SlideShare a Scribd company logo
1 of 14
Summary of Completed Work Fall and Spring 2014
Goals
The overall goal of this project would be to find a pathway to make drug delivery via pulmonary
administrationmore potent(withoutraisingtoxicity)evenwhenthe drugpassesthroughamucouslayer.
Withinthe pastfewyears,pulmonaryadministrationhasbecome more popularthanoral administration.
A few advantages for pulmonary administration is that it avoids the first-pass metabolism because it is
directlytransferredintothe lungsthusenabling aquickresponse fromthe drug. Thisprocessalsoallows
the drug to bypass the gastrointestinal tractwhichpreventsthe drug from beingdigested. Thismethod
endsupbeinga simplerwaytoadministerthe songwhile allowingformaximalabsorptionsince itallows
a compromise between pH solubility and pH permeability (Meng-Lund, 2014).
The transportof the mucosaiscalculatedthroughtheuse of amodificationof Fick’sLaw (Error!Reference
source not found.) which assumes a steady-state equilibrium condition. Given the amount of time
allowedfordiffusion,asteady-stateassumptioncanbe maintainedinsteadof apulse assumption(which
wouldrequire a smallersurface area of exposure thanwhat the diffusionchamberwouldprovide). The
apparent diffusion coefficient is lower because mucousis sticky and can clog filters. Therefore, it is not
possible toholdmucousinmembraneforexperimental purposessincethe membranewouldbe clogged.
A more appropriate equation for the diffusion cell is given in Equation 2. This shows that the
concentrationsshouldhave alogarithmicrelationshipwithtime andhaspermeabilityafactorinvolvedin
the slope. The other variables are S, for surface area, and Vd, the volume of the donor cell.
The amount of diffusion that has occurred can be measured via FRAP (fluorescent recovery after
photobleaching) or through ultraviolet light (Flanagan & Donovan, 2001).
Equation 2 Fick's First Law
Equation 1 Diffusion Cell Calculation
When measuring the diffusion of a drug or particle, through a mucous slab or a known volume of the
mucous,the mucousmust be able to be accuratelysudividedintosectionsatthe endfo the experiment
(Flanagan& Donovan, 2001). Thiscould
possibly require a higher concentration
of PGM (pig gastric mucin) which would
deviate from the normal range for
humanmucosa.The usual concentration
for the mucous is 2% PGM. Typical
rheologic data for the PGM mimetic is
shown in Figure 1. Rheology is
determined through values for G’, the
bulk shear storage modulus (elastic),
and G”, the bulk shear loss modulus
(viscous). This displays whether the
mimetic reacts appropriately to fluid
flow.
Another issue that could occur during
these experimentsisthe possibilityforparticlestocrosslinktothe mucous. Thiscouldskew the apparent
diffusioncoefficient for some particles which would result in poor data. To make the error from this as
minimal aspossible,acoatingof lowmolecularweightpolyethylene glycolwill be appliedtothe particles
to reduce association of particles with mucous and prevents protein adsorption (Lai, Wang, & Hanes,
2000).
Making drug delivery more effective through the mucouslayer is also beneficial for patients whosuffer
from cystic fibrosis. Patients with cystic fibrosis have a mucous composition different from a healthier
individual. The best place to start for finding a better
way to get drug delivery through a mucous layer of
different composition would be to find the optimum
size for a nanoparticle ina normal mucous layer. This
would give a good starting point to find the optimal
size for nanoparticles within a patient with cystic
fibrosis. This is also beneficial for pulmonary drug
delivery as whole. Finding the ideal range for
nanoparticle penetration for heatlhy people and
people withcystic fibrosiswouldincrease the efficacy
of the drug and, therefore, allow pulmonary drugs to
be approvedat a fasterrate since a higherpercentage
of people would be reached with the drug. Certain
trends known about mucous infected with cystic
fibrosis is the elastic modulus (G’) being dramatically
greaterthanthe viscousmodulus(G”). Thisgivesthe mucousalessviscousnature andisthe reasonwhy
mucal blockage have a higher chance of occuring in pulmonary and trachealbronchial tissue. Sample
Figure 1 Rheologic data of PGM mimetic (Hamad & Fiegel, 2013).
Figure 2 Rheologic data for CF mucosa (Pavan G. Bhat,
1996)
rheologicdataof typical cysticfibrosismucosaisin Figure2. A possible strategytodeal withthe different
viscoelastic properties is adding a mucolytic agent to improve penetration of the drug, such as Dornase
alfa or N-acetyl L-cysteine (Lai, Wang, & Hanes, 2000).
Methods
Membrane DiffusionStudy Protocol
1. Setpreviouslymade buffertomix for30 minutesthenobtain50mL sample forexperiment.
2. Settingupthe stock solution
a. Particles:Obtainstockparticle solutionandsonicate for10 minutesfollowedby
vortexingthe solution3timesfor30 seconds(repeatthisstep3 times)
b. Otherdyes:Weighandmix requiredamountof dye intothe buffertoachieve desired
concentration
3. Dilute stocksolutiontodesiredconcentration
4. Vortex 3 timesfor30 secondsfollowedbysonicatingfor10 minutes(onlyforparticles)
5. Setup diffusionchamber
a. Wash all part of diffusioncell
b. Place 50 mL buffersample in37 ° C waterbath
c. Cut outmembrane at an appropriate size fordoughnutsectionof chambertohold(have
shinyside pointingup
d. Plugall receiversbutleave one space openforcollectingsample
e. Add2 mL of buffertoeachchamberwitha stirbar in eachchamberfollowedby200 μL
of particle solution. Starttimeronce particle solutionisadded.
6. Collect200 μL sample of eachchamber infollowingmanner:
Time (minutes) ChamberA ChamberB ChamberC
T1
T2
T3
T4
T5
*Remembertoreplenish200 μL withsputumbufferaftertakingsample
7. Prepare StandardPlot(refertoStandardPlotprotocol) of knownconcentrationsbysettingup
Plate 1 accordingly:
1 2 3 4 5 6 7 8 9 10 11 12
A
B 1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256
C 2 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256
D 3 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256
E
F
G
H
8. Setup Plate 2 accordingly:
1 2 3 4 5 6 7 8 9 10 11 12
A (T1 minutes) (T2 minutes) (T3 minutes)
B (A) X X X (A) X X X (A) X X X
C (B) X X X (B) X X X (B) X X X
D (C) X X X (C) X X X (C) X X X
E (T4 minutes) (T5 minutes)
F (A) X X X (A) X X X
G (B) X X X (B) X X X
H (C) X X X (C) X X X
*Use 50 μL of sample ineach well
How to make a PTT cross-linkedmucusmimetic:
Day 1:
1. Prepare 100 ml of sputumbuffer(fresh)
2. Using the 35 mL amberglassvials,create 29 mL of a 2% PGMIII solutioninsputumbuffer.
3. Place the tube(s) on the tube rotator(inside the walk-inrefrigerator) andallow themtomix for24
hours.
Day 2:
4. After24 hours of mixingonthe tube rotator,take the ambervialsof your mucinsolutionbacktothe
lab
5. Prepare a 15% solution(inwater) of potassium tetrathionate.Mix thisvigorouslytoensure ithasall
dissolved.
6. Add 1 ml of thisPTT solutiontothe 29 mL of mucinsolution.Mix byhandfor 5 minutes.
7. Place the vialsina 37C waterbath.Make sure to lightlymix themeverydaytokeepthe mucinfrom
settling.Alsomake sure thatthe waterinthe bath doesn’tevaporate (Fill inmore if youneedto)
Day 8:
8. Your mucin solutionhasnowcross-linkedfor6days(requiredforbestresults).Now runrheology.Ask
me or Edwinabouthowto do that whenthe time comes.
Results
A B C
10 L1 M1 N1
20 L2+0.1L1 M2+0.1M1 N2+0.1N1
30 L3+0.1*(L2+0.1L1) M3+0.1*(M2+0.1M1) N3+0.1*(N2+0.1N1)
Usingtime pointsat 30 seconds,3 minutes,6minutes,9minutes,and12 minutes,the resultsshowed
that while the dye’sconcentrationreachedequilibriumonbothsideswithinthreeminutes,the receiving
cell showedanincrease inthe dye from30 secondsto3 minutes.
Nuclearfastredhad a fairlyconsistentabsorbance spectrumwhichmade itapparentthatthe time
interval formeasurementswere toolarge. Afterthese trials,itwasnecessarytouse smallertime
intervals.
0
200
400
600
800
1000
1200
1400
0 2 4 6 8 10 12 14
Absorbance
Time (min)
Nuclear FastRed 1-12-2015
A
B
C
y = 0.0223ln(x) + 0.0254
R² = 0.9442
y = 0.028ln(x) + 0.0419
R² = 0.9505
y = 0.0298ln(x) + 0.0716
R² = 0.9175
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0 2 4 6 8 10
mginReceiver
Time (minutes)
Trypan Blue Trial in PBS 2-10-15
A B C Log. (A) Log. (B) Log. (C)
Comparisonof the three trialsfordiffusionstudy2-10-15for trypanblue. Eventhoughthe amountof
mass transferthatoccurs is differentforeachtrial,the trendisoverall the same. Possible reasoningfor
whythe mass transferisdifferentcouldbe attributedtosome differencesbetweeneachmembrane or
the donor sample notbeingwell mixedwhenaddedtothe membrane.
TestDiffusion Cell withNuclearFastRedwithknownmassof dye addedto prove massof dye is
increasinginreceiver:
y = 0.0223ln(x) + 0.0254
R² = 0.9442
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0 2 4 6 8 10
mginReceiver
Time (minutes)
A
y = 0.028ln(x) + 0.0419
R² = 0.9505
0
0.02
0.04
0.06
0.08
0.1
0.12
0 2 4 6 8 10
mginReceiver
Time (minutes)
B
The resultsforthese experimentsshowanexpectedtrendforthe trypanblue diffusionthroughthe
cells. The receiverincreasesonalogarithimicscale whichagreeswithcalculationsforthe masstransfer.
Unfortunately,the standarddeviationswere highforthese trials. Thiswaslatercorrectedbyswitching
the readingstoabsorbance.
Standard plots for trypan blue only yielded decent results when absorbance was measured. For
fluorescence,the datawasveryunreliableandall overthe place. Aftertryingthe standardplate andthe
quartz plate, it was determined that the fluorescence reading for trypan blue was unreliable and that
absorbance was the better measure as shown by the trials.
y = 0.0298ln(x) + 0.0716
R² = 0.9175
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0 2 4 6 8 10
mginReceiver
Time (minutes)
C
y = 2.9871x
R² = 0.9969
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 0.02 0.04 0.06 0.08 0.1 0.12
Absorbance(OD)
Concentration (mg/mL)
Trypan Blue Absorbanceat607 nm
A B C AVERAGE Linear (AVERAGE)
Overall,Ithinkthe technique wasalrightforthe standardplots,itwasthe fact I useda fluorescence
measurementinsteadof absorbance measurementthatwasthe issue.
Standardplotfor DextranwithRhodamine andpreliminarytestingof the diffusioncell withthe dye
showedthatideal time markerswouldbe 5min,10 min,20 min,30 min,60 min.
Aftertime slotswere determined,adiffusionstudywasdone withthree cellstoobserve the diffusion
barrierduringthe time periodsmentionedabove.
y = 2.9852x
R² = 0.9969
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 0.02 0.04 0.06 0.08 0.1 0.12
Absorbance(OD)
Concentration (mg/mL)
Trypan Blue Absorbanceat607 nm
A B C AVERAGE Linear (AVERAGE)
y = 554.26x
R² = 0.9987
0
200
400
600
800
1000
1200
1400
0 0.5 1 1.5 2 2.5
Fluorescence
Concentration (mg/mL)
Standard Plot FluorescenceEx. 540 nm Em. 625 nm
1 2 3 Average Linear (Average)
Againthe logarithmicbehaviorisseenforthisdata. To fullycapture the behavior,itcouldbe possibleto
take smallertime pointsbetween5and 10 minutestoobserve more of the logarithmicbehavior.
y = 0.0159ln(x) + 0.1985
R² = 0.6377
0
0.05
0.1
0.15
0.2
0.25
0.3
0 10 20 30 40 50 60 70
Amountinreceiver(mg)
Time (minutes)
Diffusion Study Rhodaminewith Dextran
y = 549.74x
R² = 0.9964
0
100
200
300
400
500
600
700
0 0.2 0.4 0.6 0.8 1 1.2
Absorbance
Concentration (mg/mL)
Standard Plot for Rhodamine Dextran 5-5-15
1 2 3 Average Linear (Average)
Usinga smallertime scale,the logarithmictrendwasobservedforfluorescencewithverylittle erroras
indicatedbythe small errorbars. Thisshowsthat the logarithmictrendisthe desiredbehaviorobserved
for diffusionandshouldbe expectedforparticles.
Rheological Propertiesof MucinMimeticwhichwill be usedinfuture transportstudies:
Sample 1 showsmodestdifferencesbetweenDay2 and Day 14 aftercrosslinkingshouldbe completed.
The range for the viscoelasticmodulus decreasesasthe amountof time aftercrosslinkingincreases.
y = 0.0196ln(x) + 0.0786
R² = 0.9878
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0 2 4 6 8 10 12 14
ReceiverAmount(mg)
Time (minutes)
Diffusion Study Rhodaminewith Dextran 5-5-15
0.01
0.1
1
10
100
1000
10000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-1 D14 Rheology - Frequency
Sweeps (n=3)
G'Average
G"Average
0.0001
0.001
0.01
0.1
1
10
100
1000
10000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-1 D2 Rheology - Frequency
Sweeps (n=3)
G'Average
G"Average
Sample 2 showsmore dramaticdifferencesfromDay2 to Day 14 withthe viscoelasticmodulusshowing
a large decrease comparativelyasthe frequencyincreases. Eventhoughthe mimeticinaprevioustrial
seemedgoodtouse after10 days,14 days showsevidenceof degradationof the crosslinkings. Sofor
experimental purposes,itwouldbe recommendedtouse the mimeticfordiffusionstudieswithin7
days.
0.0001
0.001
0.01
0.1
1
10
100
1000
10000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-1 D2 Rheology - Frequency
Sweeps (n=3)
G' Average
G" Average
0.0001
0.01
1
100
10000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-2 Rheology D2 - Frequency
Sweeps (n=3)
G'Average
G"Average
0.00001
0.001
0.1
10
1000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-2 Rheology D14 - Frequency
Sweeps (n=3)
G'
Average
Measuringthe rheologythrough the C60/4 rather thanthe C35/4 gave more reasonable results. This
explainsthe oddresultsfromthe firsttests. Furthertestsinclude waitingafew more daystosee if
crosslinkingstabilizesorif mimeticcontinuestocrosslink. Thiswill giveinformationonthe immediacy
for runningdiffusionstudieswiththe mimetic.
Sample 2:
0.0001
0.001
0.01
0.1
1
10
100
1000
10000
100000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-2 Rheology D2 - Frequency
Sweeps (n=3)
G' Average
G" Average
0.01
0.1
1
10
100
1000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-1 Rheology D10 -
Frequency Sweeps (n=3)
G' Average
G" Average
Some crosslinkinghasoccurredwithinthe pasttendays,butnotenoughfor the mimetictobe inthe
acceptable range forhumanmucous. Dan suggestedarepeatof the experimentwhichwill occurinthe
nextcouple of weeks. These resultswere possiblydue tousingoldPTT,andwas laterfoundto be due
to usingthe wrongmucinbatch. More experimentswill be runonce reagentsforthe sputumbufferare
verifiedbecause itunsure whetheranhydousormonohydrate formsof acompountisneeded.
Discussion/Conclusions/FutureWork
The logarithmictrendforthe diffusionof the variousdyeswereobservedwithreliable R2
valueswhich
meansthat thistype of trendshouldbe viewedinothertransportstudiesaswell.Conclusionsfromthe
mimeticformationswerethatthe mimeticwouldholdforatleastaweek. Thisensuresaweek’sworth
of reliabletestingfortransportstudiesusingthe mimetic. Future workforthisproject include making
the mucinmimeticfromthe correct batch andwiththe right reagents(once the anhydrousand
monohydrate confusioniscleared),anddoingtransportstudieswiththe dyesgoingthroughthe
mimetics. Thiswill giveabaseline estimateforwhatisexpectedwhenthe particleswill diffuse through
the mucinmimeticaswell. Afterfindingthe ideal particle size forthe mimetic,the nextplanwouldbe
to synthesize amucinmimeticwhichhaspropertiessimilartoCF mucosa. Thentransport studieswillbe
done to findanideal particle size forthattype of mimetic.
References
Flanagan,D.,& Donovan,M. (2001). Drug TransferThrough Mucus. Advanced Drug Delivery Reviews,
174-195.
Hamad, R.,& Fiegel,J.(2013).SyntheticTracheal MucuswithNative Rheological andSurface Tension
Properties. Wiley OnlineLibrary, 1788-1798.
Lai, S.,Wang, Y. Y., & Hanes,J. (2000). Mucus-PenetratingNanoparticlesforDrugandGene Deliveryto
Mucosal Tissues. Advanced Drug Delivery Review,158-171.
0.0001
0.001
0.01
0.1
1
10
100
1000
0.1 1 10 100
ViscoelasticModulus(Pa)
Frequency (rad/s)
SK-1-8-2 Rheology D10 -
Frequency Sweeps (n=3)
G' Average
G" Average
Meng-Lund,E.M. (2014). Ex VivoCorrelationof the Permeabilityof MetoprololAcrossHumanand
Porcine Buccal Mucosa. J. Pharm.Sci.,103: 2053–2061.
PavanG. Bhat,D. R. (1996). Drug DiffusionthroughCysticFibroticMucus:Steady-State Permeation.
Journalof PharmaceuticalSciences,624-630.

More Related Content

Viewers also liked

Titulosdedios 150926005453-lva1-app6892
Titulosdedios 150926005453-lva1-app6892Titulosdedios 150926005453-lva1-app6892
Titulosdedios 150926005453-lva1-app6892nueva-criatura7
 
73yllamarssunombreyeshuayemanuel 150321200048-conversion-gate01
73yllamarssunombreyeshuayemanuel 150321200048-conversion-gate0173yllamarssunombreyeshuayemanuel 150321200048-conversion-gate01
73yllamarssunombreyeshuayemanuel 150321200048-conversion-gate01nueva-criatura7
 
Omilniolio10 160618224757
Omilniolio10 160618224757Omilniolio10 160618224757
Omilniolio10 160618224757nueva-criatura7
 
Jl2 el-20nombre-20de-20dios-130829130645-phpapp02
Jl2 el-20nombre-20de-20dios-130829130645-phpapp02Jl2 el-20nombre-20de-20dios-130829130645-phpapp02
Jl2 el-20nombre-20de-20dios-130829130645-phpapp02nueva-criatura7
 
Презентація складнопідрядне речення
Презентація складнопідрядне реченняПрезентація складнопідрядне речення
Презентація складнопідрядне реченняmasjaartisr
 

Viewers also liked (9)

Titulosdedios 150926005453-lva1-app6892
Titulosdedios 150926005453-lva1-app6892Titulosdedios 150926005453-lva1-app6892
Titulosdedios 150926005453-lva1-app6892
 
73yllamarssunombreyeshuayemanuel 150321200048-conversion-gate01
73yllamarssunombreyeshuayemanuel 150321200048-conversion-gate0173yllamarssunombreyeshuayemanuel 150321200048-conversion-gate01
73yllamarssunombreyeshuayemanuel 150321200048-conversion-gate01
 
Packing Tape
Packing TapePacking Tape
Packing Tape
 
Omilniolio10 160618224757
Omilniolio10 160618224757Omilniolio10 160618224757
Omilniolio10 160618224757
 
Jl2 el-20nombre-20de-20dios-130829130645-phpapp02
Jl2 el-20nombre-20de-20dios-130829130645-phpapp02Jl2 el-20nombre-20de-20dios-130829130645-phpapp02
Jl2 el-20nombre-20de-20dios-130829130645-phpapp02
 
Estudio escatologia
Estudio escatologiaEstudio escatologia
Estudio escatologia
 
My Bachelor transcript
My Bachelor transcriptMy Bachelor transcript
My Bachelor transcript
 
Basic Networking
Basic NetworkingBasic Networking
Basic Networking
 
Презентація складнопідрядне речення
Презентація складнопідрядне реченняПрезентація складнопідрядне речення
Презентація складнопідрядне речення
 

Similar to Summary of Completed Work Fall 2014 and Spring 2015

Pharmaceutical Sci Flashcards _ Quizlet.pdf
Pharmaceutical Sci Flashcards _ Quizlet.pdfPharmaceutical Sci Flashcards _ Quizlet.pdf
Pharmaceutical Sci Flashcards _ Quizlet.pdfrakydt
 
In the LaboratoryJChemEd.chem.wisc.edu • Vol. 76 No. 9 .docx
In the LaboratoryJChemEd.chem.wisc.edu  •  Vol. 76  No. 9 .docxIn the LaboratoryJChemEd.chem.wisc.edu  •  Vol. 76  No. 9 .docx
In the LaboratoryJChemEd.chem.wisc.edu • Vol. 76 No. 9 .docxbradburgess22840
 
Microdialysis in drug development
Microdialysis in drug developmentMicrodialysis in drug development
Microdialysis in drug developmentSpringer
 
In vitro in- vivo studies oral mucosal drug delivery systems
In vitro in- vivo studies oral mucosal drug delivery systemsIn vitro in- vivo studies oral mucosal drug delivery systems
In vitro in- vivo studies oral mucosal drug delivery systemspshrikant07
 
Final Mycrobacteriophages Article
Final Mycrobacteriophages ArticleFinal Mycrobacteriophages Article
Final Mycrobacteriophages Articlejosearzon99
 
11.design and development of niosomal delivery system for ketoprofen
11.design and development of niosomal delivery system for ketoprofen11.design and development of niosomal delivery system for ketoprofen
11.design and development of niosomal delivery system for ketoprofenAlexander Decker
 
Design and development of niosomal delivery system for ketoprofen
Design and development of niosomal delivery system for ketoprofenDesign and development of niosomal delivery system for ketoprofen
Design and development of niosomal delivery system for ketoprofenAlexander Decker
 
Expt. 2 To study various techniques for isolated tissue or organ related expe...
Expt. 2 To study various techniques for isolated tissue or organ related expe...Expt. 2 To study various techniques for isolated tissue or organ related expe...
Expt. 2 To study various techniques for isolated tissue or organ related expe...VISHALJADHAV100
 
THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN THE TAP...
THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN 	 THE TAP...THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN 	 THE TAP...
THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN THE TAP...MedicineAndDermatology
 
Pulsatile Drug Delivery System
Pulsatile Drug Delivery SystemPulsatile Drug Delivery System
Pulsatile Drug Delivery Systemoptimpharma
 
Pulmonary/ lung drug Delivery Sytem
Pulmonary/ lung drug Delivery SytemPulmonary/ lung drug Delivery Sytem
Pulmonary/ lung drug Delivery SytemKrishna skr
 
AlsadiqPropertiesAndConcentratio.pdf
AlsadiqPropertiesAndConcentratio.pdfAlsadiqPropertiesAndConcentratio.pdf
AlsadiqPropertiesAndConcentratio.pdfHamza Deeb
 
Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014
Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014
Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014Krista Degenkolb
 
Mycobacteriophage Isolation from Tropical Soil Sample: Serotinus
Mycobacteriophage Isolation from Tropical Soil Sample: SerotinusMycobacteriophage Isolation from Tropical Soil Sample: Serotinus
Mycobacteriophage Isolation from Tropical Soil Sample: SerotinusKenko95
 
2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 t2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 tOscar Moreno
 

Similar to Summary of Completed Work Fall 2014 and Spring 2015 (20)

Pharmaceutical Sci Flashcards _ Quizlet.pdf
Pharmaceutical Sci Flashcards _ Quizlet.pdfPharmaceutical Sci Flashcards _ Quizlet.pdf
Pharmaceutical Sci Flashcards _ Quizlet.pdf
 
In the LaboratoryJChemEd.chem.wisc.edu • Vol. 76 No. 9 .docx
In the LaboratoryJChemEd.chem.wisc.edu  •  Vol. 76  No. 9 .docxIn the LaboratoryJChemEd.chem.wisc.edu  •  Vol. 76  No. 9 .docx
In the LaboratoryJChemEd.chem.wisc.edu • Vol. 76 No. 9 .docx
 
PDF Article Filtration
PDF Article FiltrationPDF Article Filtration
PDF Article Filtration
 
Microdialysis in drug development
Microdialysis in drug developmentMicrodialysis in drug development
Microdialysis in drug development
 
In vitro in- vivo studies oral mucosal drug delivery systems
In vitro in- vivo studies oral mucosal drug delivery systemsIn vitro in- vivo studies oral mucosal drug delivery systems
In vitro in- vivo studies oral mucosal drug delivery systems
 
Artículo 2012
Artículo 2012Artículo 2012
Artículo 2012
 
Final Mycrobacteriophages Article
Final Mycrobacteriophages ArticleFinal Mycrobacteriophages Article
Final Mycrobacteriophages Article
 
11.design and development of niosomal delivery system for ketoprofen
11.design and development of niosomal delivery system for ketoprofen11.design and development of niosomal delivery system for ketoprofen
11.design and development of niosomal delivery system for ketoprofen
 
Design and development of niosomal delivery system for ketoprofen
Design and development of niosomal delivery system for ketoprofenDesign and development of niosomal delivery system for ketoprofen
Design and development of niosomal delivery system for ketoprofen
 
Expt. 2 To study various techniques for isolated tissue or organ related expe...
Expt. 2 To study various techniques for isolated tissue or organ related expe...Expt. 2 To study various techniques for isolated tissue or organ related expe...
Expt. 2 To study various techniques for isolated tissue or organ related expe...
 
THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN THE TAP...
THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN 	 THE TAP...THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN 	 THE TAP...
THE TAPE STRIPPING TECHNIQUE TO QUANTIFY DRUGS THROUGH OUT THE SKIN THE TAP...
 
Pulsatile Drug Delivery System
Pulsatile Drug Delivery SystemPulsatile Drug Delivery System
Pulsatile Drug Delivery System
 
Pulmonary/ lung drug Delivery Sytem
Pulmonary/ lung drug Delivery SytemPulmonary/ lung drug Delivery Sytem
Pulmonary/ lung drug Delivery Sytem
 
AlsadiqPropertiesAndConcentratio.pdf
AlsadiqPropertiesAndConcentratio.pdfAlsadiqPropertiesAndConcentratio.pdf
AlsadiqPropertiesAndConcentratio.pdf
 
Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014
Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014
Nanoscale_Constrained_Delivery_A_Novel_Technology_for_Subdermal_Implants_2014
 
Mycobacteriophage Isolation from Tropical Soil Sample: Serotinus
Mycobacteriophage Isolation from Tropical Soil Sample: SerotinusMycobacteriophage Isolation from Tropical Soil Sample: Serotinus
Mycobacteriophage Isolation from Tropical Soil Sample: Serotinus
 
Care of a ventilated child
Care of a ventilated   childCare of a ventilated   child
Care of a ventilated child
 
2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 t2014 increasing survival study of kidney hek-293 t
2014 increasing survival study of kidney hek-293 t
 
articulo
articulo articulo
articulo
 
FFR COPY
FFR  COPYFFR  COPY
FFR COPY
 

Summary of Completed Work Fall 2014 and Spring 2015

  • 1. Summary of Completed Work Fall and Spring 2014 Goals The overall goal of this project would be to find a pathway to make drug delivery via pulmonary administrationmore potent(withoutraisingtoxicity)evenwhenthe drugpassesthroughamucouslayer. Withinthe pastfewyears,pulmonaryadministrationhasbecome more popularthanoral administration. A few advantages for pulmonary administration is that it avoids the first-pass metabolism because it is directlytransferredintothe lungsthusenabling aquickresponse fromthe drug. Thisprocessalsoallows the drug to bypass the gastrointestinal tractwhichpreventsthe drug from beingdigested. Thismethod endsupbeinga simplerwaytoadministerthe songwhile allowingformaximalabsorptionsince itallows a compromise between pH solubility and pH permeability (Meng-Lund, 2014). The transportof the mucosaiscalculatedthroughtheuse of amodificationof Fick’sLaw (Error!Reference source not found.) which assumes a steady-state equilibrium condition. Given the amount of time allowedfordiffusion,asteady-stateassumptioncanbe maintainedinsteadof apulse assumption(which wouldrequire a smallersurface area of exposure thanwhat the diffusionchamberwouldprovide). The apparent diffusion coefficient is lower because mucousis sticky and can clog filters. Therefore, it is not possible toholdmucousinmembraneforexperimental purposessincethe membranewouldbe clogged. A more appropriate equation for the diffusion cell is given in Equation 2. This shows that the concentrationsshouldhave alogarithmicrelationshipwithtime andhaspermeabilityafactorinvolvedin the slope. The other variables are S, for surface area, and Vd, the volume of the donor cell. The amount of diffusion that has occurred can be measured via FRAP (fluorescent recovery after photobleaching) or through ultraviolet light (Flanagan & Donovan, 2001). Equation 2 Fick's First Law Equation 1 Diffusion Cell Calculation
  • 2. When measuring the diffusion of a drug or particle, through a mucous slab or a known volume of the mucous,the mucousmust be able to be accuratelysudividedintosectionsatthe endfo the experiment (Flanagan& Donovan, 2001). Thiscould possibly require a higher concentration of PGM (pig gastric mucin) which would deviate from the normal range for humanmucosa.The usual concentration for the mucous is 2% PGM. Typical rheologic data for the PGM mimetic is shown in Figure 1. Rheology is determined through values for G’, the bulk shear storage modulus (elastic), and G”, the bulk shear loss modulus (viscous). This displays whether the mimetic reacts appropriately to fluid flow. Another issue that could occur during these experimentsisthe possibilityforparticlestocrosslinktothe mucous. Thiscouldskew the apparent diffusioncoefficient for some particles which would result in poor data. To make the error from this as minimal aspossible,acoatingof lowmolecularweightpolyethylene glycolwill be appliedtothe particles to reduce association of particles with mucous and prevents protein adsorption (Lai, Wang, & Hanes, 2000). Making drug delivery more effective through the mucouslayer is also beneficial for patients whosuffer from cystic fibrosis. Patients with cystic fibrosis have a mucous composition different from a healthier individual. The best place to start for finding a better way to get drug delivery through a mucous layer of different composition would be to find the optimum size for a nanoparticle ina normal mucous layer. This would give a good starting point to find the optimal size for nanoparticles within a patient with cystic fibrosis. This is also beneficial for pulmonary drug delivery as whole. Finding the ideal range for nanoparticle penetration for heatlhy people and people withcystic fibrosiswouldincrease the efficacy of the drug and, therefore, allow pulmonary drugs to be approvedat a fasterrate since a higherpercentage of people would be reached with the drug. Certain trends known about mucous infected with cystic fibrosis is the elastic modulus (G’) being dramatically greaterthanthe viscousmodulus(G”). Thisgivesthe mucousalessviscousnature andisthe reasonwhy mucal blockage have a higher chance of occuring in pulmonary and trachealbronchial tissue. Sample Figure 1 Rheologic data of PGM mimetic (Hamad & Fiegel, 2013). Figure 2 Rheologic data for CF mucosa (Pavan G. Bhat, 1996)
  • 3. rheologicdataof typical cysticfibrosismucosaisin Figure2. A possible strategytodeal withthe different viscoelastic properties is adding a mucolytic agent to improve penetration of the drug, such as Dornase alfa or N-acetyl L-cysteine (Lai, Wang, & Hanes, 2000). Methods Membrane DiffusionStudy Protocol 1. Setpreviouslymade buffertomix for30 minutesthenobtain50mL sample forexperiment. 2. Settingupthe stock solution a. Particles:Obtainstockparticle solutionandsonicate for10 minutesfollowedby vortexingthe solution3timesfor30 seconds(repeatthisstep3 times) b. Otherdyes:Weighandmix requiredamountof dye intothe buffertoachieve desired concentration 3. Dilute stocksolutiontodesiredconcentration 4. Vortex 3 timesfor30 secondsfollowedbysonicatingfor10 minutes(onlyforparticles) 5. Setup diffusionchamber a. Wash all part of diffusioncell b. Place 50 mL buffersample in37 ° C waterbath c. Cut outmembrane at an appropriate size fordoughnutsectionof chambertohold(have shinyside pointingup d. Plugall receiversbutleave one space openforcollectingsample e. Add2 mL of buffertoeachchamberwitha stirbar in eachchamberfollowedby200 μL of particle solution. Starttimeronce particle solutionisadded. 6. Collect200 μL sample of eachchamber infollowingmanner: Time (minutes) ChamberA ChamberB ChamberC T1 T2 T3 T4 T5 *Remembertoreplenish200 μL withsputumbufferaftertakingsample 7. Prepare StandardPlot(refertoStandardPlotprotocol) of knownconcentrationsbysettingup Plate 1 accordingly: 1 2 3 4 5 6 7 8 9 10 11 12 A B 1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 C 2 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 D 3 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 E F G H
  • 4. 8. Setup Plate 2 accordingly: 1 2 3 4 5 6 7 8 9 10 11 12 A (T1 minutes) (T2 minutes) (T3 minutes) B (A) X X X (A) X X X (A) X X X C (B) X X X (B) X X X (B) X X X D (C) X X X (C) X X X (C) X X X E (T4 minutes) (T5 minutes) F (A) X X X (A) X X X G (B) X X X (B) X X X H (C) X X X (C) X X X *Use 50 μL of sample ineach well How to make a PTT cross-linkedmucusmimetic: Day 1: 1. Prepare 100 ml of sputumbuffer(fresh) 2. Using the 35 mL amberglassvials,create 29 mL of a 2% PGMIII solutioninsputumbuffer. 3. Place the tube(s) on the tube rotator(inside the walk-inrefrigerator) andallow themtomix for24 hours. Day 2: 4. After24 hours of mixingonthe tube rotator,take the ambervialsof your mucinsolutionbacktothe lab 5. Prepare a 15% solution(inwater) of potassium tetrathionate.Mix thisvigorouslytoensure ithasall dissolved. 6. Add 1 ml of thisPTT solutiontothe 29 mL of mucinsolution.Mix byhandfor 5 minutes. 7. Place the vialsina 37C waterbath.Make sure to lightlymix themeverydaytokeepthe mucinfrom settling.Alsomake sure thatthe waterinthe bath doesn’tevaporate (Fill inmore if youneedto) Day 8: 8. Your mucin solutionhasnowcross-linkedfor6days(requiredforbestresults).Now runrheology.Ask me or Edwinabouthowto do that whenthe time comes. Results A B C 10 L1 M1 N1 20 L2+0.1L1 M2+0.1M1 N2+0.1N1
  • 5. 30 L3+0.1*(L2+0.1L1) M3+0.1*(M2+0.1M1) N3+0.1*(N2+0.1N1) Usingtime pointsat 30 seconds,3 minutes,6minutes,9minutes,and12 minutes,the resultsshowed that while the dye’sconcentrationreachedequilibriumonbothsideswithinthreeminutes,the receiving cell showedanincrease inthe dye from30 secondsto3 minutes. Nuclearfastredhad a fairlyconsistentabsorbance spectrumwhichmade itapparentthatthe time interval formeasurementswere toolarge. Afterthese trials,itwasnecessarytouse smallertime intervals. 0 200 400 600 800 1000 1200 1400 0 2 4 6 8 10 12 14 Absorbance Time (min) Nuclear FastRed 1-12-2015 A B C y = 0.0223ln(x) + 0.0254 R² = 0.9442 y = 0.028ln(x) + 0.0419 R² = 0.9505 y = 0.0298ln(x) + 0.0716 R² = 0.9175 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 2 4 6 8 10 mginReceiver Time (minutes) Trypan Blue Trial in PBS 2-10-15 A B C Log. (A) Log. (B) Log. (C)
  • 6. Comparisonof the three trialsfordiffusionstudy2-10-15for trypanblue. Eventhoughthe amountof mass transferthatoccurs is differentforeachtrial,the trendisoverall the same. Possible reasoningfor whythe mass transferisdifferentcouldbe attributedtosome differencesbetweeneachmembrane or the donor sample notbeingwell mixedwhenaddedtothe membrane. TestDiffusion Cell withNuclearFastRedwithknownmassof dye addedto prove massof dye is increasinginreceiver: y = 0.0223ln(x) + 0.0254 R² = 0.9442 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 2 4 6 8 10 mginReceiver Time (minutes) A y = 0.028ln(x) + 0.0419 R² = 0.9505 0 0.02 0.04 0.06 0.08 0.1 0.12 0 2 4 6 8 10 mginReceiver Time (minutes) B
  • 7. The resultsforthese experimentsshowanexpectedtrendforthe trypanblue diffusionthroughthe cells. The receiverincreasesonalogarithimicscale whichagreeswithcalculationsforthe masstransfer. Unfortunately,the standarddeviationswere highforthese trials. Thiswaslatercorrectedbyswitching the readingstoabsorbance. Standard plots for trypan blue only yielded decent results when absorbance was measured. For fluorescence,the datawasveryunreliableandall overthe place. Aftertryingthe standardplate andthe quartz plate, it was determined that the fluorescence reading for trypan blue was unreliable and that absorbance was the better measure as shown by the trials. y = 0.0298ln(x) + 0.0716 R² = 0.9175 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 2 4 6 8 10 mginReceiver Time (minutes) C y = 2.9871x R² = 0.9969 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.02 0.04 0.06 0.08 0.1 0.12 Absorbance(OD) Concentration (mg/mL) Trypan Blue Absorbanceat607 nm A B C AVERAGE Linear (AVERAGE)
  • 8. Overall,Ithinkthe technique wasalrightforthe standardplots,itwasthe fact I useda fluorescence measurementinsteadof absorbance measurementthatwasthe issue. Standardplotfor DextranwithRhodamine andpreliminarytestingof the diffusioncell withthe dye showedthatideal time markerswouldbe 5min,10 min,20 min,30 min,60 min. Aftertime slotswere determined,adiffusionstudywasdone withthree cellstoobserve the diffusion barrierduringthe time periodsmentionedabove. y = 2.9852x R² = 0.9969 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.02 0.04 0.06 0.08 0.1 0.12 Absorbance(OD) Concentration (mg/mL) Trypan Blue Absorbanceat607 nm A B C AVERAGE Linear (AVERAGE) y = 554.26x R² = 0.9987 0 200 400 600 800 1000 1200 1400 0 0.5 1 1.5 2 2.5 Fluorescence Concentration (mg/mL) Standard Plot FluorescenceEx. 540 nm Em. 625 nm 1 2 3 Average Linear (Average)
  • 9. Againthe logarithmicbehaviorisseenforthisdata. To fullycapture the behavior,itcouldbe possibleto take smallertime pointsbetween5and 10 minutestoobserve more of the logarithmicbehavior. y = 0.0159ln(x) + 0.1985 R² = 0.6377 0 0.05 0.1 0.15 0.2 0.25 0.3 0 10 20 30 40 50 60 70 Amountinreceiver(mg) Time (minutes) Diffusion Study Rhodaminewith Dextran y = 549.74x R² = 0.9964 0 100 200 300 400 500 600 700 0 0.2 0.4 0.6 0.8 1 1.2 Absorbance Concentration (mg/mL) Standard Plot for Rhodamine Dextran 5-5-15 1 2 3 Average Linear (Average)
  • 10. Usinga smallertime scale,the logarithmictrendwasobservedforfluorescencewithverylittle erroras indicatedbythe small errorbars. Thisshowsthat the logarithmictrendisthe desiredbehaviorobserved for diffusionandshouldbe expectedforparticles. Rheological Propertiesof MucinMimeticwhichwill be usedinfuture transportstudies: Sample 1 showsmodestdifferencesbetweenDay2 and Day 14 aftercrosslinkingshouldbe completed. The range for the viscoelasticmodulus decreasesasthe amountof time aftercrosslinkingincreases. y = 0.0196ln(x) + 0.0786 R² = 0.9878 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 2 4 6 8 10 12 14 ReceiverAmount(mg) Time (minutes) Diffusion Study Rhodaminewith Dextran 5-5-15 0.01 0.1 1 10 100 1000 10000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-1 D14 Rheology - Frequency Sweeps (n=3) G'Average G"Average 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-1 D2 Rheology - Frequency Sweeps (n=3) G'Average G"Average
  • 11. Sample 2 showsmore dramaticdifferencesfromDay2 to Day 14 withthe viscoelasticmodulusshowing a large decrease comparativelyasthe frequencyincreases. Eventhoughthe mimeticinaprevioustrial seemedgoodtouse after10 days,14 days showsevidenceof degradationof the crosslinkings. Sofor experimental purposes,itwouldbe recommendedtouse the mimeticfordiffusionstudieswithin7 days. 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-1 D2 Rheology - Frequency Sweeps (n=3) G' Average G" Average 0.0001 0.01 1 100 10000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-2 Rheology D2 - Frequency Sweeps (n=3) G'Average G"Average 0.00001 0.001 0.1 10 1000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-2 Rheology D14 - Frequency Sweeps (n=3) G' Average
  • 12. Measuringthe rheologythrough the C60/4 rather thanthe C35/4 gave more reasonable results. This explainsthe oddresultsfromthe firsttests. Furthertestsinclude waitingafew more daystosee if crosslinkingstabilizesorif mimeticcontinuestocrosslink. Thiswill giveinformationonthe immediacy for runningdiffusionstudieswiththe mimetic. Sample 2: 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-2 Rheology D2 - Frequency Sweeps (n=3) G' Average G" Average 0.01 0.1 1 10 100 1000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-1 Rheology D10 - Frequency Sweeps (n=3) G' Average G" Average
  • 13. Some crosslinkinghasoccurredwithinthe pasttendays,butnotenoughfor the mimetictobe inthe acceptable range forhumanmucous. Dan suggestedarepeatof the experimentwhichwill occurinthe nextcouple of weeks. These resultswere possiblydue tousingoldPTT,andwas laterfoundto be due to usingthe wrongmucinbatch. More experimentswill be runonce reagentsforthe sputumbufferare verifiedbecause itunsure whetheranhydousormonohydrate formsof acompountisneeded. Discussion/Conclusions/FutureWork The logarithmictrendforthe diffusionof the variousdyeswereobservedwithreliable R2 valueswhich meansthat thistype of trendshouldbe viewedinothertransportstudiesaswell.Conclusionsfromthe mimeticformationswerethatthe mimeticwouldholdforatleastaweek. Thisensuresaweek’sworth of reliabletestingfortransportstudiesusingthe mimetic. Future workforthisproject include making the mucinmimeticfromthe correct batch andwiththe right reagents(once the anhydrousand monohydrate confusioniscleared),anddoingtransportstudieswiththe dyesgoingthroughthe mimetics. Thiswill giveabaseline estimateforwhatisexpectedwhenthe particleswill diffuse through the mucinmimeticaswell. Afterfindingthe ideal particle size forthe mimetic,the nextplanwouldbe to synthesize amucinmimeticwhichhaspropertiessimilartoCF mucosa. Thentransport studieswillbe done to findanideal particle size forthattype of mimetic. References Flanagan,D.,& Donovan,M. (2001). Drug TransferThrough Mucus. Advanced Drug Delivery Reviews, 174-195. Hamad, R.,& Fiegel,J.(2013).SyntheticTracheal MucuswithNative Rheological andSurface Tension Properties. Wiley OnlineLibrary, 1788-1798. Lai, S.,Wang, Y. Y., & Hanes,J. (2000). Mucus-PenetratingNanoparticlesforDrugandGene Deliveryto Mucosal Tissues. Advanced Drug Delivery Review,158-171. 0.0001 0.001 0.01 0.1 1 10 100 1000 0.1 1 10 100 ViscoelasticModulus(Pa) Frequency (rad/s) SK-1-8-2 Rheology D10 - Frequency Sweeps (n=3) G' Average G" Average
  • 14. Meng-Lund,E.M. (2014). Ex VivoCorrelationof the Permeabilityof MetoprololAcrossHumanand Porcine Buccal Mucosa. J. Pharm.Sci.,103: 2053–2061. PavanG. Bhat,D. R. (1996). Drug DiffusionthroughCysticFibroticMucus:Steady-State Permeation. Journalof PharmaceuticalSciences,624-630.