SlideShare a Scribd company logo
1 of 1
Download to read offline
0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
1% Ultrathix™ P-100 1% Stabileze® QM 1% Carbopol® 980
Sensoryevaluationrating
Slipperiness/Lubricity
Cushion
Initial spreadibility
Rub-out spreadibility
1%UltrathixTM P100
1%Stabileze® QM
1%Carbopol® 980
Cushion
Initial Spreadability
Rub-out
Spreadability
Slipperiness
Pick-up
-2
0
2
-6 -4 -2 0 2 4 6
F2(19.00%)
F1 (81.00 %)
Biplot (axes F1 and F2: 100.00 %)
1% Ultrathix™ P-
100
1% Stabileze® QM
1% Carbopol® 980
-4
-3
-2
-1
0
1
2
3
4
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
F2(23.99%)
F1 (76.01 %)
Observations (axes F1 and F2: 100.00 %)
Cushion
Initial Spreadability
Rub-out Spreadability
Slipperiness
Pick-up
ESS (w=1rps)G' S (w=1rps)
ESS (w=10rps)
G' S (w=10rps)
ESS (w=20rps)
G' S (w=20rps)
ESR (w=1rps)
G' R (w=1rps)
SV @ 10s-1
SV @ 100s-1
SV @ 500s-1
MNF
T0
m
n
beta
s
-1
-0.75
-0.5
-0.25
0
0.25
0.5
0.75
1
-2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
F2(23.99%)
F1 (76.01 %)
Variables (axes F1 and F2: 100.00 %)
Cushion
Initial Spreadability
Rub-out Spreadability
Slipperiness
Pick-up
G' CR4
G'L/G'M CR4
e3CR4
tand CR4
eta'L/eta'M CR4
v3 CR4
G' CS4
G'L/G'M CS4
e3CS4
tand CS4
eta'L/eta'M CS4
v3 CS4
G' CR2
G'L/G'M CR2
e3CR2
tand CR2
eta'L/eta'M CR2
v3 CR2
G' CS2
G'L/G'M CS2
e3CS2
tand CS2
eta'L/eta'M CS2
v3 CS2
G' CS001
G'L/G'M CS001
e3CS001
tand CS001
eta'L/eta'M CS001
v3 CS001
-1
-0.75
-0.5
-0.25
0
0.25
0.5
0.75
1
-1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25
F2(34.28%)
F1 (65.72 %)
1% Ultrathix™ P-100
1% Stabileze® QM
1% Carbopol® 980
-6
-4
-2
0
2
4
-8 -6 -4 -2 0 2 4 6 8
F2(34.28%)
F1 (65.72 %)
0.1
1
10
100
1000
10000
0.01 0.1 1 10 100
ShearStress(dyn/cm2),Shearviscosity(P)
Time, s
shear stress
shear viscosity
t=0 sec,
shear
rate=0.5 s-1
t=5 sec,
shearrate=0.5 s-1
1
10
100
1000
10000
0.01 0.1 1 10 100
ShearStress(dyn/cm2),Shearviscosity(P)
Time, s
shear stress
shear viscosity
t=0 sec,
shear
rate=0.5 s-1
t=5 sec,
shearrate=0.5 s-1
1
10
100
1000
10000
0.01 0.1 1 10 100
ShearStress(dyn/cm2),Shearviscosity(P)
Time, s
shear stress
shear viscosity
t=0 sec,
shear
rate=0.5 s-1
t=5 sec,
shearrate=0.5 s-1
(a) (b) (c)
Characterization of yield stress and slip behavior of skin/hair care gels using steady flow and LAOS
measurements and their correlation with sensorial attributes
Seher Ozkan and Tim W. Gillece
Material Science Group, Global R&D, International Specialty Products, NJ
…ABSTRACT …LAOS ANALYSIS
…WALL SLIP EFFECT ON DYNAMIC AND STEADY MEASUREMENTS
…References
1. Steven P. Meeker, Roger T. Bonnecaze, Michel Cloitre. “Slip and flow in pastes of soft particles: Direct observation and Rheology.” J. Rheol. (2004) 48(6): 1295-1320
2. D. M. Kalyon. “Apparent slip and viscoplasticity of concentrated suspensions.” J. Rheol. (2005) 49(3): 621-640
3. Randy H. Ewoldt, A. E. Hosoi and Gareth H. McKinley. “New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear.” J. Rheol.
(2008) 52(6): 1427-1458
4. Morten Meilgaard, Gail Vance Civille, B. Thomas Carr. Sensory Evaluation Techniques. CRC Press, 3rd edition, 1999.
Gels made with three different polymers widely used as rheology modifiers in cosmetic formulations (Crosslinked
poly(acrylic acid (Carbopol® 980), crosslinked methyl vinyl ether/maleic anhydride copolymer (Stabileze® QM) and
crosslinked vinyl pyrrolidone/acrylic acid copolymer (UltrathixTM P100)) were characterized by rheological and sensory evaluation
methods to determine the relationship between sensorial perception and rheological parameters.
Both conventional rheological characterization methods and a more recent method, Fourier Transform Rheology with Large
Amplitude Oscillatory Flow data (LAOS), were utilized to characterize the material with and without wall slip. Sensorial analyses were
implemented in-vivo to evaluate the perceived ease of initial and rub-out spreadability, cushion, pick-up, and slipperiness attributes of
the gels.
Results were statistically analyzed by analysis of variance (ANOVA), principle component analysis (PCA) and linear regression
analysis. Sensory characteristics discriminated the three materials and PCA and linear regression analyses revealed that sensory
attributes could be well predicted by rheological methods.
…MOTIVATION AND CHALLENGES
Sensory properties of personal care products contribute substantially to the overall consumer acceptance.
Different sensory evaluation techniques are applied to help the formulator to identify and define the
sensory profile of a product but they are costly and time consuming.
Rheological methods can be employed to mimic the sensory perception experienced by consumer and
subjective descriptions sensory attributes can be correlated quantitative instrumental measurements of
rheological parameters.
…Conclusions
 Rheological methods can be successfully applied to objectively and quantitatively describe sensory attributes of cosmetic products.
 The occurrence of wall-slip may contribute to the sensory perception of the hydrogel based personal care products and should be characterized.
 Applied shear rate range may contribute to the material’s response to given deformation and sensory perception of the product.
 Using Fourier transform analysis in large amplitude oscillatory shear flow can be an effective method to correlate sensory rating results in skin/hair
gels. Results indicate that surface roughness and being in linear, transition and non-linear region determines which LAOS analysis parameters would
correlate with which sensory parameters. Wall slip has to be taken into account when correlating LAOS analysis parameters.
Rheological characterization of hydrogels and gel-like percolated suspensions/emulsions and determination of yield stress present
special challenges associated with thixotropy, viscoplasticity and wall slip, which renders the application of generally accepted
rheological characterization methodologies difficult.
Figure 2. Strain amplitude dependency of elastic stress (G’ x g (dyn/cm2)) at 1 Hz frequency measured by
smooth surface fixtures (a) and rough surface fixtures (b).
Figure1. Strain amplitude dependency of storage modulus (G’(dyn/cm2)) at 1 Hz frequency measured by
smooth surface fixtures (a) and rough surface fixtures (b).
Figure 3. Shear stress and shear viscosity versus time measured by steady torsional experiment using 25mm parallel plate fixtures at 0.5 s-1 shear rate and 1mm gap opening for 1% Carbopol® 980 (a), 1%Stabileze® QM
(b) and 1% UltrathixTM P100 (c). Insets show the onset of slip at the material/plate interface.
100
1000
10000
100000
0.01 1 100
G'(dyn/cm2)
Strain, %
1%Ultrathix P100,w=1rps
1% Stabileze QM, w=1rps
1% Carbopol980, w=1rps
100
1000
10000
100000
0.01 1 100 10000
G'(dyn/cm2)
Strain, %
1%Ultrathix P100,w=1rps
1% Stabileze QM, w=1rps
1% Carbopol980, w=1rps
(a) (b)
100
1000
10000
0.01 0.1 1 10 100 1000
ElasticStress(dyn/cm2)
Strain, %
1%Ultrathix P100,w=1rps
1% Stabileze QM, w=1rps
1% Carbopol980, w=1rps
100
1000
10000
0.01 0.1 1 10 100 1000 10000
ElasticStress(dyn/cm2)
Strain, %
1%Ultrathix P100,w=1rps
1% Stabileze QM, w=1rps
1% Carbopol980, w=1rps
(a) (b)
1% Ultrathix™ P-100 1% Stabileze
®
QM 1% Carbopol
®
980
Maximum elastic
stress, Pa (w=1 Hz),
smooth surface
29 139 136
Maximum elastic
stress, Pa (w=10 Hz),
smooth surface
159 206 209
Maximum elastic
stress, Pa (w=20 Hz),
smooth surface
191 246 259
Maximum elastic
stress, Pa (w=1 Hz),
rough surface
169 175 164
Figure 4. Shear stress versus shear rate data measured by steady torsional experiment using 20mm smooth surface
parallel plate fixtures at 1mm and 1.5mm gap opening for 1% Carbopol® 980 (a) and 1% Stabileze® QM (b). Solid line
represents the Herschel-Bulkley fit of slip corrected data.
1
10
100
1000
0.00001 0.001 0.1 10 1000
ShearStress,Pa
Shear Rate s-1
Steady torsionaldata, gap=1.5mm
Steady torsionaldata, gap=1mm
Herschel-Bulkleyfit
Slipcorrectedexperimental data
1
10
100
1000
0.00001 0.001 0.1 10 1000
ShearStress,Pa
Shear Rate s-1
Steady torsionaldata, gap=1.5mm
Steady torsionaldata, gap=1mm
Herschel-Bulkleyfit
Slipcorrectedexperimental data
(a) (b)
1% Ultrathix™ P-100 1% Stabileze
®
QM 1% Carbopol
®
980

0, Pa
161.5 168.5 123.7
m, Pa.s1/n
12 22.8 41.5
n 0.54 0.52 0.43

m.(Pa.s1/nb
)nb
0.0033 0.141 0.024
sb 1.07 0.35 0.43
Table III. Herschel-Bulkley model parameters and Navier’s slip coefficients for 1% gels.
Table I. Yield stress values determined from maximum elastic
stress calculations for 1% gel samples at different frequency and
surface conditions.
1% Ultrathix™ P-100 1% Stabileze
®
QM 1% Carbopol
®
980
G’, Pa (w=1 Hz),
smooth surface 859 788 565
G’, Pa (w=10 Hz),
smooth surface 932 830 626
G’, Pa (w=20 Hz),
smooth surface 923 884 641
G’, Pa (w=1 Hz),
rough surface 851 765 550
Table II. Storage modulus, G’, values in the linear viscoelactic region for
1% gel samples at different frequency and surface conditions.
…Acknowledgement
We thank Dr. Gareth H. McKinley and Dr. Randy H. Ewoldt for their guidance regarding LAOS analysis and making MITlaos software available for us.
…CORRELATION OF SENSORY RATINGS WITH CONVENTIONAL AND LAOS
RHEOLOGICAL PARAMETERS
Figure 8. Sensory and LAOS analysis data together:
Principle component analysis.
Figure 7. Sensory and rheological parameter data together:
Principle component analysis.
Principle component analysis shows that cushion, slipperiness and
pick-up are related while initial and rub out spreadability are related
but are in contrast with cushion, slipperiness and pick-up.
Figure 6. Sensory data: Principle component analysis.
y = -163.84x + 1474.6
R² = 0.9822
y = -167.81x + 1551.1
R² = 0.9988
y = -159.97x + 1535.9
R² = 0.9437
y = -166.45x + 1471
R² = 0.9926
0
100
200
300
400
500
600
700
800
900
1000
0.00 2.00 4.00 6.00
G',Pa
Cushion Rating
w=1rps with slip
w=10rps with slip
w=20rps with slip
w=1, no slip
y = 60.561x - 181.02
R² = 0.9789
0
20
40
60
80
100
120
140
160
0.00 2.00 4.00 6.00
NormalForceDuring
Tesnsion,g
Cushion Rating
y = 16.107x - 47.044
R² = 1
0
5
10
15
20
25
30
35
40
45
0.00 2.00 4.00 6.00
Consistencyindex,Pa.s1/n
Cushion Rating
y = -0.0637x + 0.7826
R² = 0.9512
0
0.1
0.2
0.3
0.4
0.5
0.6
0.00 2.00 4.00 6.00
PowerLawindex
Cushion Rating
Figure 9. Linear regression fit results of Cushion ratings with G’ measured in
linear viscoelastic region, normal force, power low index (n) and consistency index
(m) of Herschel-Bulkley fit.
y = 5.1178x + 15.329
R² = 0.9932
0
5
10
15
20
25
30
35
40
45
50
0.00 2.00 4.00 6.00
G',Pa
Cushion Rating
Rough surface, 400% strain
y = 6.2687x + 6.7486
R² = 0.9971
0
5
10
15
20
25
30
35
40
45
0.00 2.00 4.00 6.00
G',Pa
Cushion Rating
Smooth surface, 400% strain
y = -169.01x + 1453
R² = 0.9924
0
100
200
300
400
500
600
700
800
900
0.00 2.00 4.00 6.00
G',Pa
Cushion Rating
Smooth surface, 1% strain
y = -0.3106x + 2.9379
R² = 1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0.00 2.00 4.00 6.00
tand
Cushion Rating
Smooth surface, 200% strain
y = 3.6219x + 15.4
R² = 0.9895
0
5
10
15
20
25
30
35
40
45
0 2 4 6 8
G',Pa
Pick-Up Rating
Smooth surface, 400% strain
y = 0.9344x - 9.1534
R² = 0.9967
-6
-5
-4
-3
-2
-1
0
0 2 4 6 8
v3,Pa.s
Pick-Up Rating
Smooth surface, 400% strain
y = -0.1781x + 2.5019
R² = 0.9774
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 2 4 6 8
tand
Pick-Up Rating
Smooth surface, 200% strain
y = -98.159x + 1222.5
R² = 0.9952
0
100
200
300
400
500
600
700
800
900
0 2 4 6 8
G',Pa
Pick-Up Rating
Smooth surface, 1% strain
y = 0.0814x + 0.926
R² = 0.9833
1.28
1.3
1.32
1.34
1.36
1.38
1.4
1.42
1.44
0.00 2.00 4.00 6.00 8.00
EtaL/EtaM
Initial Spreadability Rating
Rough surface, 200% strain
y = -0.0215x + 1.0434
R² = 0.9552
0.905
0.91
0.915
0.92
0.925
0.93
0.935
0.94
0.945
0.00 2.00 4.00 6.00 8.00
G'L/G'M
Initial Spreadability Rating
Smooth surface, 1% strain
y = 1.2779x - 4.5112
R² = 0.9236
0
0.5
1
1.5
2
2.5
3
3.5
4
0.00 2.00 4.00 6.00 8.00
v3,Pa.s
Initial Spreadability Rating
Smooth surface, 1% strain
y = -0.21x + 2.255
R² = 0.9423
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0.00 2.00 4.00 6.00 8.00
EtaL/EtaM
Initial Spreadability Rating
Smooth surface, 200% strain
y = 0.0364x + 0.9388
R² = 0.9619
1.09
1.095
1.1
1.105
1.11
1.115
1.12
1.125
1.13
1.135
1.14
1.145
0.00 2.00 4.00 6.00
EtaL/EtaM
Rub-Out Spreadability Rating
Rough surface, 400% strain
y = -0.0268x + 1.063
R² = 0.8176
0.905
0.91
0.915
0.92
0.925
0.93
0.935
0.94
0.945
0.95
0.00 2.00 4.00 6.00
G'L/G'M
Rub-Out Spreadability Rating
Smooth surface, 1% strain
Figure 10. Linear regression fit results of sensory ratings
and various LAOS analysis parameters.
Strain
amplitude, %
G’, Pa G’L/G’M e3, Pa tand hL/hM v3, Pa.s Physical meaning
1% Ultrathix™ P-100 400 34.38 3.74 11.45 2.11 1.14 -2.56 Shear thinning, Strain stiffening
1% Stabileze® QM 400 37.06 4.08 12.57 2.35 1.10 -3.15 Shear thinning, Strain stiffening
1% Carbopol® 980 400 43.64 1.79 8.48 1.65 1.12 -1.61 Shear thinning, Strain stiffening
1% Ultrathix™ P-100 200 89.22 1.78 15.16 1.32 1.43 3.06 Shear thickening, Strain stiffening
1% Stabileze® QM 200 86.96 2.07 14.79 1.44 1.31 2.63 Shear thickening, Strain stiffening
1% Carbopol® 980 200 90.01 1.28 8.29 1.05 1.32 3.32 Shear thickening, Strain stiffening
Table IV. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software,
of 1% gels. Experiments were conducted 1 Hz frequency using rough surface fixtures at 200% and 400% strain amplitudes.
Strain
amplitude, %
G’, Pa G’L/G’M e3, Pa tand hL/hM v3, Pa.s Physical meaning
1% Ultrathix™ P-100 400 29.51 3.79 10.38 2.68 0.83 -5.55 Shear thinning, Strain stiffening
1% Stabileze® QM 400 34.27 4.46 12.48 2.59 1.03 -4.21 Shear thinning, Strain stiffening
1% Carbopol® 980 400 41.10 1.86 8.48 1.80 1.04 -2.56 Shear thinning, Strain stiffening
1% Ultrathix™ P-100 200 65.78 1.79 11.7 1.8 0.95 -2.82 Shear thinning, Strain stiffening
1% Stabileze® QM 200 81.00 1.93 14.87 1.59 1.24 1.25 Shear thickening, Strain stiffening
1% Carbopol® 980 200 84.50 1.40 9.54 1.23 1.25 1.70 Shear thickening, Strain stiffening
1% Ultrathix™ P-100 1 843.2 0.91 -4.5 0.07 2.07 3.44 Shear thickening, Strain softening
1% Stabileze® QM 1 704.97 0.94 -1.79 0.08 1.89 1.70 Shear thickening, Strain softening
1% Carbopol® 980 1 529.09 0.94 -1.58 0.08 1.87 1.56 Shear thickening, Strain softening
Table III. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software,
of 1% gels. Experiments were conducted 1 Hz frequency using smooth surface fixtures at 1%, 200% and 400% strain amplitudes.
Fourier transform analysis on the large amplitude oscillatory data collected with rough and smooth surfaces at 1, 200 and 400% strain
amplitude values. Sinusoidal stress response signal collected from the sample was decomposed into elastic and viscous stress
contributions using symmetry arguments following the methods given by Cho et al. (2005) and Ewoldt et al (2008). Chebyshev
polynomials (closely related to the Fourier decomposition) were calculated using MITlaos software (Ewoldt et al (2008))
-500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0
-4000.0
-3000.0
-2000.0
-1000.0
0.0
1000.0
2000.0
3000.0
4000.0
Strain(t) [%]
stress(t)()
[dyn/cm²]
stress(t)
1%UltrathixP100, w=1rps, 400% Strain
1%StabilezeQM, w=1rps, 400% Strain
1%Carbopol980, w=1rps, 400% Strain
-500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0
-4000.0
-3000.0
-2000.0
-1000.0
0.0
1000.0
2000.0
3000.0
4000.0
Strain(t) [%]
stress(t)()
[dyn/cm²]
stress(t)
1%Carbopol980, w=1rps, 400% Strain, smooth surface
1%UltrathixP100, w=1rps, 400% Strain, smooth surface
1%StabilezeQM, w=1rps, 400% Strain, smooth surface
Figure5. Comparison of Lissajous representation of the measured stress response
upon a sinusoidal strain input for 1% gels of UltrathixP100, StabilezeQM and
Carbopol980 (pH adjusted to 7). 400% strain amplitude and 1rps frequency.

More Related Content

Viewers also liked

Off season vegetables in urdu in Pakistan A presentation By Mr Allah Dad Khan
Off season vegetables in urdu in Pakistan A presentation By Mr Allah Dad KhanOff season vegetables in urdu in Pakistan A presentation By Mr Allah Dad Khan
Off season vegetables in urdu in Pakistan A presentation By Mr Allah Dad KhanMr.Allah Dad Khan
 
D I A N A T I R O N Presentation
D  I  A  N  A    T  I  R O N PresentationD  I  A  N  A    T  I  R O N Presentation
D I A N A T I R O N Presentationdiana_tiron
 
Asopos-Minamata
Asopos-MinamataAsopos-Minamata
Asopos-Minamatadpurpler
 
15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...
15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...
15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...SEHER OZKAN
 
Sharing Practice on Enterprise Risk Management (ERM)
Sharing Practice on Enterprise Risk Management (ERM)Sharing Practice on Enterprise Risk Management (ERM)
Sharing Practice on Enterprise Risk Management (ERM)Diane Christina
 
The Charming Genius of the Apollo Guidance Computer
The Charming Genius of the Apollo Guidance ComputerThe Charming Genius of the Apollo Guidance Computer
The Charming Genius of the Apollo Guidance ComputerBrian Troutwine
 

Viewers also liked (9)

Off season vegetables in urdu in Pakistan A presentation By Mr Allah Dad Khan
Off season vegetables in urdu in Pakistan A presentation By Mr Allah Dad KhanOff season vegetables in urdu in Pakistan A presentation By Mr Allah Dad Khan
Off season vegetables in urdu in Pakistan A presentation By Mr Allah Dad Khan
 
TEFL Complete Cert
TEFL Complete CertTEFL Complete Cert
TEFL Complete Cert
 
D I A N A T I R O N Presentation
D  I  A  N  A    T  I  R O N PresentationD  I  A  N  A    T  I  R O N Presentation
D I A N A T I R O N Presentation
 
Loi 2015 03 du 12 fevrier 2015 modifiant article 31 loi ppp(1)
Loi 2015 03 du 12 fevrier 2015 modifiant article 31 loi ppp(1)Loi 2015 03 du 12 fevrier 2015 modifiant article 31 loi ppp(1)
Loi 2015 03 du 12 fevrier 2015 modifiant article 31 loi ppp(1)
 
Asopos-Minamata
Asopos-MinamataAsopos-Minamata
Asopos-Minamata
 
15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...
15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...
15 - Dispersion of Nanoparticles Using Twin Screw Extrusion Technologies, Cha...
 
Writing buisness case
Writing buisness caseWriting buisness case
Writing buisness case
 
Sharing Practice on Enterprise Risk Management (ERM)
Sharing Practice on Enterprise Risk Management (ERM)Sharing Practice on Enterprise Risk Management (ERM)
Sharing Practice on Enterprise Risk Management (ERM)
 
The Charming Genius of the Apollo Guidance Computer
The Charming Genius of the Apollo Guidance ComputerThe Charming Genius of the Apollo Guidance Computer
The Charming Genius of the Apollo Guidance Computer
 

Similar to Relationship between sensory perception and rheological properties of skin care gels

adhesive_application_guide.pdf
adhesive_application_guide.pdfadhesive_application_guide.pdf
adhesive_application_guide.pdfssuser9f67f31
 
Final final REU Powerpoint
Final final REU PowerpointFinal final REU Powerpoint
Final final REU PowerpointElena Stachew
 
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...eSAT Journals
 
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...eSAT Publishing House
 
SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...
SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...
SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...Pradeep Raja Muthunagalingam
 
VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)
VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)
VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)Derma Nur Ashikin
 
Nano comp lam method
Nano comp lam methodNano comp lam method
Nano comp lam methodskrokkam
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...eSAT Publishing House
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...eSAT Journals
 
The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...
The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...
The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...University of Mosul, College of Dentistry,
 
TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORTmusadoto
 
Oil Price Schocks and Stock Markets
Oil Price Schocks and Stock Markets Oil Price Schocks and Stock Markets
Oil Price Schocks and Stock Markets Daniel Canedo
 

Similar to Relationship between sensory perception and rheological properties of skin care gels (20)

adhesive_application_guide.pdf
adhesive_application_guide.pdfadhesive_application_guide.pdf
adhesive_application_guide.pdf
 
Final final REU Powerpoint
Final final REU PowerpointFinal final REU Powerpoint
Final final REU Powerpoint
 
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
 
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
Properties of the cake layer in the ultrafiltration of polydisperse colloidal...
 
SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...
SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...
SLIDING WEAR BEHAVIOUR OF GLASS FIBER REINFORCED EPOXY RESIN COMPOSITE AND OP...
 
VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)
VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)
VIVA PRESENTATION : PAVEMENT (DERMA NUR ASHIKIN)
 
Engineering handbook
Engineering handbookEngineering handbook
Engineering handbook
 
Araldite 2011 adhesive
Araldite 2011 adhesiveAraldite 2011 adhesive
Araldite 2011 adhesive
 
Nano comp lam method
Nano comp lam methodNano comp lam method
Nano comp lam method
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
 
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
Behaviour of bituminous concrete modified with polyethylene glycol for blade ...
 
The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...
The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...
The Effects Of Magnetic Resonance Imaging (MRI) On Some Proprieties Of Acryli...
 
Sieve analysis for Soil
Sieve analysis for SoilSieve analysis for Soil
Sieve analysis for Soil
 
Coating technology
Coating technologyCoating technology
Coating technology
 
Coating 5
Coating 5Coating 5
Coating 5
 
Sieve analysis
Sieve analysisSieve analysis
Sieve analysis
 
C0342011019
C0342011019C0342011019
C0342011019
 
Gf3611261131
Gf3611261131Gf3611261131
Gf3611261131
 
TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORT
 
Oil Price Schocks and Stock Markets
Oil Price Schocks and Stock Markets Oil Price Schocks and Stock Markets
Oil Price Schocks and Stock Markets
 

More from SEHER OZKAN

IADR Poster Final
IADR Poster FinalIADR Poster Final
IADR Poster FinalSEHER OZKAN
 
LAOS in cosmetics_Ozkan etal
LAOS in cosmetics_Ozkan etalLAOS in cosmetics_Ozkan etal
LAOS in cosmetics_Ozkan etalSEHER OZKAN
 
AAPS_2012_klucel updated
AAPS_2012_klucel updatedAAPS_2012_klucel updated
AAPS_2012_klucel updatedSEHER OZKAN
 
CRS_ThermalProperties
CRS_ThermalPropertiesCRS_ThermalProperties
CRS_ThermalPropertiesSEHER OZKAN
 
AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]SEHER OZKAN
 
Ozkan-SOR2010_SensoryCorrelation with Rheology_Poster
Ozkan-SOR2010_SensoryCorrelation with Rheology_PosterOzkan-SOR2010_SensoryCorrelation with Rheology_Poster
Ozkan-SOR2010_SensoryCorrelation with Rheology_PosterSEHER OZKAN
 
Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009
Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009
Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009SEHER OZKAN
 
Characterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gels
Characterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gelsCharacterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gels
Characterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gelsSEHER OZKAN
 
VPVAGMA JAPS July 22 2012 Final 38287_fta
VPVAGMA JAPS July 22 2012 Final 38287_ftaVPVAGMA JAPS July 22 2012 Final 38287_fta
VPVAGMA JAPS July 22 2012 Final 38287_ftaSEHER OZKAN
 
04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...
04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...
04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...SEHER OZKAN
 

More from SEHER OZKAN (10)

IADR Poster Final
IADR Poster FinalIADR Poster Final
IADR Poster Final
 
LAOS in cosmetics_Ozkan etal
LAOS in cosmetics_Ozkan etalLAOS in cosmetics_Ozkan etal
LAOS in cosmetics_Ozkan etal
 
AAPS_2012_klucel updated
AAPS_2012_klucel updatedAAPS_2012_klucel updated
AAPS_2012_klucel updated
 
CRS_ThermalProperties
CRS_ThermalPropertiesCRS_ThermalProperties
CRS_ThermalProperties
 
AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]AAPS_2012_plasticizers[1]
AAPS_2012_plasticizers[1]
 
Ozkan-SOR2010_SensoryCorrelation with Rheology_Poster
Ozkan-SOR2010_SensoryCorrelation with Rheology_PosterOzkan-SOR2010_SensoryCorrelation with Rheology_Poster
Ozkan-SOR2010_SensoryCorrelation with Rheology_Poster
 
Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009
Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009
Biomaterials_Seher_Kalyon_Yu_McKelvey_Lowinger_2009
 
Characterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gels
Characterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gelsCharacterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gels
Characterization_of_yield_stress_and_slip_behaviour_of_skin_and_hair_care_gels
 
VPVAGMA JAPS July 22 2012 Final 38287_fta
VPVAGMA JAPS July 22 2012 Final 38287_ftaVPVAGMA JAPS July 22 2012 Final 38287_fta
VPVAGMA JAPS July 22 2012 Final 38287_fta
 
04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...
04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...
04 - Army-MPR and Stevens Collaboration to Design and Build the Smallest Twin...
 

Relationship between sensory perception and rheological properties of skin care gels

  • 1. 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 1% Ultrathix™ P-100 1% Stabileze® QM 1% Carbopol® 980 Sensoryevaluationrating Slipperiness/Lubricity Cushion Initial spreadibility Rub-out spreadibility 1%UltrathixTM P100 1%Stabileze® QM 1%Carbopol® 980 Cushion Initial Spreadability Rub-out Spreadability Slipperiness Pick-up -2 0 2 -6 -4 -2 0 2 4 6 F2(19.00%) F1 (81.00 %) Biplot (axes F1 and F2: 100.00 %) 1% Ultrathix™ P- 100 1% Stabileze® QM 1% Carbopol® 980 -4 -3 -2 -1 0 1 2 3 4 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 F2(23.99%) F1 (76.01 %) Observations (axes F1 and F2: 100.00 %) Cushion Initial Spreadability Rub-out Spreadability Slipperiness Pick-up ESS (w=1rps)G' S (w=1rps) ESS (w=10rps) G' S (w=10rps) ESS (w=20rps) G' S (w=20rps) ESR (w=1rps) G' R (w=1rps) SV @ 10s-1 SV @ 100s-1 SV @ 500s-1 MNF T0 m n beta s -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 F2(23.99%) F1 (76.01 %) Variables (axes F1 and F2: 100.00 %) Cushion Initial Spreadability Rub-out Spreadability Slipperiness Pick-up G' CR4 G'L/G'M CR4 e3CR4 tand CR4 eta'L/eta'M CR4 v3 CR4 G' CS4 G'L/G'M CS4 e3CS4 tand CS4 eta'L/eta'M CS4 v3 CS4 G' CR2 G'L/G'M CR2 e3CR2 tand CR2 eta'L/eta'M CR2 v3 CR2 G' CS2 G'L/G'M CS2 e3CS2 tand CS2 eta'L/eta'M CS2 v3 CS2 G' CS001 G'L/G'M CS001 e3CS001 tand CS001 eta'L/eta'M CS001 v3 CS001 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 F2(34.28%) F1 (65.72 %) 1% Ultrathix™ P-100 1% Stabileze® QM 1% Carbopol® 980 -6 -4 -2 0 2 4 -8 -6 -4 -2 0 2 4 6 8 F2(34.28%) F1 (65.72 %) 0.1 1 10 100 1000 10000 0.01 0.1 1 10 100 ShearStress(dyn/cm2),Shearviscosity(P) Time, s shear stress shear viscosity t=0 sec, shear rate=0.5 s-1 t=5 sec, shearrate=0.5 s-1 1 10 100 1000 10000 0.01 0.1 1 10 100 ShearStress(dyn/cm2),Shearviscosity(P) Time, s shear stress shear viscosity t=0 sec, shear rate=0.5 s-1 t=5 sec, shearrate=0.5 s-1 1 10 100 1000 10000 0.01 0.1 1 10 100 ShearStress(dyn/cm2),Shearviscosity(P) Time, s shear stress shear viscosity t=0 sec, shear rate=0.5 s-1 t=5 sec, shearrate=0.5 s-1 (a) (b) (c) Characterization of yield stress and slip behavior of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes Seher Ozkan and Tim W. Gillece Material Science Group, Global R&D, International Specialty Products, NJ …ABSTRACT …LAOS ANALYSIS …WALL SLIP EFFECT ON DYNAMIC AND STEADY MEASUREMENTS …References 1. Steven P. Meeker, Roger T. Bonnecaze, Michel Cloitre. “Slip and flow in pastes of soft particles: Direct observation and Rheology.” J. Rheol. (2004) 48(6): 1295-1320 2. D. M. Kalyon. “Apparent slip and viscoplasticity of concentrated suspensions.” J. Rheol. (2005) 49(3): 621-640 3. Randy H. Ewoldt, A. E. Hosoi and Gareth H. McKinley. “New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear.” J. Rheol. (2008) 52(6): 1427-1458 4. Morten Meilgaard, Gail Vance Civille, B. Thomas Carr. Sensory Evaluation Techniques. CRC Press, 3rd edition, 1999. Gels made with three different polymers widely used as rheology modifiers in cosmetic formulations (Crosslinked poly(acrylic acid (Carbopol® 980), crosslinked methyl vinyl ether/maleic anhydride copolymer (Stabileze® QM) and crosslinked vinyl pyrrolidone/acrylic acid copolymer (UltrathixTM P100)) were characterized by rheological and sensory evaluation methods to determine the relationship between sensorial perception and rheological parameters. Both conventional rheological characterization methods and a more recent method, Fourier Transform Rheology with Large Amplitude Oscillatory Flow data (LAOS), were utilized to characterize the material with and without wall slip. Sensorial analyses were implemented in-vivo to evaluate the perceived ease of initial and rub-out spreadability, cushion, pick-up, and slipperiness attributes of the gels. Results were statistically analyzed by analysis of variance (ANOVA), principle component analysis (PCA) and linear regression analysis. Sensory characteristics discriminated the three materials and PCA and linear regression analyses revealed that sensory attributes could be well predicted by rheological methods. …MOTIVATION AND CHALLENGES Sensory properties of personal care products contribute substantially to the overall consumer acceptance. Different sensory evaluation techniques are applied to help the formulator to identify and define the sensory profile of a product but they are costly and time consuming. Rheological methods can be employed to mimic the sensory perception experienced by consumer and subjective descriptions sensory attributes can be correlated quantitative instrumental measurements of rheological parameters. …Conclusions  Rheological methods can be successfully applied to objectively and quantitatively describe sensory attributes of cosmetic products.  The occurrence of wall-slip may contribute to the sensory perception of the hydrogel based personal care products and should be characterized.  Applied shear rate range may contribute to the material’s response to given deformation and sensory perception of the product.  Using Fourier transform analysis in large amplitude oscillatory shear flow can be an effective method to correlate sensory rating results in skin/hair gels. Results indicate that surface roughness and being in linear, transition and non-linear region determines which LAOS analysis parameters would correlate with which sensory parameters. Wall slip has to be taken into account when correlating LAOS analysis parameters. Rheological characterization of hydrogels and gel-like percolated suspensions/emulsions and determination of yield stress present special challenges associated with thixotropy, viscoplasticity and wall slip, which renders the application of generally accepted rheological characterization methodologies difficult. Figure 2. Strain amplitude dependency of elastic stress (G’ x g (dyn/cm2)) at 1 Hz frequency measured by smooth surface fixtures (a) and rough surface fixtures (b). Figure1. Strain amplitude dependency of storage modulus (G’(dyn/cm2)) at 1 Hz frequency measured by smooth surface fixtures (a) and rough surface fixtures (b). Figure 3. Shear stress and shear viscosity versus time measured by steady torsional experiment using 25mm parallel plate fixtures at 0.5 s-1 shear rate and 1mm gap opening for 1% Carbopol® 980 (a), 1%Stabileze® QM (b) and 1% UltrathixTM P100 (c). Insets show the onset of slip at the material/plate interface. 100 1000 10000 100000 0.01 1 100 G'(dyn/cm2) Strain, % 1%Ultrathix P100,w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps 100 1000 10000 100000 0.01 1 100 10000 G'(dyn/cm2) Strain, % 1%Ultrathix P100,w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps (a) (b) 100 1000 10000 0.01 0.1 1 10 100 1000 ElasticStress(dyn/cm2) Strain, % 1%Ultrathix P100,w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps 100 1000 10000 0.01 0.1 1 10 100 1000 10000 ElasticStress(dyn/cm2) Strain, % 1%Ultrathix P100,w=1rps 1% Stabileze QM, w=1rps 1% Carbopol980, w=1rps (a) (b) 1% Ultrathix™ P-100 1% Stabileze ® QM 1% Carbopol ® 980 Maximum elastic stress, Pa (w=1 Hz), smooth surface 29 139 136 Maximum elastic stress, Pa (w=10 Hz), smooth surface 159 206 209 Maximum elastic stress, Pa (w=20 Hz), smooth surface 191 246 259 Maximum elastic stress, Pa (w=1 Hz), rough surface 169 175 164 Figure 4. Shear stress versus shear rate data measured by steady torsional experiment using 20mm smooth surface parallel plate fixtures at 1mm and 1.5mm gap opening for 1% Carbopol® 980 (a) and 1% Stabileze® QM (b). Solid line represents the Herschel-Bulkley fit of slip corrected data. 1 10 100 1000 0.00001 0.001 0.1 10 1000 ShearStress,Pa Shear Rate s-1 Steady torsionaldata, gap=1.5mm Steady torsionaldata, gap=1mm Herschel-Bulkleyfit Slipcorrectedexperimental data 1 10 100 1000 0.00001 0.001 0.1 10 1000 ShearStress,Pa Shear Rate s-1 Steady torsionaldata, gap=1.5mm Steady torsionaldata, gap=1mm Herschel-Bulkleyfit Slipcorrectedexperimental data (a) (b) 1% Ultrathix™ P-100 1% Stabileze ® QM 1% Carbopol ® 980  0, Pa 161.5 168.5 123.7 m, Pa.s1/n 12 22.8 41.5 n 0.54 0.52 0.43  m.(Pa.s1/nb )nb 0.0033 0.141 0.024 sb 1.07 0.35 0.43 Table III. Herschel-Bulkley model parameters and Navier’s slip coefficients for 1% gels. Table I. Yield stress values determined from maximum elastic stress calculations for 1% gel samples at different frequency and surface conditions. 1% Ultrathix™ P-100 1% Stabileze ® QM 1% Carbopol ® 980 G’, Pa (w=1 Hz), smooth surface 859 788 565 G’, Pa (w=10 Hz), smooth surface 932 830 626 G’, Pa (w=20 Hz), smooth surface 923 884 641 G’, Pa (w=1 Hz), rough surface 851 765 550 Table II. Storage modulus, G’, values in the linear viscoelactic region for 1% gel samples at different frequency and surface conditions. …Acknowledgement We thank Dr. Gareth H. McKinley and Dr. Randy H. Ewoldt for their guidance regarding LAOS analysis and making MITlaos software available for us. …CORRELATION OF SENSORY RATINGS WITH CONVENTIONAL AND LAOS RHEOLOGICAL PARAMETERS Figure 8. Sensory and LAOS analysis data together: Principle component analysis. Figure 7. Sensory and rheological parameter data together: Principle component analysis. Principle component analysis shows that cushion, slipperiness and pick-up are related while initial and rub out spreadability are related but are in contrast with cushion, slipperiness and pick-up. Figure 6. Sensory data: Principle component analysis. y = -163.84x + 1474.6 R² = 0.9822 y = -167.81x + 1551.1 R² = 0.9988 y = -159.97x + 1535.9 R² = 0.9437 y = -166.45x + 1471 R² = 0.9926 0 100 200 300 400 500 600 700 800 900 1000 0.00 2.00 4.00 6.00 G',Pa Cushion Rating w=1rps with slip w=10rps with slip w=20rps with slip w=1, no slip y = 60.561x - 181.02 R² = 0.9789 0 20 40 60 80 100 120 140 160 0.00 2.00 4.00 6.00 NormalForceDuring Tesnsion,g Cushion Rating y = 16.107x - 47.044 R² = 1 0 5 10 15 20 25 30 35 40 45 0.00 2.00 4.00 6.00 Consistencyindex,Pa.s1/n Cushion Rating y = -0.0637x + 0.7826 R² = 0.9512 0 0.1 0.2 0.3 0.4 0.5 0.6 0.00 2.00 4.00 6.00 PowerLawindex Cushion Rating Figure 9. Linear regression fit results of Cushion ratings with G’ measured in linear viscoelastic region, normal force, power low index (n) and consistency index (m) of Herschel-Bulkley fit. y = 5.1178x + 15.329 R² = 0.9932 0 5 10 15 20 25 30 35 40 45 50 0.00 2.00 4.00 6.00 G',Pa Cushion Rating Rough surface, 400% strain y = 6.2687x + 6.7486 R² = 0.9971 0 5 10 15 20 25 30 35 40 45 0.00 2.00 4.00 6.00 G',Pa Cushion Rating Smooth surface, 400% strain y = -169.01x + 1453 R² = 0.9924 0 100 200 300 400 500 600 700 800 900 0.00 2.00 4.00 6.00 G',Pa Cushion Rating Smooth surface, 1% strain y = -0.3106x + 2.9379 R² = 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.00 2.00 4.00 6.00 tand Cushion Rating Smooth surface, 200% strain y = 3.6219x + 15.4 R² = 0.9895 0 5 10 15 20 25 30 35 40 45 0 2 4 6 8 G',Pa Pick-Up Rating Smooth surface, 400% strain y = 0.9344x - 9.1534 R² = 0.9967 -6 -5 -4 -3 -2 -1 0 0 2 4 6 8 v3,Pa.s Pick-Up Rating Smooth surface, 400% strain y = -0.1781x + 2.5019 R² = 0.9774 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 2 4 6 8 tand Pick-Up Rating Smooth surface, 200% strain y = -98.159x + 1222.5 R² = 0.9952 0 100 200 300 400 500 600 700 800 900 0 2 4 6 8 G',Pa Pick-Up Rating Smooth surface, 1% strain y = 0.0814x + 0.926 R² = 0.9833 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 0.00 2.00 4.00 6.00 8.00 EtaL/EtaM Initial Spreadability Rating Rough surface, 200% strain y = -0.0215x + 1.0434 R² = 0.9552 0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.00 2.00 4.00 6.00 8.00 G'L/G'M Initial Spreadability Rating Smooth surface, 1% strain y = 1.2779x - 4.5112 R² = 0.9236 0 0.5 1 1.5 2 2.5 3 3.5 4 0.00 2.00 4.00 6.00 8.00 v3,Pa.s Initial Spreadability Rating Smooth surface, 1% strain y = -0.21x + 2.255 R² = 0.9423 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.00 2.00 4.00 6.00 8.00 EtaL/EtaM Initial Spreadability Rating Smooth surface, 200% strain y = 0.0364x + 0.9388 R² = 0.9619 1.09 1.095 1.1 1.105 1.11 1.115 1.12 1.125 1.13 1.135 1.14 1.145 0.00 2.00 4.00 6.00 EtaL/EtaM Rub-Out Spreadability Rating Rough surface, 400% strain y = -0.0268x + 1.063 R² = 0.8176 0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95 0.00 2.00 4.00 6.00 G'L/G'M Rub-Out Spreadability Rating Smooth surface, 1% strain Figure 10. Linear regression fit results of sensory ratings and various LAOS analysis parameters. Strain amplitude, % G’, Pa G’L/G’M e3, Pa tand hL/hM v3, Pa.s Physical meaning 1% Ultrathix™ P-100 400 34.38 3.74 11.45 2.11 1.14 -2.56 Shear thinning, Strain stiffening 1% Stabileze® QM 400 37.06 4.08 12.57 2.35 1.10 -3.15 Shear thinning, Strain stiffening 1% Carbopol® 980 400 43.64 1.79 8.48 1.65 1.12 -1.61 Shear thinning, Strain stiffening 1% Ultrathix™ P-100 200 89.22 1.78 15.16 1.32 1.43 3.06 Shear thickening, Strain stiffening 1% Stabileze® QM 200 86.96 2.07 14.79 1.44 1.31 2.63 Shear thickening, Strain stiffening 1% Carbopol® 980 200 90.01 1.28 8.29 1.05 1.32 3.32 Shear thickening, Strain stiffening Table IV. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software, of 1% gels. Experiments were conducted 1 Hz frequency using rough surface fixtures at 200% and 400% strain amplitudes. Strain amplitude, % G’, Pa G’L/G’M e3, Pa tand hL/hM v3, Pa.s Physical meaning 1% Ultrathix™ P-100 400 29.51 3.79 10.38 2.68 0.83 -5.55 Shear thinning, Strain stiffening 1% Stabileze® QM 400 34.27 4.46 12.48 2.59 1.03 -4.21 Shear thinning, Strain stiffening 1% Carbopol® 980 400 41.10 1.86 8.48 1.80 1.04 -2.56 Shear thinning, Strain stiffening 1% Ultrathix™ P-100 200 65.78 1.79 11.7 1.8 0.95 -2.82 Shear thinning, Strain stiffening 1% Stabileze® QM 200 81.00 1.93 14.87 1.59 1.24 1.25 Shear thickening, Strain stiffening 1% Carbopol® 980 200 84.50 1.40 9.54 1.23 1.25 1.70 Shear thickening, Strain stiffening 1% Ultrathix™ P-100 1 843.2 0.91 -4.5 0.07 2.07 3.44 Shear thickening, Strain softening 1% Stabileze® QM 1 704.97 0.94 -1.79 0.08 1.89 1.70 Shear thickening, Strain softening 1% Carbopol® 980 1 529.09 0.94 -1.58 0.08 1.87 1.56 Shear thickening, Strain softening Table III. Chebyshev coefficients, which are calculated from large amplitude oscillatory flow (LAOS) data using MITlaos software, of 1% gels. Experiments were conducted 1 Hz frequency using smooth surface fixtures at 1%, 200% and 400% strain amplitudes. Fourier transform analysis on the large amplitude oscillatory data collected with rough and smooth surfaces at 1, 200 and 400% strain amplitude values. Sinusoidal stress response signal collected from the sample was decomposed into elastic and viscous stress contributions using symmetry arguments following the methods given by Cho et al. (2005) and Ewoldt et al (2008). Chebyshev polynomials (closely related to the Fourier decomposition) were calculated using MITlaos software (Ewoldt et al (2008)) -500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 -4000.0 -3000.0 -2000.0 -1000.0 0.0 1000.0 2000.0 3000.0 4000.0 Strain(t) [%] stress(t)() [dyn/cm²] stress(t) 1%UltrathixP100, w=1rps, 400% Strain 1%StabilezeQM, w=1rps, 400% Strain 1%Carbopol980, w=1rps, 400% Strain -500.0 -400.0 -300.0 -200.0 -100.0 0.0 100.0 200.0 300.0 400.0 500.0 -4000.0 -3000.0 -2000.0 -1000.0 0.0 1000.0 2000.0 3000.0 4000.0 Strain(t) [%] stress(t)() [dyn/cm²] stress(t) 1%Carbopol980, w=1rps, 400% Strain, smooth surface 1%UltrathixP100, w=1rps, 400% Strain, smooth surface 1%StabilezeQM, w=1rps, 400% Strain, smooth surface Figure5. Comparison of Lissajous representation of the measured stress response upon a sinusoidal strain input for 1% gels of UltrathixP100, StabilezeQM and Carbopol980 (pH adjusted to 7). 400% strain amplitude and 1rps frequency.