QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Quadriken im Raum
und ihre Schnittbilder an ebenen Fl¨achen
Geometrische Algebra in der Computergrafik
Studiengang: Informatik, Modul BZG1310 Objektorientiere Geometrie
Autor: Roland Bruggmann, brugr9@bfh.ch
Dozent: Marx Stampfli, marx.stampfli@bfh.ch
Datum: 12. Januar 2015
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
¨Ubersicht
1 Einleitung
Problemstellung
2 Grundlagen
Quadriken und Schnittbilder
Kollineation
Stereobildwiedergabe
3 Konzept
Dom¨anenmodell-Diagramm
4 Umsetzung
Grafische Benutzerschnittstelle (Demo)
Repository
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Einleitung
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Problemstellung
Applikation in C/C++: Quadrik im Raum soll . . .
mit Computergrafik (OpenGL) dargestellt werden.
mit ebener Fl¨ache geschnitten, das Schnittbild akzentuiert dargestellt werden.
durch geometrische Transformation erkundet werden k¨onnen.
durch Kollineation ver¨andert werden k¨onnen.
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Quadriken und Schnittbilder
Quadrik (engl. quadric)1: gekr¨ummte Fl¨ache in R3
Als gemischt-quadratische Koordinatengleichung:
ax2
+ by2
+ cz2
+ 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0 (1)
Als Matrizenmultiplikation im projektiven Raum (w = 1):
vT
· Q · v = 0 (2)
mit
v =




x
y
z
1



 und symmetrischer Koeffizientenmatrize Q =




a h g p
h b f q
g f c r
p q r d




1
Zwillinger, Daniel: Standard Mathematical Tables and Formulae, Boca Raton, FL: Chapman & Hall/CRC,
2003, page 578. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Quadriken und Schnittbilder
Ellipsoid
QEllipsoid =


+a 0 0 0
0 +b 0 0
0 0 +c 0
0 0 0 −d


(Kugel: a = b = c)
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Schnittbild: Ellipse.
Hyperboloid
QHyperboloid =


+a 0 0 0
0 −b 0 0
0 0 +c 0
0 0 0 ±d


(einschalig: d < 0, zweischalig: d > 0)
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Schnittbild: Hyperbel.
Paraboloid
QParaboloid =



+a 0 0 0
0 ±b 0 0
0 0 0 ±r
0 0 ±r d



(elliptisch: b > 0, hyperbolisch: b < 0)
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid o
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom m
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the p
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Schnittbild: Parabel.
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Kollineation
Gegebene Normalform in ¨aquivalente Quadriken abbilden:
Typ Normalform ¨Aquivalente
Mittelpunktsquadrik Kugel
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Kegeliger Typ Zylinder
FIGURE4.39
Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo
sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle:
hyperboloidofonesheet.Bottomright:hyperbolicparaboloid.
Conversely,anequationoftheform
Ü
¾
·Ý
¾
·Þ
¾
·¾Ü·¾Ý·¾Þ·¼(4.18.7)
definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ .
1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints
havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the
©2003byCRCPressLLC
FIGURE4.39
Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo
sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle:
hyperboloidofonesheet.Bottomright:hyperbolicparaboloid.
Conversely,anequationoftheform
Ü
¾
·Ý
¾
·Þ
¾
·¾Ü·¾Ý·¾Þ·¼(4.18.7)
definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ .
1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints
havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the
©2003byCRCPressLLC
Parabolischer Typ Scheibe
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Kollineation
Abbildung durch projektive Transformation H:
vn = H · vn (3)
mit
vn =




xn
yn
zn
1



 und H =




h11 h12 h13 0
h21 h22 h23 0
h31 h32 h33 0
h41 h42 h43 h44




Koeffizientenmatrize der Abbildung:
Q = HT
· Q · H−1
(4)
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Stereobildwiedergabe
Spektrales Multiplexing mit Rot-Gr¨un-Anaglyphen
Perspektivische Projektion zweier asymmetrischer Sichtvolumen in dasselbe Bild:
Pleft =





2n
r−l+2d
0 r+l
r−l+2d
0
0 2n
t−b
t+b
t−b
0
0 0 − f +n
f −n
− 2fn
f −n
0 0 −1 0





Pright =





2n
r−l−2d
0 r+l
r−l−2d
0
0 2n
t−b
t+b
t−b
0
0 0 − f +n
f −n
− 2fn
f −n
0 0 −1 0





mit
d =
1
2
× eyeSep ×
n
focalDist
eyeSep (eye separation): Abstand der Augen des menschlichen Binokulars
focalDist (focal distance): Distanz des Binokulars zur ’near clipping plane’ n
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Konzept
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Dom¨anenmodell-Diagramm
Auswahl Quadrik
Liste mit Normalformen
Liste reeller Quadriken
Quadrik
NF: v
Koeffizienten
NF: Q
1
1
auswählen
Benutzer-
schnittstelle
1 1
erzeugen
Kollineation
H
Abb. Quadrik
v'=Hv
(Objekt-Koodinaten)
Normalengleichung
ax^2+...+d=0
Abb. Koeffizienten
Q'=H^TQH^-1
1 1
editieren
1
1
auswählen
1
1
parametrisieren
1
1
abbilden
1
1
visualisieren
1 1
parametrisieren
1
1
visualisieren
Auswahl Projektion
Orthografische P.
Perspektivische P.
Stereoskopische P.
Auswahl Affine Transf.
Zoom
Rotation
Animierte Transf.
1
1
auswählen
1
1
abbilden
1
1
transformieren
1
1projzieren
Visualisierung Quadrik
(Welt-Koordinaten)
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Umsetzung
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Grafische Benutzerschnittstelle (Demo)
QIR
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Umsetzung
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Repository
https://github.com/brugr9/qir
Bildnachweis:
Figure 4.39: The five non-degenerated real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one
facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
(Die f¨unf nicht-degenerierten reellen Quadriken. Oben links: Ellipsoid. Oben rechts: zweischaliges Hyperboloid (eine Schale nach oben und
eine nach unten gerichtet). Unten links: elliptisches Paraboloid. Unten Mitte: einschalges Hyperboloid. Unten rechts: hyperolisches
Paraboloid.)
In: Daniel Zwillinger: Standard Mathematical Tables and Formulae. 31. Aufl. Boca Raton, FL: Chapman & Hall/CRC, 2003. S. 580.
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences

Quadriken im Raum

  • 1.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo FIGURE 4.39 The venon-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Geometrische Algebra in der Computergrafik Studiengang: Informatik, Modul BZG1310 Objektorientiere Geometrie Autor: Roland Bruggmann, brugr9@bfh.ch Dozent: Marx Stampfli, marx.stampfli@bfh.ch Datum: 12. Januar 2015 Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 2.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo ¨Ubersicht 1 Einleitung Problemstellung 2 Grundlagen Quadrikenund Schnittbilder Kollineation Stereobildwiedergabe 3 Konzept Dom¨anenmodell-Diagramm 4 Umsetzung Grafische Benutzerschnittstelle (Demo) Repository Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 3.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Einleitung Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Problemstellung Applikation in C/C++: Quadrik im Raum soll . . . mit Computergrafik (OpenGL) dargestellt werden. mit ebener Fl¨ache geschnitten, das Schnittbild akzentuiert dargestellt werden. durch geometrische Transformation erkundet werden k¨onnen. durch Kollineation ver¨andert werden k¨onnen. FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 4.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Quadriken und Schnittbilder Quadrik (engl. quadric)1: gekr¨ummte Fl¨ache in R3 Als gemischt-quadratische Koordinatengleichung: ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0 (1) Als Matrizenmultiplikation im projektiven Raum (w = 1): vT · Q · v = 0 (2) mit v =     x y z 1     und symmetrischer Koeffizientenmatrize Q =     a h g p h b f q g f c r p q r d     1 Zwillinger, Daniel: Standard Mathematical Tables and Formulae, Boca Raton, FL: Chapman & Hall/CRC, 2003, page 578. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 5.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Quadriken und Schnittbilder Ellipsoid QEllipsoid =   +a 0 0 0 0 +b 0 0 0 0 +c 0 0 0 0 −d   (Kugel: a = b = c) FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Schnittbild: Ellipse. Hyperboloid QHyperboloid =   +a 0 0 0 0 −b 0 0 0 0 +c 0 0 0 0 ±d   (einschalig: d < 0, zweischalig: d > 0) FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Schnittbild: Hyperbel. Paraboloid QParaboloid =    +a 0 0 0 0 ±b 0 0 0 0 0 ±r 0 0 ±r d    (elliptisch: b > 0, hyperbolisch: b < 0) FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid o sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom m hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4. defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the p have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Schnittbild: Parabel. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 6.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Kollineation Gegebene Normalform in ¨aquivalente Quadriken abbilden: Typ Normalform ¨Aquivalente Mittelpunktsquadrik Kugel FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Kegeliger Typ Zylinder FIGURE4.39 Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle: hyperboloidofonesheet.Bottomright:hyperbolicparaboloid. Conversely,anequationoftheform Ü ¾ ·Ý ¾ ·Þ ¾ ·¾Ü·¾Ý·¾Þ·¼(4.18.7) definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ . 1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the ©2003byCRCPressLLC FIGURE4.39 Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle: hyperboloidofonesheet.Bottomright:hyperbolicparaboloid. Conversely,anequationoftheform Ü ¾ ·Ý ¾ ·Þ ¾ ·¾Ü·¾Ý·¾Þ·¼(4.18.7) definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ . 1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the ©2003byCRCPressLLC Parabolischer Typ Scheibe FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 7.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Kollineation Abbildung durch projektive Transformation H: vn = H · vn (3) mit vn =     xn yn zn 1     und H =     h11 h12 h13 0 h21 h22 h23 0 h31 h32 h33 0 h41 h42 h43 h44     Koeffizientenmatrize der Abbildung: Q = HT · Q · H−1 (4) Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 8.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Stereobildwiedergabe Spektrales Multiplexing mit Rot-Gr¨un-Anaglyphen Perspektivische Projektion zweier asymmetrischer Sichtvolumen in dasselbe Bild: Pleft =      2n r−l+2d 0 r+l r−l+2d 0 0 2n t−b t+b t−b 0 0 0 − f +n f −n − 2fn f −n 0 0 −1 0      Pright =      2n r−l−2d 0 r+l r−l−2d 0 0 2n t−b t+b t−b 0 0 0 − f +n f −n − 2fn f −n 0 0 −1 0      mit d = 1 2 × eyeSep × n focalDist eyeSep (eye separation): Abstand der Augen des menschlichen Binokulars focalDist (focal distance): Distanz des Binokulars zur ’near clipping plane’ n Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 9.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Konzept Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Dom¨anenmodell-Diagramm Auswahl Quadrik Liste mit Normalformen Liste reeller Quadriken Quadrik NF: v Koeffizienten NF: Q 1 1 auswählen Benutzer- schnittstelle 1 1 erzeugen Kollineation H Abb. Quadrik v'=Hv (Objekt-Koodinaten) Normalengleichung ax^2+...+d=0 Abb. Koeffizienten Q'=H^TQH^-1 1 1 editieren 1 1 auswählen 1 1 parametrisieren 1 1 abbilden 1 1 visualisieren 1 1 parametrisieren 1 1 visualisieren Auswahl Projektion Orthografische P. Perspektivische P. Stereoskopische P. Auswahl Affine Transf. Zoom Rotation Animierte Transf. 1 1 auswählen 1 1 abbilden 1 1 transformieren 1 1projzieren Visualisierung Quadrik (Welt-Koordinaten) Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 10.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Umsetzung Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Grafische Benutzerschnittstelle (Demo) QIR Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 11.
    QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Umsetzung Quadriken im Raumund ihre Schnittbilder an ebenen Fl¨achen Repository https://github.com/brugr9/qir Bildnachweis: Figure 4.39: The five non-degenerated real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. (Die f¨unf nicht-degenerierten reellen Quadriken. Oben links: Ellipsoid. Oben rechts: zweischaliges Hyperboloid (eine Schale nach oben und eine nach unten gerichtet). Unten links: elliptisches Paraboloid. Unten Mitte: einschalges Hyperboloid. Unten rechts: hyperolisches Paraboloid.) In: Daniel Zwillinger: Standard Mathematical Tables and Formulae. 31. Aufl. Boca Raton, FL: Chapman & Hall/CRC, 2003. S. 580. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences