PowerpointTeam 32 Final Powerpoint
Team 32 Final Powerpoint
 
Las emociones
Las emocionesLas emociones
Las emociones
 
ciencia 02
ciencia 02ciencia 02
ciencia 02
 
Enseñanza del alfabeto en inglés dentro del hogar a través de la canaima
Enseñanza del alfabeto en inglés dentro del hogar a través de la canaimaEnseñanza del alfabeto en inglés dentro del hogar a través de la canaima
Enseñanza del alfabeto en inglés dentro del hogar a través de la canaima
 
Pdot punin 2015
Pdot punin 2015Pdot punin 2015
Pdot punin 2015
 
Actors.Fall2016
Actors.Fall2016Actors.Fall2016
Actors.Fall2016
 
Licoes de pedagogia_empresarial
Licoes de pedagogia_empresarialLicoes de pedagogia_empresarial
Licoes de pedagogia_empresarial
 
Costa Resume (2015-10)
Costa Resume (2015-10)Costa Resume (2015-10)
Costa Resume (2015-10)
 
Reunió 1r eso setembre 2017
Reunió 1r eso setembre 2017Reunió 1r eso setembre 2017
Reunió 1r eso setembre 2017
 
Como criar campanha paga no Waze
Como criar campanha paga no WazeComo criar campanha paga no Waze
Como criar campanha paga no Waze
 
UVC100_Fall16_Class3.1
UVC100_Fall16_Class3.1UVC100_Fall16_Class3.1
UVC100_Fall16_Class3.1
 
UVC100_Fall16_Class4
UVC100_Fall16_Class4UVC100_Fall16_Class4
UVC100_Fall16_Class4
 
MAAS High Availability Overview
MAAS High Availability OverviewMAAS High Availability Overview
MAAS High Availability Overview
 
Publications Web of Science Scopus Stasiak-Betlejewska
Publications Web of Science Scopus Stasiak-BetlejewskaPublications Web of Science Scopus Stasiak-Betlejewska
Publications Web of Science Scopus Stasiak-Betlejewska
 
Lugares turisticos-del-mundo
Lugares turisticos-del-mundoLugares turisticos-del-mundo
Lugares turisticos-del-mundo
 
Resume Updated 3
Resume Updated 3Resume Updated 3
Resume Updated 3
 

Similar to Team 32 Final Report

Arch.CE Portfolio
Arch.CE PortfolioArch.CE Portfolio
Arch.CE PortfolioAngela Su
 
Building Construction Project 1 Shelter Report
Building Construction Project 1 Shelter ReportBuilding Construction Project 1 Shelter Report
Building Construction Project 1 Shelter ReportJoyeeLee0131
 
Final Report (Balsa Wood Bridge Design)
Final Report (Balsa Wood Bridge Design)Final Report (Balsa Wood Bridge Design)
Final Report (Balsa Wood Bridge Design)Josia Tannos, EIT
 
Analysis and Design of Plate Girder Bridges_.docx
Analysis and Design of Plate Girder Bridges_.docxAnalysis and Design of Plate Girder Bridges_.docx
Analysis and Design of Plate Girder Bridges_.docxAdnan Lazem
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxadnan885140
 
FEA_Final_Paper-2.5.51
FEA_Final_Paper-2.5.51FEA_Final_Paper-2.5.51
FEA_Final_Paper-2.5.51Ibrahim Ahmed
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAdnan Lazem
 
Bcon project 1 pdf report
Bcon project 1 pdf reportBcon project 1 pdf report
Bcon project 1 pdf reportAnderson Wong
 
WeidlingerPaperACone2005
WeidlingerPaperACone2005WeidlingerPaperACone2005
WeidlingerPaperACone2005Adam Cone
 
Design Appraisal report
Design Appraisal reportDesign Appraisal report
Design Appraisal reportConor Meaney
 
Bcon report bus shelter
Bcon report   bus shelterBcon report   bus shelter
Bcon report bus shelterYung Kai
 
Bcon report bus shelter
Bcon report   bus shelterBcon report   bus shelter
Bcon report bus shelterhongbinng
 
Project 1 Skeletal Construction (Temporary Bus Shelter) A3 Report
Project 1 Skeletal Construction (Temporary Bus Shelter) A3 ReportProject 1 Skeletal Construction (Temporary Bus Shelter) A3 Report
Project 1 Skeletal Construction (Temporary Bus Shelter) A3 ReportTan Jaden
 
A Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parametersA Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parametersIRJET Journal
 
Building Construction 2
Building Construction 2 Building Construction 2
Building Construction 2 leejanicee
 
building construction project 1 report
building construction project 1 reportbuilding construction project 1 report
building construction project 1 reportYq Chong
 
BUILDING CONSTRUCTION 2 ; PROJECT 1 REPORT
BUILDING CONSTRUCTION 2 ; PROJECT 1 REPORTBUILDING CONSTRUCTION 2 ; PROJECT 1 REPORT
BUILDING CONSTRUCTION 2 ; PROJECT 1 REPORTDarshiini Vig
 

Similar to Team 32 Final Report (20)

ENGG101- final report
ENGG101- final reportENGG101- final report
ENGG101- final report
 
Final Report
Final ReportFinal Report
Final Report
 
Arch.CE Portfolio
Arch.CE PortfolioArch.CE Portfolio
Arch.CE Portfolio
 
Building Construction Project 1 Shelter Report
Building Construction Project 1 Shelter ReportBuilding Construction Project 1 Shelter Report
Building Construction Project 1 Shelter Report
 
Final Report (Balsa Wood Bridge Design)
Final Report (Balsa Wood Bridge Design)Final Report (Balsa Wood Bridge Design)
Final Report (Balsa Wood Bridge Design)
 
Analysis and Design of Plate Girder Bridges_.docx
Analysis and Design of Plate Girder Bridges_.docxAnalysis and Design of Plate Girder Bridges_.docx
Analysis and Design of Plate Girder Bridges_.docx
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
 
FEA_Final_Paper-2.5.51
FEA_Final_Paper-2.5.51FEA_Final_Paper-2.5.51
FEA_Final_Paper-2.5.51
 
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docxAnalysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
Analysis and Design of Mono-Rail Plate Girder Bridge_2023.docx
 
Bcon project 1 pdf report
Bcon project 1 pdf reportBcon project 1 pdf report
Bcon project 1 pdf report
 
BCON II PROJECT 1
BCON II PROJECT 1BCON II PROJECT 1
BCON II PROJECT 1
 
WeidlingerPaperACone2005
WeidlingerPaperACone2005WeidlingerPaperACone2005
WeidlingerPaperACone2005
 
Design Appraisal report
Design Appraisal reportDesign Appraisal report
Design Appraisal report
 
Bcon report bus shelter
Bcon report   bus shelterBcon report   bus shelter
Bcon report bus shelter
 
Bcon report bus shelter
Bcon report   bus shelterBcon report   bus shelter
Bcon report bus shelter
 
Project 1 Skeletal Construction (Temporary Bus Shelter) A3 Report
Project 1 Skeletal Construction (Temporary Bus Shelter) A3 ReportProject 1 Skeletal Construction (Temporary Bus Shelter) A3 Report
Project 1 Skeletal Construction (Temporary Bus Shelter) A3 Report
 
A Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parametersA Critical Review of Flat Slabs under different parameters
A Critical Review of Flat Slabs under different parameters
 
Building Construction 2
Building Construction 2 Building Construction 2
Building Construction 2
 
building construction project 1 report
building construction project 1 reportbuilding construction project 1 report
building construction project 1 report
 
BUILDING CONSTRUCTION 2 ; PROJECT 1 REPORT
BUILDING CONSTRUCTION 2 ; PROJECT 1 REPORTBUILDING CONSTRUCTION 2 ; PROJECT 1 REPORT
BUILDING CONSTRUCTION 2 ; PROJECT 1 REPORT
 

Team 32 Final Report

  • 2.   1  Table of Contents  Background and Purpose  2  Conceptual Design  2  Engineering Principles  3  Structural Performance  4  Aesthetics  7  Project Challenges  8  Team Responsibilities  8  Conclusion  8  Appendix  9                                                         
  • 3.   2  Background and Purpose  The purpose of the project is to apply engineering concepts from class to design an elevated house in a                                      certain location. The goal of the project was to build a lightweight substructure that can hold up the lux, withstand a                                          minimum lateral load of 35 lbs, and be economically viable. For the house, Structural International’s goal was to                                    build a structure that was both environmentally friendly and aesthetically pleasing. The roles of the team members                                  were Tak Lun Law ​as the Design Lead, Samuel Trejo as the Construction Lead, Pete Phathayakorn as the Design                                      Analyst, Eve Chutinuntanakul as the Lead Drafter, and Khristian Decastro as the Architect. The location was chosen                                  to satisfy TRITONS Real Estate Investment Association (TREIA) in obtaining clients who love off­roading and dirt                                biking during their vacation time. The location also gives the client the option of more relaxing activities such as                                      golfing and walking in the state park. Moreover, the design of the structure allows the client to view the precious                                        mountains for future adventures, the sunrise in the mornings as well as sunsets, and allow future clients to explore                                      the area’s casinos and restaurants. Figure 1 shows the site plan for the project while Figure 2 shows the zoomed in                                          view with dimensions.    Conceptual Design  The basis of the structure’s design consists of a                  wooden frame with diagonal truss members for rigidity and                  fixed restraints at the bottom of the substructure. The entire                    structure was built using square balsa wood members that                  were cut into appropriate lengths. The team’s design went                  through a two­stage process due to unforeseen circumstances                that occurred during construction.   Initially, the team decided on a square base that was                    5x5 inches with 4 tapering columns that would span the                    height of the tower. The top of the columns were fixed to a                          smaller square that was designed to be 2x2 inches. This                    braced frame structure was built using 1/4x1/4 balsa wood                  sticks. The tapering of the tower was designed to resist                    lateral forces applied to the top. For example, when a                    horizontal force is applied to the top of a vertical member that                        is fixed at the bottom, the member becomes an axially­zero                    force member and does not contribute to the rigidity of the                      structure. This causes the majority of the load to be resisted                      purely by a reactionary moment at the fixed joint. This                    redistributes some of the load and causes less stress                  concentration at the joint. Tapering the columns of the                  substructure allows them to act as if they were truss members                      themselves. This increases rigidity in cases where a lateral                  load is applied to the top end of the substructure.  The substructure was sectioned into 3 levels due to                  requirements dictating that no member be more than 6 inches                    long. Between each level were horizontal beams that braced the                    columns to each other. These horizontal beams were made with                    1/4x1/4 balsa wood sticks. Within each level, diagonal trusses of 1/8x1/8 were used to form cross braces that acted                                      across each face of the structure.  During construction of the structure, however, it was deemed difficult to properly construct a frame that                                tapered all the way to the top given the initial planned dimensions. As everything was hand made, accuracy in                                      obtaining the proper angles in 3 dimensions for the joints proved to be a struggle. After constructing the first level                                       
  • 4.   3  which had a 5x5 square base that tapered to a 3.75x3.75 top, the team decided to continue on with the second and                                            third levels with vertical columns instead of continuing to taper the columns upward. This modified design would                                  not have the theorized benefits of the original design, however the team decided that the benefits from a tapered                                      tower did not outweigh the risk of having improperly set joints and connections. As an extra precaution against joint                                      failure, exposed surfaces of the joints were covered with thin slices of balsa wood, acting as gusset plates.   The tower was fixed with aluminum plates on all four bottom sides.                          These were glued on to the middle of the bottom horizontal beams with JB                            Kwik epoxy on each face. Each plate then had 2 small holes,                        approximately .10938 inches in diameter, drilled on opposite ends of the                      plate’s length, both holes being .4 inches above the bottom of the plate and                            their center. The holes are .5 inches away from the length ends. The top of                              the structure featured 2 aluminum plates placed opposite to each other                      and secured with JB Kwik. Each of the top plates had 2 holes                          drilled into them, .25 inches in diameter, on opposite ends of the plate’s                          length with each hole 1.5 inches away from the ends and in the center of                              the plate’s width. Figure 3 shows the final design of the substructure                                   Engineering Principle   The team decided to apply slope­deflection concepts for the hand                      calculations. The structure is a frame with trusses, yet the team had to                          simply analyze at first in order to ensure SAP2000’s model match                      theoretical values. Columns, beams, and diagonals were virtually separated                  for analysis; given lateral, shear, and moment at each end. The team                        decided to analyze a simple frame first in order to compare the accuracy of                            SAP2000. Hand Calculations are in the Appendix. Figure 4 shows the                      simple frame with each column and diagonal having fixed­ends. Table 1                      shows the hand calculation and SAP2000’s result. Figures 5 and 6 show                        SAP’s frame and deflection.    Table 1 : Comparison of Hand Calculation and  SAP2000 Calculation  Hand Calculation (in)  SAP2000 calculation (in)  9.75  9.68   
  • 5.   4    Figure 5: Sample of Fixed  Frame  Figure 6: Sample  Deflection of Frame  Afterward, horizontal beams were attached and the              same concept was applied. Later, the team created                diagonals and connections to make up lateral              systems. The purpose of this lateral system is to                  transfer the lateral load, from where force was                applied, to the ground without damaging the              substructure. Using fixed­end moments for each            member, the team determined the deflection for the                test frame.   To determine the ultimate failure mode of              the structure, the stress and critical buckling for                diagonal members were determined since they were              constructed with a thinner cross sectional area. Since                the   intersection   between  2  diagonals  were  glued  together, the team assumed pinned­ends for the worst case scenario of the substructure. Each analyzed diagonal had                                  half its length applied to the buckling equation since the intersection was considered a joint. This process was                                    applied to members facing the most stress on SAP2000 and were compared to their critical buckling values that                                    were determined by hand.  Structural Performance  By looking at the load combinations per ASCE 7­10, the team found that case 3, 1.2D+1.0E+L+0.2S,                                governs the design. The values that the team used in finding the governed design are in Table 2. Figures 7 through 9                                            show the pattern of deflection for every case and Table 3 shows the max deflection for each case. While comparing                                        the deflections in Table 3 to the deflection the team obtained for the testing scenario with 35 lbs of lateral force and                                            the weight of the plate, the team found that the max deflection for the substructure is 0.15 in.  Table 2: Load Type and Value  Wind Load (lb)  Live Load (lb)  Dead Load (lb)  Roof Live Load (lb)  Earthquake Load (lb)  3  15.3  15.2  0.42  8        Figure 7: Case 1 Combination      Figure 8: Case 2 Combination      Figure 9: Case 3 Combination   
  • 6.   5    Table 3: Deflection for Different Load Combinations  Case 1 Deflection (in)  Case 2 Deflection (in)  Case 3 Deflection (in)  .0115  .0266  .0625    The loads that were applied to the structure during the testing are the dead load of the top plate and the                                          wind load applied by the actuator. From SAP2000 analysis, the team believed that the critical members would be the                                      sloped columns in the side farther away from the applied load, one of the top crossed braces, and the bottom crossed                                          braces from the two sides parallel to the direction of the wind load. These members would fail due to buckling when                                          applying the wind loads. The top diagonal member would receive the most compressive force because it would                                  resist the applied load. From the equation, ​, the critical load of this diagonal member is 15.56 lb. Due to              crP   = π EI2 (kL)2                           the fact that the bottom diagonal members are longer than the rest, it would fail first. Their critical load is 9.7 lb.                                            This judgement was based by their length and cross sectional area. Hand calculations were performed to determine                                  the critical buckling force and only partial length was taken into account since the intersection of the diagonals was                                      glued. Hand calculations are in the Appendix. After determining the buckling value, different loading cases were                                applied onto the structure and the team looked at the max applied stress to determine its force. Theoretically, the                                      substructure was able to handle over 35lbs of lateral load. Hence the team increased the load until reaching 40 lbs.                                        The team decided to lower the max load to 37.5 lbs since it was believed that manufacturing error would occur.   The load paths start at the top plate screwed into the structure. The wind load and the weight of the plate                                          went to the beams connecting to the two aluminum sheets. This load went to the connections and then the diagonal                                        members and the four columns. From the diagonal members, the load went through the bottom beams then onto the                                      columns. This process continued until the load reached the ground. However, because the substructure was being                                pushed on one side, the load path of the right side would go up, while the bottom reaction force is pulling that side                                              down. Two of the diagonals in each floor would receive the upward load path as well because the columns would                                        pull the diagonals. The team assumed that all the connections are fixed connections because the connections                                transferred the moment to the members. The connections transferred both the axial force and bending force. The                                  load path is shown in Figure 10 .  During testing, the substructure failed in the contact between the testing apparatus and balsa                            wood­aluminum sheet. This is because the team used JB Kwik instead of JB Weld glue; JB Kwik has significantly                                      less adhesive strength. . Hence the member failed due to not sustaining the shear force traveling along the member.  The applied load made half of the substructure receive                  compression while the other half obtained tension. The side with                    the applied force was in tension, as well as the blue diagonals in                          Figure 12. The side farther away from the applied force was in                        compression because the substructure deflected, as well as the                  red diagonals in Figure 12. The critical connections of this                    substructure were the connections between the slanted columns                and vertical columns. These connections would receive the most                  stress due to the tension and compression of the columns. These                      connections were solely held together by glue, which could break                    under heavy stress.    Figure 10: Load Path of the Substructure  The team’s estimated PI value is 9852. Table 4 shows all predicted and actual values. The possible failure                                    modes were the buckling of the diagonal members and the breaking of the connections where the slanted columns                                    meet the vertical ones. To minimize the effects of these failure modes, the team glued the diagonal members                                   
  • 7.   6  together in order to reduce the length of the members, which in turn increased its critical load. To help reinforce the                                          connections, the team added small gusset plates to the side of the columns. During experimentation, the substructure                                  withstood 7.205 lbs. The experiment caused the bottom beam, which was parallel to the lateral force, to crack. The                                      team believes cracking occurred due to the glue used to fix the aluminum plate onto the bottom beam. To minimize                                        construction time, JB Kwik was used to contact the bottom beams with the aluminum plates. JB Kwik was                                    fast­drying, but this quick curing time compromised the strength mixture of the epoxy. The analysis did not                                  incorporate the aluminum plates in SAP2000 since the team believed no significant difference would occur.                              Moreover, assuming no aluminum plates would provide the worst case scenario for the substructure.     Table 4: Comparison between Predicted and Actual PI  Cost ($)  Weight  (g)  Predicted  Displ. (in)  Predicted  Force  (lbs)  Displ.  (in) @  20 lbs  Ultimate  Displ. (in)  Ultimate  Force  (lbs)  Predicted  PI  Actual  PI  12,380  97.6  .150  37.5  1.5  .124  7.205  9852  170.63      Figure 11: Failure Location of  Substructure  The result was fairly different from the predicted value                  since the connections by JB Kwik did not perform as well as the                          team predicted. When the JB Kwik epoxy gave in, the support                      reaction moved inwards from the side of the structure. This caused                      a bending moment in the the bottom horizontal member. Figure 11                      shows the failure of the substructure under testing.  Figures 12 and 13 show the expected performance of the                      structure with the predicted connection, while Figures 14 and 15                    show what happened in the experiment. The errors in the                    prediction were caused by the wrong assumption of the strength of                      the epoxy. If the team were to use JB Weld, the structure would                          have a higher ultimate force than 20 lbs, giving a higher stiffness                        factor.      Figure 12: Predicted  Force Diagram of the  Substructure    Figure 13: Predicted  Deflection    Figure 14: Estimated  Force Diagram of the  Substructure after  Testing    Figure 15: Estimated  Testing Deflection       
  • 8.   7  Aesthetics  The structure was intended to blend into the desert environment to minimize disturbances to the natural                                beauty of the surrounding landscapes. To do so, Structural International designed the truss system beneath the                                structure to allow visitors to see the surrounding landscapes. Additionally, the team used sandstone on several walls                                  to help further the home’s blending into the environment. Different earth tones were used in the structure as well.                                      To keep up with the vastness of the desert environment, the architect designed vast open windows facing the east                                      and west, as well as an open deck on the structure’s west side to allow the client to feel one with the environment as                                                the sun rises and sets. To add on to this, each story has very high ceilings at a height of fifteen feet, and includes a                                                  grand living and dining area that is two stories tall, as shown in Figure 16.  The significant volume of natural light entering the structure helps decrease the amount of electricity                              needed to produce light throughout the day. To compensate for the expected very cool evenings and nights, the                                    two­story wall, facing east in the grand living room was painted black in order to absorb heat reflected off of the                                          inner surfaces; the same was done for the roof of the structure. To prevent the interior of the structure from heating                                          up too much, the team utilized tinted windows to prevent an uncomfortable amount of radiated heat from entering.                                    The sandstone exteriors are also meant to reflect light and be a strong insulator so as to strengthen prevention against                                        heat. The solar panels on top of the structure are curved in such a way that they follow the path of the sun’s                                              movement throughout the day, as the sun in the northern hemisphere typically sits toward the south for most of the                                        year. Figure 17 showcases the colors, textures, and environmental considerations in 3D from the Southwest.  Despite all the effort put into blending the structure into the environment, the team still wanted to maintain                                    a sense of uniqueness and did so by designing with hard lines and strong corners, thus providing the structure with a                                          hierarchy of shape against the smooth curves of the surrounding mountains. The mere scale of the building and its                                      elevation, also help stand out from the environment despite its desert­inspired colors and textures. Altogether, the                                structure aims to be simultaneously harmonious with the surrounding landscape as well as eye­catching enough to                                catch the attention of passersby.    Figure 16: The Dimensions of the Structure from the South      Figure 17: 3D Model of the Structure  from the Southwest       
  • 9.   8  Project Challenges  One main challenge was trying to decrease the moment that the structure would experience from the lateral                                  force. Slanting the column toward the wind force helps reduce the moment on the substructure since the force                                    perpendicular to the cross sectional area of the column would decrease. The team realized that the more slanted the                                      columns are, the better the structure can reduce the moment at the bottom of the structure. However, in the original                                        design, the team could not decrease the angle anymore as doing so would risk decreasing the area at the top of the                                            structure to hold the vacation house on top, hence they were placed at 83 degrees.  Structural International faced a major setback during construction. Due to the complex geometry of the                              original design, it was very difficult to construct the substructure with accuracy. After building the bottom section,                                  the Construction Leader realized that the complex shape could jeopardize the given criteria. The team was also not                                    well­equipped to accurately fabricate the beams needed to build the structure. In order to minimize costs, the Lead                                    Analyst kept the bottom section the same and redesigned the rest of the structure. Both leaders realized that one of                                        the most important elements of a structure under lateral is the connections. Having to conserve the cost and weight,                                      the team used balsa wood with a small surface area, creating challenges to make strong connections. To ensure that                                      the connections would not be a problem under loading, the team used TITEBOND III wood glue as well as adding                                        reinforcements on the joints.   The overall team dynamics on this project were outstanding. One challenge in team dynamics was that                                there were strong opinions between team members on the design of the substructure. Samuel wanted a design that                                    would perform better, while Pete wanted another design that is more cost efficient. The entire team met to find a                                        design that satisfied each member’s preferences. The result was a design that can withstand sufficient force and was                                    economically efficient.   Team Responsibilities  Tak and Sam were responsible for the original design of the substructure, while Pete and Eve redesigned it                                    in order to reach a compromise between the team members’ interest. Sam was responsible for the SolidWorks model                                    of the substructure with the assistance of Tak. Eve’s task was producing the site layout and drawings through                                    AUTOCAD. Pete and Sam were responsible for the structural analysis and predictions. Khristian created the original                                design of the house on SolidWorks, with revisions done by Pete and Tak to reach the final aesthetic design, which                                        Khristian in turn again modeled within SolidWorks. Pete and Khristian went out to buy necessary materials for                                  constructing the entire model. All the team members worked together throughout the construction of the entire                                structure. The total hours the Eve, Pete, Sam, Tak, and Khristian put into this project are 48, 48, 49, 43,and 13 hours                                            respectively.   Conclusion  The team learned a huge difference between the strength of JB Weld and JB Kwik epoxy. Moreover, they                                    learned the importance of strong connections in the lateral system. Concepts such as Slope­Deflection were applied                                for analysis to determine deflection and compare the accuracy of SAP2000. During the construction period, they                                learned that the pre­construction planning is one of the most important processes for successfully constructing                              without having to waste any time or material. Unfortunately the team was not able to test their structure to the full                                          limit due the poor connection by JB Kwik. The actual PI was 170.63 while Structural International expected 9852.                                    However the predicted PI assumes the entire structure was constructed properly. ​During the quarter, the team                                became aware of how to accurately model in SAP2000 in order to maximize the efficiency of the program, how to                                        draw site plans using AUTOCAD, and create solid parts and assemblies in SolidWorks. They also knew the                                  limitations of computer programs and have taken that into account for their predictions, thus emphasizing the                                importance of the engineer possessing knowledge and skills in the field in addition to computer analysis.