SlideShare a Scribd company logo
1 of 1
Introduction
Pinenes are a class of bicyclic molecules emitted
by conifers and marine flora. These molecules
constitute 6% of all biogenically derived volatile
organic compound emissions in the atmosphere.
Experimental research demonstrates that
pinenes react with hydroxyl radicals via addition
across the double bond. These, in turn, react
with ambient oxygen to create pinene hydroxy-
peroxy radicals. These species are stabilized by
complexation with a water molecule. These
reactions play a fundamental role in
atmospheric chemistry. R-β, S-β, R-α, and S- α
pinene geometry optimizations for various
stereoisomers of each radical and radical water
complex were determined computationally at
the B3LYP/6-311++G(2d,2p) method and basis
set. Basis set superposition error was corrected
using the counterpoise method. These
calculation results were used to determine
partition functions and calculate Boltzmann-
weighted average global equilibrium constants
for the hydroxy-peroxy pinene-water complexes.
The current work focuses on characterizing the
hydrogen bond based on geometry data and
Natural Bonding Orbital (NBO) analysis.
Methods
Gaussian 092 was employed to determine binding
energies and vibrational frequencies for radicals and
radical-water complexes at the B3LYP/6-
311G++(2d,2p) level. Partition functions were
corrected for hindered internal rotors and Morse
oscillators within each radical-water species. Radicals
and radical-water complexes that may have a
significant thermal population (typically < ~ 3 kT
above the lowest ground state energy) are used to
calculate a Boltzmann-weighted average equilibrium
constant of complexation for the radical-water
complex. NBO analysis is used to characterize
hydrogen bonding between the radicals and water.
References
Computational Study of Isoprene Hyroxyalkyl Peroxy Radical-Water Complexes (CSH8(OH)O2-H20), Jared Clark, Seth T. Call, Daniel E. Austin, Jaron C. Hansen. The Journal of Physical Chemistry 2010 114 (23), 6534-6541.
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.
Pople, Gaussian, Inc., Wallingford CT, 2004.
Computational Study of Hexanal Peroxy Radical-Water Complexes, Emily Burrell, Jared C. Clark, Mathew Snow, Heidi Dumais, Seong-Cheol Lee, Brad J. Nielson, Derek Osborne, Lucia Salamanca-Cardona, Logan Zemp, Ryan S. Dabell, Jaron C.
Hansen. International Journal of Quantum Chemistry. DOI: 10.1002/qua.23220
DeterminationofBoltzmann-WeightedEquilibriumConstants
forPinene-BasedHydroxy-PeroxyRadical-WaterComplexes
ElizabethBuchmiller,MichaelGoytia,TylerSoutham,PaulSpiel,KellyWilson,FanYang,TimothyRose
RyanS.DaBell,BYU-IdahoDepartmentofChemistry
andJaronC.Hansen,BYUDepartmentofChemistryandBiochemistry
Results Discussion
With BSSE corrected energies, representative
equilibria have been determined for
steroisomers of R-β-pinene and S-β-pinene
derived radical-water complexes. As shown in
Table 2, dominant hydrogen bond lengths are
in the 1.88-1.95 Angstrom range, with
secondary bond lengths being approximately
2.0-2.2 Angstroms. Previous research
demonstrates that optimal hydrogen bond
angles approach 180o,1 and the primary H-
bond angles pinene based radical-water
complexes are consistent with this
expectation, lying in the 159o-172o range.
Table 2 also illustrates that bond length,
rather than bond angle, affects the binding
energy of the complex more.
Natural bonding orbital analysis yielded the
2nd order perturbation energies shown in
table 2. These values contribute to the
binding energy of the complexes. Combining
perturbation energies with the hydrogen
bond geometries should yield an
understanding of the binding energy of each
complex. However, a direct correlation
between perturbation energy and binding
energy is not entirely evident.
Figure 2: Water complexing with an R-β
pinene “outside the cage.”
Figure 1: Water complexing with
pinene “inside the cage.”
Table 2: Hydrogen bond angles and lengths for some representative pinene stereoisomers. Significant H-bond interactions are bolded.
Pinene
Root
Stereoisomer
Complex
Type
Binding
Energy
(kcal/mol)
H-bond Length (angstrom) H-bond Angle (degree)
O1-H2O O2-H2O OH-OH2 HO-H2O O1-HO O2-HO O1-H2O O2-H2O OH-OH2 OH-OH2 HO-H2O HO-H2O O1-HO O2-HO
R-β 1oh2oor HO-H2O -6.3 - - - 1.88708 - 1.98348 - - - - 119.630 169.133 - 135.137
1oh2oos HO-H2O -6.0 - - - 1.89788 - 2.02716 - - - - 126.510 159.723 - 133.999
1oo2ohs O1-H2O-HO -5.4 2.20975 - 1.94922 - - - 132.323 - 171.244 118.304 - - - -
S-β 1oh2oor O2-H2O-HO -4.9 - 2.01713 1.91569 - - - - 139.481 171.889 116.389 - - - -
1oh2oos HO-H2O -6.6 - - - 1.88416 - 1.97944 - - - - 119.230 169.162 - 135.416
1oo2ohr O1-H2O-HO -5.4 2.20972 - 1.95140 - - - 132.472 - 171.218 118.630 - - - -
R-α 2ohr3oor O2-H2O-HO -7.6 - 1.96536 1.937 - - - - 158.037 165.427 124.525 - - - -
2ohr3oos O2-H2O-HO -6.3 - 2.06295 1.95495 - - - 139.163 - 172.478 114.332 - - - -
2oor3ohr O2-H2O-HO -5.4 - 1.94377 1.89355 - - - - 162.956 164.852 123.749 - - - -
2oor3ohs HO-H2O -5.4 - - - 1.92317 - 1.93472 - - - - 111.092 165.636 - 131.362
S-α 2ohr3oos O2-H2O-HO -6.2 - 2.05851 1.95215 - - - - 138.511 171.697 113.217 - - - -
2ohs3oos O2-H2O-HO -7.2 - 1.96536 1.93700 - - - - 158.037 165.427 124.525 - - - -
2oor3ohr HO-H2O -5.6 - - - 1.89868 - 2.51409 - - - - 117.679 167.36 - 118.257
2oos3ohs O2-H2O-HO -7.2 - 1.94377 1.89353 - - - - 162.95 164.858 123.754 - - - -
Table 1: Second order perturbation energies obtained from NBO analysis. Bolded
numbers correspond to bolded entries in Table 2.
Pinene
Root
Stereoisomer Binding Energy
(kcal/mol)
2nd Order Perturbation Energy (kcal/mol)
O1-H2O O2-H2O OH-OH2 HO-H2O
R-beta 1oh2oor -6.3 - - - 8.45
1oh2oos -6.0 - - - 8.79
1oo2ohs -5.4 0.74 - 9.36 -
S-beta 1oh2oor -4.9 - 3.21 11.29 -
1oh2oos -6.6 - - - 8.29
1oo2ohr -5.4 0.74 - 9.26 -
R-Alpha 2ohr3oor -7.6 - 4.91 8.43 -
2ohr3oos -6.3 - 2.54 9.14 -
2oor3ohr -5.4 - 6.88 10.43 -
2oor3ohs -5.4 - - - 7.02
S-alpha 2ohr3oos -6.2 - 2.55 9.30 -
2ohs3oos -7.2 - 8.45 - -
2oor3ohr -5.6 - - - 8.29
2oos3ohs -7.2 - 8.45 - -

More Related Content

Viewers also liked (9)

Pinene
PinenePinene
Pinene
 
Why using Chelated MicroNutrients will bring you that record breaking yield
Why using Chelated MicroNutrients will bring you that record breaking yieldWhy using Chelated MicroNutrients will bring you that record breaking yield
Why using Chelated MicroNutrients will bring you that record breaking yield
 
MetaClaw - EDTA Chelated MicroNutrients
MetaClaw - EDTA Chelated MicroNutrientsMetaClaw - EDTA Chelated MicroNutrients
MetaClaw - EDTA Chelated MicroNutrients
 
Transforming mango crop productivity - Presentation from the Darwin mango fie...
Transforming mango crop productivity - Presentation from the Darwin mango fie...Transforming mango crop productivity - Presentation from the Darwin mango fie...
Transforming mango crop productivity - Presentation from the Darwin mango fie...
 
Micronutrients India
Micronutrients IndiaMicronutrients India
Micronutrients India
 
Transpiration
TranspirationTranspiration
Transpiration
 
892162 634358293912422500
892162 634358293912422500892162 634358293912422500
892162 634358293912422500
 
Polymerization techniques
Polymerization techniquesPolymerization techniques
Polymerization techniques
 
Transport in plant slides
Transport in plant   slidesTransport in plant   slides
Transport in plant slides
 

Similar to RCWPosterWinter2015

RCWPosterFall2014
RCWPosterFall2014RCWPosterFall2014
RCWPosterFall2014
Tim Rose
 
Research Summary Document October 28 2015
Research Summary Document October 28 2015Research Summary Document October 28 2015
Research Summary Document October 28 2015
Kevin Yuan
 
Fac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) ComplexesFac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) Complexes
Rafia Aslam
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
Dinesh Barawkar
 
The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...
The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...
The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...
Nicolle Jackson
 
Proton euilibria in minor groove of dna
Proton euilibria in minor groove of dnaProton euilibria in minor groove of dna
Proton euilibria in minor groove of dna
mganguly123
 

Similar to RCWPosterWinter2015 (20)

RCWPosterFall2014
RCWPosterFall2014RCWPosterFall2014
RCWPosterFall2014
 
RSC
RSCRSC
RSC
 
Graphene oxide immobilized copper phthalocyanine tetrasulphonamide: the first...
Graphene oxide immobilized copper phthalocyanine tetrasulphonamide: the first...Graphene oxide immobilized copper phthalocyanine tetrasulphonamide: the first...
Graphene oxide immobilized copper phthalocyanine tetrasulphonamide: the first...
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
Kinetics of Ruthenium(III) Catalyzed and Uncatalyzed Oxidation of Monoethanol...
Kinetics of Ruthenium(III) Catalyzed and Uncatalyzed Oxidation of Monoethanol...Kinetics of Ruthenium(III) Catalyzed and Uncatalyzed Oxidation of Monoethanol...
Kinetics of Ruthenium(III) Catalyzed and Uncatalyzed Oxidation of Monoethanol...
 
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oximeThe chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
The chelate formation of thorium with 1, 2-naphthoquinone, 1-oxime
 
A05620107
A05620107A05620107
A05620107
 
Theoretical calculations of chemical shifts of metal (Hg (II), Pb (II), Ag (I...
Theoretical calculations of chemical shifts of metal (Hg (II), Pb (II), Ag (I...Theoretical calculations of chemical shifts of metal (Hg (II), Pb (II), Ag (I...
Theoretical calculations of chemical shifts of metal (Hg (II), Pb (II), Ag (I...
 
J. Org. Chem. 2002 Grotjahn
J. Org. Chem. 2002 GrotjahnJ. Org. Chem. 2002 Grotjahn
J. Org. Chem. 2002 Grotjahn
 
Research Summary Document October 28 2015
Research Summary Document October 28 2015Research Summary Document October 28 2015
Research Summary Document October 28 2015
 
Clarissa Presentation
Clarissa PresentationClarissa Presentation
Clarissa Presentation
 
Fac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) ComplexesFac/Mer Isomerism in Fe(II) Complexes
Fac/Mer Isomerism in Fe(II) Complexes
 
H037046049
H037046049H037046049
H037046049
 
2006_JSC
2006_JSC2006_JSC
2006_JSC
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
Development of novel catalytic systems for photoreduction of CO2 to fuel and ...
Development of novel catalytic systems for photoreduction of CO2 to fuel and ...Development of novel catalytic systems for photoreduction of CO2 to fuel and ...
Development of novel catalytic systems for photoreduction of CO2 to fuel and ...
 
silver
silversilver
silver
 
The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...
The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...
The Synthesis and Characterization of Highly Fluorescent Polycyclic Azaborine...
 
Proton euilibria in minor groove of dna
Proton euilibria in minor groove of dnaProton euilibria in minor groove of dna
Proton euilibria in minor groove of dna
 
MU3C Presentation
MU3C PresentationMU3C Presentation
MU3C Presentation
 

RCWPosterWinter2015

  • 1. Introduction Pinenes are a class of bicyclic molecules emitted by conifers and marine flora. These molecules constitute 6% of all biogenically derived volatile organic compound emissions in the atmosphere. Experimental research demonstrates that pinenes react with hydroxyl radicals via addition across the double bond. These, in turn, react with ambient oxygen to create pinene hydroxy- peroxy radicals. These species are stabilized by complexation with a water molecule. These reactions play a fundamental role in atmospheric chemistry. R-β, S-β, R-α, and S- α pinene geometry optimizations for various stereoisomers of each radical and radical water complex were determined computationally at the B3LYP/6-311++G(2d,2p) method and basis set. Basis set superposition error was corrected using the counterpoise method. These calculation results were used to determine partition functions and calculate Boltzmann- weighted average global equilibrium constants for the hydroxy-peroxy pinene-water complexes. The current work focuses on characterizing the hydrogen bond based on geometry data and Natural Bonding Orbital (NBO) analysis. Methods Gaussian 092 was employed to determine binding energies and vibrational frequencies for radicals and radical-water complexes at the B3LYP/6- 311G++(2d,2p) level. Partition functions were corrected for hindered internal rotors and Morse oscillators within each radical-water species. Radicals and radical-water complexes that may have a significant thermal population (typically < ~ 3 kT above the lowest ground state energy) are used to calculate a Boltzmann-weighted average equilibrium constant of complexation for the radical-water complex. NBO analysis is used to characterize hydrogen bonding between the radicals and water. References Computational Study of Isoprene Hyroxyalkyl Peroxy Radical-Water Complexes (CSH8(OH)O2-H20), Jared Clark, Seth T. Call, Daniel E. Austin, Jaron C. Hansen. The Journal of Physical Chemistry 2010 114 (23), 6534-6541. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. Computational Study of Hexanal Peroxy Radical-Water Complexes, Emily Burrell, Jared C. Clark, Mathew Snow, Heidi Dumais, Seong-Cheol Lee, Brad J. Nielson, Derek Osborne, Lucia Salamanca-Cardona, Logan Zemp, Ryan S. Dabell, Jaron C. Hansen. International Journal of Quantum Chemistry. DOI: 10.1002/qua.23220 DeterminationofBoltzmann-WeightedEquilibriumConstants forPinene-BasedHydroxy-PeroxyRadical-WaterComplexes ElizabethBuchmiller,MichaelGoytia,TylerSoutham,PaulSpiel,KellyWilson,FanYang,TimothyRose RyanS.DaBell,BYU-IdahoDepartmentofChemistry andJaronC.Hansen,BYUDepartmentofChemistryandBiochemistry Results Discussion With BSSE corrected energies, representative equilibria have been determined for steroisomers of R-β-pinene and S-β-pinene derived radical-water complexes. As shown in Table 2, dominant hydrogen bond lengths are in the 1.88-1.95 Angstrom range, with secondary bond lengths being approximately 2.0-2.2 Angstroms. Previous research demonstrates that optimal hydrogen bond angles approach 180o,1 and the primary H- bond angles pinene based radical-water complexes are consistent with this expectation, lying in the 159o-172o range. Table 2 also illustrates that bond length, rather than bond angle, affects the binding energy of the complex more. Natural bonding orbital analysis yielded the 2nd order perturbation energies shown in table 2. These values contribute to the binding energy of the complexes. Combining perturbation energies with the hydrogen bond geometries should yield an understanding of the binding energy of each complex. However, a direct correlation between perturbation energy and binding energy is not entirely evident. Figure 2: Water complexing with an R-β pinene “outside the cage.” Figure 1: Water complexing with pinene “inside the cage.” Table 2: Hydrogen bond angles and lengths for some representative pinene stereoisomers. Significant H-bond interactions are bolded. Pinene Root Stereoisomer Complex Type Binding Energy (kcal/mol) H-bond Length (angstrom) H-bond Angle (degree) O1-H2O O2-H2O OH-OH2 HO-H2O O1-HO O2-HO O1-H2O O2-H2O OH-OH2 OH-OH2 HO-H2O HO-H2O O1-HO O2-HO R-β 1oh2oor HO-H2O -6.3 - - - 1.88708 - 1.98348 - - - - 119.630 169.133 - 135.137 1oh2oos HO-H2O -6.0 - - - 1.89788 - 2.02716 - - - - 126.510 159.723 - 133.999 1oo2ohs O1-H2O-HO -5.4 2.20975 - 1.94922 - - - 132.323 - 171.244 118.304 - - - - S-β 1oh2oor O2-H2O-HO -4.9 - 2.01713 1.91569 - - - - 139.481 171.889 116.389 - - - - 1oh2oos HO-H2O -6.6 - - - 1.88416 - 1.97944 - - - - 119.230 169.162 - 135.416 1oo2ohr O1-H2O-HO -5.4 2.20972 - 1.95140 - - - 132.472 - 171.218 118.630 - - - - R-α 2ohr3oor O2-H2O-HO -7.6 - 1.96536 1.937 - - - - 158.037 165.427 124.525 - - - - 2ohr3oos O2-H2O-HO -6.3 - 2.06295 1.95495 - - - 139.163 - 172.478 114.332 - - - - 2oor3ohr O2-H2O-HO -5.4 - 1.94377 1.89355 - - - - 162.956 164.852 123.749 - - - - 2oor3ohs HO-H2O -5.4 - - - 1.92317 - 1.93472 - - - - 111.092 165.636 - 131.362 S-α 2ohr3oos O2-H2O-HO -6.2 - 2.05851 1.95215 - - - - 138.511 171.697 113.217 - - - - 2ohs3oos O2-H2O-HO -7.2 - 1.96536 1.93700 - - - - 158.037 165.427 124.525 - - - - 2oor3ohr HO-H2O -5.6 - - - 1.89868 - 2.51409 - - - - 117.679 167.36 - 118.257 2oos3ohs O2-H2O-HO -7.2 - 1.94377 1.89353 - - - - 162.95 164.858 123.754 - - - - Table 1: Second order perturbation energies obtained from NBO analysis. Bolded numbers correspond to bolded entries in Table 2. Pinene Root Stereoisomer Binding Energy (kcal/mol) 2nd Order Perturbation Energy (kcal/mol) O1-H2O O2-H2O OH-OH2 HO-H2O R-beta 1oh2oor -6.3 - - - 8.45 1oh2oos -6.0 - - - 8.79 1oo2ohs -5.4 0.74 - 9.36 - S-beta 1oh2oor -4.9 - 3.21 11.29 - 1oh2oos -6.6 - - - 8.29 1oo2ohr -5.4 0.74 - 9.26 - R-Alpha 2ohr3oor -7.6 - 4.91 8.43 - 2ohr3oos -6.3 - 2.54 9.14 - 2oor3ohr -5.4 - 6.88 10.43 - 2oor3ohs -5.4 - - - 7.02 S-alpha 2ohr3oos -6.2 - 2.55 9.30 - 2ohs3oos -7.2 - 8.45 - - 2oor3ohr -5.6 - - - 8.29 2oos3ohs -7.2 - 8.45 - -