SlideShare a Scribd company logo
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Quadriken im Raum
und ihre Schnittbilder an ebenen Fl¨achen
Geometrische Algebra in der Computergrafik
Studiengang: Informatik, Modul BZG1310 Objektorientiere Geometrie
Autor: Roland Bruggmann, brugr9@bfh.ch
Dozent: Marx Stampfli, marx.stampfli@bfh.ch
Datum: 12. Januar 2015
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
¨Ubersicht
1 Einleitung
Problemstellung
2 Grundlagen
Quadriken und Schnittbilder
Kollineation
Stereobildwiedergabe
3 Konzept
Dom¨anenmodell-Diagramm
4 Umsetzung
Grafische Benutzerschnittstelle (Demo)
Repository
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Einleitung
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Problemstellung
Applikation in C/C++: Quadrik im Raum soll . . .
mit Computergrafik (OpenGL) dargestellt werden.
mit ebener Fl¨ache geschnitten, das Schnittbild akzentuiert dargestellt werden.
durch geometrische Transformation erkundet werden k¨onnen.
durch Kollineation ver¨andert werden k¨onnen.
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Quadriken und Schnittbilder
Quadrik (engl. quadric)1: gekr¨ummte Fl¨ache in R3
Als gemischt-quadratische Koordinatengleichung:
ax2
+ by2
+ cz2
+ 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0 (1)
Als Matrizenmultiplikation im projektiven Raum (w = 1):
vT
· Q · v = 0 (2)
mit
v =




x
y
z
1



 und symmetrischer Koeffizientenmatrize Q =




a h g p
h b f q
g f c r
p q r d




1
Zwillinger, Daniel: Standard Mathematical Tables and Formulae, Boca Raton, FL: Chapman & Hall/CRC,
2003, page 578. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Quadriken und Schnittbilder
Ellipsoid
QEllipsoid =


+a 0 0 0
0 +b 0 0
0 0 +c 0
0 0 0 −d


(Kugel: a = b = c)
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Schnittbild: Ellipse.
Hyperboloid
QHyperboloid =


+a 0 0 0
0 −b 0 0
0 0 +c 0
0 0 0 ±d


(einschalig: d < 0, zweischalig: d > 0)
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Schnittbild: Hyperbel.
Paraboloid
QParaboloid =



+a 0 0 0
0 ±b 0 0
0 0 0 ±r
0 0 ±r d



(elliptisch: b > 0, hyperbolisch: b < 0)
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid o
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom m
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the p
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Schnittbild: Parabel.
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Kollineation
Gegebene Normalform in ¨aquivalente Quadriken abbilden:
Typ Normalform ¨Aquivalente
Mittelpunktsquadrik Kugel
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Kegeliger Typ Zylinder
FIGURE4.39
Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo
sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle:
hyperboloidofonesheet.Bottomright:hyperbolicparaboloid.
Conversely,anequationoftheform
Ü
¾
·Ý
¾
·Þ
¾
·¾Ü·¾Ý·¾Þ·¼(4.18.7)
definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ .
1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints
havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the
©2003byCRCPressLLC
FIGURE4.39
Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo
sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle:
hyperboloidofonesheet.Bottomright:hyperbolicparaboloid.
Conversely,anequationoftheform
Ü
¾
·Ý
¾
·Þ
¾
·¾Ü·¾Ý·¾Þ·¼(4.18.7)
definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ .
1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints
havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the
©2003byCRCPressLLC
Parabolischer Typ Scheibe
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
FIGURE 4.39
The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two
sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:
hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
Conversely, an equation of the form
Ü
¾
· Ý
¾
· Þ
¾
· ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7)
defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   .
1. Four points not in the same plane determine a unique sphere. If the points
have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the
© 2003 by CRC Press LLC
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Kollineation
Abbildung durch projektive Transformation H:
vn = H · vn (3)
mit
vn =




xn
yn
zn
1



 und H =




h11 h12 h13 0
h21 h22 h23 0
h31 h32 h33 0
h41 h42 h43 h44




Koeffizientenmatrize der Abbildung:
Q = HT
· Q · H−1
(4)
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Grundlagen
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Stereobildwiedergabe
Spektrales Multiplexing mit Rot-Gr¨un-Anaglyphen
Perspektivische Projektion zweier asymmetrischer Sichtvolumen in dasselbe Bild:
Pleft =





2n
r−l+2d
0 r+l
r−l+2d
0
0 2n
t−b
t+b
t−b
0
0 0 − f +n
f −n
− 2fn
f −n
0 0 −1 0





Pright =





2n
r−l−2d
0 r+l
r−l−2d
0
0 2n
t−b
t+b
t−b
0
0 0 − f +n
f −n
− 2fn
f −n
0 0 −1 0





mit
d =
1
2
× eyeSep ×
n
focalDist
eyeSep (eye separation): Abstand der Augen des menschlichen Binokulars
focalDist (focal distance): Distanz des Binokulars zur ’near clipping plane’ n
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Konzept
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Dom¨anenmodell-Diagramm
Auswahl Quadrik
Liste mit Normalformen
Liste reeller Quadriken
Quadrik
NF: v
Koeffizienten
NF: Q
1
1
auswählen
Benutzer-
schnittstelle
1 1
erzeugen
Kollineation
H
Abb. Quadrik
v'=Hv
(Objekt-Koodinaten)
Normalengleichung
ax^2+...+d=0
Abb. Koeffizienten
Q'=H^TQH^-1
1 1
editieren
1
1
auswählen
1
1
parametrisieren
1
1
abbilden
1
1
visualisieren
1 1
parametrisieren
1
1
visualisieren
Auswahl Projektion
Orthografische P.
Perspektivische P.
Stereoskopische P.
Auswahl Affine Transf.
Zoom
Rotation
Animierte Transf.
1
1
auswählen
1
1
abbilden
1
1
transformieren
1
1projzieren
Visualisierung Quadrik
(Welt-Koordinaten)
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Umsetzung
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Grafische Benutzerschnittstelle (Demo)
QIR
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
QIR
Einleitung
Problem
Grundlagen
Quadriken
Kollineation
Stereo
Konzept
DMD
Umsetzung
GUI
Repo
Umsetzung
Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen
Repository
https://github.com/brugr9/qir
Bildnachweis:
Figure 4.39: The five non-degenerated real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one
facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.
(Die f¨unf nicht-degenerierten reellen Quadriken. Oben links: Ellipsoid. Oben rechts: zweischaliges Hyperboloid (eine Schale nach oben und
eine nach unten gerichtet). Unten links: elliptisches Paraboloid. Unten Mitte: einschalges Hyperboloid. Unten rechts: hyperolisches
Paraboloid.)
In: Daniel Zwillinger: Standard Mathematical Tables and Formulae. 31. Aufl. Boca Raton, FL: Chapman & Hall/CRC, 2003. S. 580.
Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences

More Related Content

More from Roland Bruggmann

Swiss National Supercomputing Centre CSCS
Swiss National Supercomputing Centre CSCSSwiss National Supercomputing Centre CSCS
Swiss National Supercomputing Centre CSCS
Roland Bruggmann
 
Sprechen als Handeln
Sprechen als HandelnSprechen als Handeln
Sprechen als Handeln
Roland Bruggmann
 
Numerische Methoden: Approximation und Integration
Numerische Methoden: Approximation und IntegrationNumerische Methoden: Approximation und Integration
Numerische Methoden: Approximation und Integration
Roland Bruggmann
 
Multicore and GPU Programming
Multicore and GPU ProgrammingMulticore and GPU Programming
Multicore and GPU Programming
Roland Bruggmann
 
Unity® Volume Rendering - Abstract
Unity® Volume Rendering - AbstractUnity® Volume Rendering - Abstract
Unity® Volume Rendering - Abstract
Roland Bruggmann
 
Unity® Volume Rendering - Benutzerhandbuch
Unity® Volume Rendering - BenutzerhandbuchUnity® Volume Rendering - Benutzerhandbuch
Unity® Volume Rendering - Benutzerhandbuch
Roland Bruggmann
 
Serious Game "Virtual Surgery" - Game Design Document
Serious Game "Virtual Surgery" - Game Design DocumentSerious Game "Virtual Surgery" - Game Design Document
Serious Game "Virtual Surgery" - Game Design Document
Roland Bruggmann
 
OSG Volume Rendering
OSG Volume RenderingOSG Volume Rendering
OSG Volume Rendering
Roland Bruggmann
 
Digitale Kamera und Modulationstransferfunktion
Digitale Kamera und ModulationstransferfunktionDigitale Kamera und Modulationstransferfunktion
Digitale Kamera und Modulationstransferfunktion
Roland Bruggmann
 
Quadriken im Raum
Quadriken im RaumQuadriken im Raum
Quadriken im Raum
Roland Bruggmann
 
Visualisierung von Algorithmen und Datenstrukturen
Visualisierung von Algorithmen und DatenstrukturenVisualisierung von Algorithmen und Datenstrukturen
Visualisierung von Algorithmen und Datenstrukturen
Roland Bruggmann
 
User-centered Design für Telemedizin-App
User-centered Design für Telemedizin-AppUser-centered Design für Telemedizin-App
User-centered Design für Telemedizin-App
Roland Bruggmann
 
Ondes stationnaires
Ondes stationnairesOndes stationnaires
Ondes stationnaires
Roland Bruggmann
 
Passwords Safe
Passwords SafePasswords Safe
Passwords Safe
Roland Bruggmann
 
Stehende Wellen
Stehende WellenStehende Wellen
Stehende Wellen
Roland Bruggmann
 
TOGAF Architecture Content Framework
TOGAF Architecture Content FrameworkTOGAF Architecture Content Framework
TOGAF Architecture Content Framework
Roland Bruggmann
 
Cultural Dimensions
Cultural DimensionsCultural Dimensions
Cultural Dimensions
Roland Bruggmann
 
Hinderniserkennung mit LiDAR
Hinderniserkennung mit LiDARHinderniserkennung mit LiDAR
Hinderniserkennung mit LiDAR
Roland Bruggmann
 
TOGAF Architecture Content Framework
TOGAF Architecture Content FrameworkTOGAF Architecture Content Framework
TOGAF Architecture Content Framework
Roland Bruggmann
 
Unity® Volume Rendering
Unity® Volume RenderingUnity® Volume Rendering
Unity® Volume Rendering
Roland Bruggmann
 

More from Roland Bruggmann (20)

Swiss National Supercomputing Centre CSCS
Swiss National Supercomputing Centre CSCSSwiss National Supercomputing Centre CSCS
Swiss National Supercomputing Centre CSCS
 
Sprechen als Handeln
Sprechen als HandelnSprechen als Handeln
Sprechen als Handeln
 
Numerische Methoden: Approximation und Integration
Numerische Methoden: Approximation und IntegrationNumerische Methoden: Approximation und Integration
Numerische Methoden: Approximation und Integration
 
Multicore and GPU Programming
Multicore and GPU ProgrammingMulticore and GPU Programming
Multicore and GPU Programming
 
Unity® Volume Rendering - Abstract
Unity® Volume Rendering - AbstractUnity® Volume Rendering - Abstract
Unity® Volume Rendering - Abstract
 
Unity® Volume Rendering - Benutzerhandbuch
Unity® Volume Rendering - BenutzerhandbuchUnity® Volume Rendering - Benutzerhandbuch
Unity® Volume Rendering - Benutzerhandbuch
 
Serious Game "Virtual Surgery" - Game Design Document
Serious Game "Virtual Surgery" - Game Design DocumentSerious Game "Virtual Surgery" - Game Design Document
Serious Game "Virtual Surgery" - Game Design Document
 
OSG Volume Rendering
OSG Volume RenderingOSG Volume Rendering
OSG Volume Rendering
 
Digitale Kamera und Modulationstransferfunktion
Digitale Kamera und ModulationstransferfunktionDigitale Kamera und Modulationstransferfunktion
Digitale Kamera und Modulationstransferfunktion
 
Quadriken im Raum
Quadriken im RaumQuadriken im Raum
Quadriken im Raum
 
Visualisierung von Algorithmen und Datenstrukturen
Visualisierung von Algorithmen und DatenstrukturenVisualisierung von Algorithmen und Datenstrukturen
Visualisierung von Algorithmen und Datenstrukturen
 
User-centered Design für Telemedizin-App
User-centered Design für Telemedizin-AppUser-centered Design für Telemedizin-App
User-centered Design für Telemedizin-App
 
Ondes stationnaires
Ondes stationnairesOndes stationnaires
Ondes stationnaires
 
Passwords Safe
Passwords SafePasswords Safe
Passwords Safe
 
Stehende Wellen
Stehende WellenStehende Wellen
Stehende Wellen
 
TOGAF Architecture Content Framework
TOGAF Architecture Content FrameworkTOGAF Architecture Content Framework
TOGAF Architecture Content Framework
 
Cultural Dimensions
Cultural DimensionsCultural Dimensions
Cultural Dimensions
 
Hinderniserkennung mit LiDAR
Hinderniserkennung mit LiDARHinderniserkennung mit LiDAR
Hinderniserkennung mit LiDAR
 
TOGAF Architecture Content Framework
TOGAF Architecture Content FrameworkTOGAF Architecture Content Framework
TOGAF Architecture Content Framework
 
Unity® Volume Rendering
Unity® Volume RenderingUnity® Volume Rendering
Unity® Volume Rendering
 

Recently uploaded

Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit ParisNeo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j
 
What is Master Data Management by PiLog Group
What is Master Data Management by PiLog GroupWhat is Master Data Management by PiLog Group
What is Master Data Management by PiLog Group
aymanquadri279
 
E-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet DynamicsE-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet Dynamics
Hornet Dynamics
 
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
Łukasz Chruściel
 
E-commerce Application Development Company.pdf
E-commerce Application Development Company.pdfE-commerce Application Development Company.pdf
E-commerce Application Development Company.pdf
Hornet Dynamics
 
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptxLORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
lorraineandreiamcidl
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
OpenMetadata Community Meeting - 5th June 2024
OpenMetadata Community Meeting - 5th June 2024OpenMetadata Community Meeting - 5th June 2024
OpenMetadata Community Meeting - 5th June 2024
OpenMetadata
 
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
kalichargn70th171
 
Microservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we workMicroservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we work
Sven Peters
 
Introducing Crescat - Event Management Software for Venues, Festivals and Eve...
Introducing Crescat - Event Management Software for Venues, Festivals and Eve...Introducing Crescat - Event Management Software for Venues, Festivals and Eve...
Introducing Crescat - Event Management Software for Venues, Festivals and Eve...
Crescat
 
Using Xen Hypervisor for Functional Safety
Using Xen Hypervisor for Functional SafetyUsing Xen Hypervisor for Functional Safety
Using Xen Hypervisor for Functional Safety
Ayan Halder
 
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdfVitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke
 
What is Augmented Reality Image Tracking
What is Augmented Reality Image TrackingWhat is Augmented Reality Image Tracking
What is Augmented Reality Image Tracking
pavan998932
 
Why Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise Edition
Why Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise EditionWhy Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise Edition
Why Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise Edition
Envertis Software Solutions
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Julian Hyde
 
GraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph TechnologyGraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph Technology
Neo4j
 
Transform Your Communication with Cloud-Based IVR Solutions
Transform Your Communication with Cloud-Based IVR SolutionsTransform Your Communication with Cloud-Based IVR Solutions
Transform Your Communication with Cloud-Based IVR Solutions
TheSMSPoint
 
openEuler Case Study - The Journey to Supply Chain Security
openEuler Case Study - The Journey to Supply Chain SecurityopenEuler Case Study - The Journey to Supply Chain Security
openEuler Case Study - The Journey to Supply Chain Security
Shane Coughlan
 
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdfAutomated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
timtebeek1
 

Recently uploaded (20)

Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit ParisNeo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
Neo4j - Product Vision and Knowledge Graphs - GraphSummit Paris
 
What is Master Data Management by PiLog Group
What is Master Data Management by PiLog GroupWhat is Master Data Management by PiLog Group
What is Master Data Management by PiLog Group
 
E-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet DynamicsE-commerce Development Services- Hornet Dynamics
E-commerce Development Services- Hornet Dynamics
 
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf2024 eCommerceDays Toulouse - Sylius 2.0.pdf
2024 eCommerceDays Toulouse - Sylius 2.0.pdf
 
E-commerce Application Development Company.pdf
E-commerce Application Development Company.pdfE-commerce Application Development Company.pdf
E-commerce Application Development Company.pdf
 
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptxLORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
LORRAINE ANDREI_LEQUIGAN_HOW TO USE WHATSAPP.pptx
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
OpenMetadata Community Meeting - 5th June 2024
OpenMetadata Community Meeting - 5th June 2024OpenMetadata Community Meeting - 5th June 2024
OpenMetadata Community Meeting - 5th June 2024
 
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf8 Best Automated Android App Testing Tool and Framework in 2024.pdf
8 Best Automated Android App Testing Tool and Framework in 2024.pdf
 
Microservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we workMicroservice Teams - How the cloud changes the way we work
Microservice Teams - How the cloud changes the way we work
 
Introducing Crescat - Event Management Software for Venues, Festivals and Eve...
Introducing Crescat - Event Management Software for Venues, Festivals and Eve...Introducing Crescat - Event Management Software for Venues, Festivals and Eve...
Introducing Crescat - Event Management Software for Venues, Festivals and Eve...
 
Using Xen Hypervisor for Functional Safety
Using Xen Hypervisor for Functional SafetyUsing Xen Hypervisor for Functional Safety
Using Xen Hypervisor for Functional Safety
 
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdfVitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdf
 
What is Augmented Reality Image Tracking
What is Augmented Reality Image TrackingWhat is Augmented Reality Image Tracking
What is Augmented Reality Image Tracking
 
Why Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise Edition
Why Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise EditionWhy Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise Edition
Why Choose Odoo 17 Community & How it differs from Odoo 17 Enterprise Edition
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
 
GraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph TechnologyGraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph Technology
 
Transform Your Communication with Cloud-Based IVR Solutions
Transform Your Communication with Cloud-Based IVR SolutionsTransform Your Communication with Cloud-Based IVR Solutions
Transform Your Communication with Cloud-Based IVR Solutions
 
openEuler Case Study - The Journey to Supply Chain Security
openEuler Case Study - The Journey to Supply Chain SecurityopenEuler Case Study - The Journey to Supply Chain Security
openEuler Case Study - The Journey to Supply Chain Security
 
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdfAutomated software refactoring with OpenRewrite and Generative AI.pptx.pdf
Automated software refactoring with OpenRewrite and Generative AI.pptx.pdf
 

Quadriken im Raum

  • 1. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Geometrische Algebra in der Computergrafik Studiengang: Informatik, Modul BZG1310 Objektorientiere Geometrie Autor: Roland Bruggmann, brugr9@bfh.ch Dozent: Marx Stampfli, marx.stampfli@bfh.ch Datum: 12. Januar 2015 Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 2. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo ¨Ubersicht 1 Einleitung Problemstellung 2 Grundlagen Quadriken und Schnittbilder Kollineation Stereobildwiedergabe 3 Konzept Dom¨anenmodell-Diagramm 4 Umsetzung Grafische Benutzerschnittstelle (Demo) Repository Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 3. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Einleitung Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Problemstellung Applikation in C/C++: Quadrik im Raum soll . . . mit Computergrafik (OpenGL) dargestellt werden. mit ebener Fl¨ache geschnitten, das Schnittbild akzentuiert dargestellt werden. durch geometrische Transformation erkundet werden k¨onnen. durch Kollineation ver¨andert werden k¨onnen. FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 4. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Quadriken und Schnittbilder Quadrik (engl. quadric)1: gekr¨ummte Fl¨ache in R3 Als gemischt-quadratische Koordinatengleichung: ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0 (1) Als Matrizenmultiplikation im projektiven Raum (w = 1): vT · Q · v = 0 (2) mit v =     x y z 1     und symmetrischer Koeffizientenmatrize Q =     a h g p h b f q g f c r p q r d     1 Zwillinger, Daniel: Standard Mathematical Tables and Formulae, Boca Raton, FL: Chapman & Hall/CRC, 2003, page 578. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 5. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Quadriken und Schnittbilder Ellipsoid QEllipsoid =   +a 0 0 0 0 +b 0 0 0 0 +c 0 0 0 0 −d   (Kugel: a = b = c) FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Schnittbild: Ellipse. Hyperboloid QHyperboloid =   +a 0 0 0 0 −b 0 0 0 0 +c 0 0 0 0 ±d   (einschalig: d < 0, zweischalig: d > 0) FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Schnittbild: Hyperbel. Paraboloid QParaboloid =    +a 0 0 0 0 ±b 0 0 0 0 0 ±r 0 0 ±r d    (elliptisch: b > 0, hyperbolisch: b < 0) FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid o sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom m hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4. defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the p have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Schnittbild: Parabel. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 6. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Kollineation Gegebene Normalform in ¨aquivalente Quadriken abbilden: Typ Normalform ¨Aquivalente Mittelpunktsquadrik Kugel FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Kegeliger Typ Zylinder FIGURE4.39 Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle: hyperboloidofonesheet.Bottomright:hyperbolicparaboloid. Conversely,anequationoftheform Ü ¾ ·Ý ¾ ·Þ ¾ ·¾Ü·¾Ý·¾Þ·¼(4.18.7) definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ . 1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the ©2003byCRCPressLLC FIGURE4.39 Thevenon-degeneraterealquadrics.Topleft:ellipsoid.Topright:hyperboloidoftwo sheets(onefacingupandonefacingdown).Bottomleft:ellipticparaboloid.Bottommiddle: hyperboloidofonesheet.Bottomright:hyperbolicparaboloid. Conversely,anequationoftheform Ü ¾ ·Ý ¾ ·Þ ¾ ·¾Ü·¾Ý·¾Þ·¼(4.18.7) definesasphereif¾·¾·¾;thecenteris´   µandtheradiusisÔ¾·¾·¾ . 1.Fourpointsnotinthesameplanedetermineauniquesphere.Ifthepoints havecoordinates´Ü½Ý½Þ½µ,´Ü¾Ý¾Þ¾µ,´Ü¿Ý¿Þ¿µ,and´ÜÜÞµ,the ©2003byCRCPressLLC Parabolischer Typ Scheibe FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC FIGURE 4.39 The ve non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. Conversely, an equation of the form Ü ¾ · Ý ¾ · Þ ¾ · ¾ Ü · ¾ Ý · ¾ Þ · ¼ (4.18.7) defines a sphere if ¾ · ¾ · ¾ ; the center is ´      µ and the radius isÔ ¾ · ¾ · ¾   . 1. Four points not in the same plane determine a unique sphere. If the points have coordinates ´Ü½ ݽ Þ½µ, ´Ü¾ ݾ Þ¾µ, ´Ü¿ Ý¿ Þ¿µ, and ´Ü Ü Þ µ, the © 2003 by CRC Press LLC Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 7. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Kollineation Abbildung durch projektive Transformation H: vn = H · vn (3) mit vn =     xn yn zn 1     und H =     h11 h12 h13 0 h21 h22 h23 0 h31 h32 h33 0 h41 h42 h43 h44     Koeffizientenmatrize der Abbildung: Q = HT · Q · H−1 (4) Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 8. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Grundlagen Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Stereobildwiedergabe Spektrales Multiplexing mit Rot-Gr¨un-Anaglyphen Perspektivische Projektion zweier asymmetrischer Sichtvolumen in dasselbe Bild: Pleft =      2n r−l+2d 0 r+l r−l+2d 0 0 2n t−b t+b t−b 0 0 0 − f +n f −n − 2fn f −n 0 0 −1 0      Pright =      2n r−l−2d 0 r+l r−l−2d 0 0 2n t−b t+b t−b 0 0 0 − f +n f −n − 2fn f −n 0 0 −1 0      mit d = 1 2 × eyeSep × n focalDist eyeSep (eye separation): Abstand der Augen des menschlichen Binokulars focalDist (focal distance): Distanz des Binokulars zur ’near clipping plane’ n Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 9. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Konzept Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Dom¨anenmodell-Diagramm Auswahl Quadrik Liste mit Normalformen Liste reeller Quadriken Quadrik NF: v Koeffizienten NF: Q 1 1 auswählen Benutzer- schnittstelle 1 1 erzeugen Kollineation H Abb. Quadrik v'=Hv (Objekt-Koodinaten) Normalengleichung ax^2+...+d=0 Abb. Koeffizienten Q'=H^TQH^-1 1 1 editieren 1 1 auswählen 1 1 parametrisieren 1 1 abbilden 1 1 visualisieren 1 1 parametrisieren 1 1 visualisieren Auswahl Projektion Orthografische P. Perspektivische P. Stereoskopische P. Auswahl Affine Transf. Zoom Rotation Animierte Transf. 1 1 auswählen 1 1 abbilden 1 1 transformieren 1 1projzieren Visualisierung Quadrik (Welt-Koordinaten) Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 10. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Umsetzung Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Grafische Benutzerschnittstelle (Demo) QIR Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences
  • 11. QIR Einleitung Problem Grundlagen Quadriken Kollineation Stereo Konzept DMD Umsetzung GUI Repo Umsetzung Quadriken im Raum und ihre Schnittbilder an ebenen Fl¨achen Repository https://github.com/brugr9/qir Bildnachweis: Figure 4.39: The five non-degenerated real quadrics. Top left: ellipsoid. Top right: hyperboloid of two sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle: hyperboloid of one sheet. Bottom right: hyperbolic paraboloid. (Die f¨unf nicht-degenerierten reellen Quadriken. Oben links: Ellipsoid. Oben rechts: zweischaliges Hyperboloid (eine Schale nach oben und eine nach unten gerichtet). Unten links: elliptisches Paraboloid. Unten Mitte: einschalges Hyperboloid. Unten rechts: hyperolisches Paraboloid.) In: Daniel Zwillinger: Standard Mathematical Tables and Formulae. 31. Aufl. Boca Raton, FL: Chapman & Hall/CRC, 2003. S. 580. Berner Fachhochschule | Haute ´ecole sp´ecialis´ee bernoise | Bern University of Applied Sciences