SlideShare a Scribd company logo
1 of 10
Download to read offline
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
Final Exam Review
Chemical Kinetics, Light and Absorbance
1. In a bimolecular second-order decomposition reaction, 53.8% of the reactant is converted to products in 6.39 hours.
a. Calculate the rate constant.
b. Before beginning this experiment, you shined 240 nm light at the solution and 46% of the light was absorbed.
Shining this light through a reference cell resulted in transmittance of 90% of the light. If your reactant has a
molar extinction coefficient of 1.5 L mol-1
cm-1
and you’ve been using a cuvette with a path length of 1.0 cm, find
the half-life of this reaction.
c. How long would it take to have only 7.2% reactant left?
2. Take a look at the following elementary reaction: CH3Br (aq) + OH-
(aq) ! CH3OH (aq) + Br-
(aq). An experiment
is run using 0.100 M of OH-
and 0.00100 M of CH3Br. A graph of ln[CH3Br] versus time yields a straight line, with a
slope of -403 s-1
. Find the k-value for this pseudo-first-order reaction.
3. Consider the following two reaction mechanisms and propose a rate expression for both:
A: NO2 "! O + NO Fast equilibrium, k = k1, k-1
O3 + O ! 2 O2 Fast, k = k2
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
B: A2 "! A + A Fast equilibrium, k = k1, k-1
A + B2 "! AB + B Fast equilibrium, k = k2, k-2
B + A2 ! AB + A Slow, k = k3
Chemical Equilibrium
4. At a brisk temperature of 1200 K, it was found that the reaction 3 Fe (s) + 4 H2O (g) "! Fe3O4 (s) + 4 H2 (g) has an
equilibrium water vapor pressure of 0.0197 atm and a total pressure of 0.0478 atm. Calculate Kp at 1200 K. What is
Kp for the reverse reaction?
5. Given the following reaction at equilibrium, how would the following reaction shift and how would K change if:
2 NO2 (g) + 7 H2 (g) "! 2 NH3 (g) + 4 H2O (g) ∆H = -87kJ/mol
a. Total pressure is doubled at constant V, T
b. Decrease pressure at constant T
c. You increase the temperature
d. A catalyst is added
e. [NH3] is decreased
f. Add helium gas at constant P, T
Acid-Base Reactions
6. What is the pH of a 1.0 L buffer solution made with 0.400 moles of sodium formate (NaCOOH) and 0.200 moles of
formic acid (HCOOH, Ka = 1.77 x 10-4
)?
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
a. Your good friend Perry prepares this buffer but then accidentally drops a bunch of solid HCl into the solution
without changing the volume. The new pH is equal to 3.65. How much acid did Perry spill?
7. Suppose you have 1.0 L of 2.0 M HC2H3O2 (Ka = 1.8 x 10-5
). How many moles of NaOH would you have to add,
assuming no volume change, to have a solution buffered at pH = 4.00?
Solubility Equilibrium
8. A solution contains 3.5 x 10-4
M Ag+
and 6.3 x 10-2
M Pb2+
.
a. If Cl-
is gradually added to the solution, will AgCl (Ksp = 1.6 x 10-10
) or PbCl2 (Ksp = 1.6 x 10-5
) precipitate first?
What concentration of Cl-
is necessary to precipitate each salt?
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
9. Calculate how many moles of AgCl will dissolve in 1.0 L of 1.0 M NH3 solution, if the diamminesilver (I) ion forms
simultaneously. Ksp = 1.6 x 10-10
; Kf = 1.7 x 107
.
Thermodynamics
10. For the reaction A (g) + 2 B (g) "! C (g), the initial pressures are all 0.100 atm. If equilibrium is established, one
finds that PC = 0.040 atm. What is ∆Gº for the reaction at 25 ºC?
a. If the initial pressures of A, B, and C were 0.100 atm, 0.500 atm, and 0.0100 atm, respectively, what would ∆G be
for this reaction?
11. For the autoionization of water, H2O (l) "! H+
(aq) + OH-
(aq), Kw = 1.139 x 10-15
at 0 ºC and 9.614 x 10-14
at 60 ºC.
Assuming ∆Hº and ∆Sº don’t change much over this temperature range, calculate ∆Hº and ∆Sº for this reaction.
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
Electrochemistry
12. A galvanic cell consists of a silver cathode suspended in 0.500 M AgNO3 and a nickel anode suspended in 0.100 M
Ni(NO3)2 at 0 ºC.
a. Calculate the standard cell voltage, if the standard reduction potentials of Ag+
and Ni2+
are 0.80 V and -0.25 V,
respectively.
b. Draw a diagram of this cell and label the anode, cathode, and the direction of electron flow.
c. Calculate the cell potential at the given conditions.
d. Calculate ∆Gº and K for the reaction at 25ºC.
13. A buffer with pH = 4.05 is connected to a solution with pH = 0 to form an electrochemical cell. What is the voltage
of this cell at 25 ºC?
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
Nuclear Chemistry
14. Calculate the amount of energy released, in kJ/nucleon of uranium, in the reaction used in the first generation atomic
bombs: 235
92 U + 1
0 n ! 94
36 Kr + 139
56 Ba + 3 1
0 n. Atomic masses of U, Kr, and Ba are 235.044 amu, 93.919 amu, and
138.909 amu, respectively.
mp = 1.00728 amu; mn = 1.00866 amu; me = 5.48580 x 10-4
amu; 1 eV = 1.602 x 10-19
J; 1 amu = 1.6605 x 10-27
kg
Coordination Compounds, Isomerism, Crystal Field Theory
15. Draw all isomers for [Zn(NO2)2Br4]-4
. Write its name out. Is it paramagnetic or diamagnetic?
Organic Chemistry
16. Draw structures for the organic compounds below. If you have an alcohol or amine, classify it.
a. 2-ethylbutanoic acid
b. 4-fluoro-2-propylpentanal
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
c. 2-amino-4-sec-butyl-3,5-dichlorooctane
17. Name the organic compounds below. If you have an alcohol or amine, classify it.
a.
b.
18. Identify all the functional groups in the following molecule:
OH
O Br
Cl
Cl
O
NH
O
O
N
OH
F
OH
O
O
O O
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
19. Identify all the chiral centers in the following molecule:
20. Complete the following reactions:
a. CH3CH3 + Cl2 !
b.
c.
21. Polyvinyl chloride (PVC) is formed by addition polymerization of vinyl chloride . Draw a portion of
PVC that contains three monomer subunits.
Cl
Cl
OH
F
O
+
HO
HO
O
Dehydration
OH
Cl
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
22. Given the two monomers shown below, draw the structure of one dimer unit formed if the two undergo condensation
copolymerization.
H2N
NH2
HO
OH
O
O
Initials: __________
I VIII
1
H
1.01
II III IV V VI VII
2
He
4.003
3
Li
6.94
4
Be
9.01
5
B
10.81
6
C
12.01
7
N
14.01
8
O
16.00
9
F
19.00
10
Ne
20.18
11
Na
22.99
12
M g
24.31
13
Al
26.98
14
Si
28.09
15
P
30.97
16
S
32.07
17
Cl
35.45
18
Ar
39.95
19
K
39.10
20
Ca
40.08
21
Sc
44.97
22
Ti
47.88
23
V
50.94
24
Cr
52.00
25
M n
54.94
26
Fe
55.85
27
Co
58.93
28
Ni
58.69
29
C u
63.55
30
Zn
65.38
31
Ga
69.72
32
Ge
72.59
33
As
74.92
34
Se
78.96
35
Br
79.90
36
Kr
83.80
37
Rb
85.47
38
Sr
87.62
39
Y
88.91
40
Zr
91.22
41
Nb
92.91
42
M o
95.94
43
Tc
(99)
44
R u
101.1
45
Rh
102.9
46
Pd
106.4
47
Ag
107.9
48
Cd
112.4
49
I n
114.8
50
S n
118.7
51
S b
121.8
52
Te
127.6
53
I
126.9
54
Xe
131.3
55
Cs
132.9
56
Ba
137.3
57
La
138.9
72
Hf
178.5
73
Ta
180.9
74
W
183.9
75
Re
186.2
76
Os
190.2
77
Ir
192.2
78
Pt
195.1
79
A u
197.0
80
Hg
200.6
81
Tl
204.4
82
Pb
207.2
83
Bi
209.0
84
Po
(209)
85
At
(210)
86
R n
(222)
87
Fr
(223)
88
Ra
226.0
89
Ac
227.0
104
Rf
(261)
105
Db
(262)
106
Sg
(263)
107
Bh
(262)
108
Hs
(265)
109
Mt
(268)
Lanthanides
58
Ce
140.1
59
Pr
140.9
60
Nd
144.2
61
Pm
(145)
62
S m
150.4
63
E u
152.0
64
Gd
157.3
65
Tb
158.9
66
Dy
162
67
Ho
164.9
68
Er
167.3
69
Tm
168.9
70
Yb
173.0
71
L u
175
Actinides
90
Th
232.0
91
Pa
231.0
92
U
238.0
93
Np
237.0
94
P u
(244)
95
Am
(243)
96
Cm
(247)
97
Bk
(247)
98
Cf
(251)
99
Es
(252)
100
Fm
(257)
101
M d
(258)
102
No
(259)
103
Lr
(26)
Useful constants:
c = 3.00 x 108
m/s R = 8.314 J/K*mol = 0.08206 L*atm/K*mol
F = 96485 C/mol e-
1 A = 1 C/s
-14 o
Supplemental Instruction
CHEM 115b
Professors Krylov and Parr
Perry Kumagai
pkumagai@usc.edu
www.usc.edu/si
1
Lanthanides
58
Ce
140.1
59
Pr
140.9
60
Nd
144.2
61
Pm
(145)
62
S m
150.4
63
E u
152.0
64
Gd
157.3
65
Tb
158.9
66
Dy
162
67
Ho
164.9
68
Er
167.3
69
Tm
168.9
70
Yb
173.0
71
L u
175
Actinides
90
Th
232.0
91
Pa
231.0
92
U
238.0
93
Np
237.0
94
P u
(244)
95
Am
(243)
96
Cm
(247)
97
Bk
(247)
98
Cf
(251)
99
Es
(252)
100
Fm
(257)
101
M d
(258)
102
No
(259)
103
Lr
(26)
Useful constants:
c = 3.00 x 108
m/s R = 8.314 J/K*mol = 0.08206 L*atm/K*mol
F = 96485 C/mol e-
1 A = 1 C/s
Kw = 1 x 10-14
@ 25 o
C 1 atm = 760 torr
1 eV = 1.6022 x 10-19
J
Useful equations:
ΔGo
= -RT ln(K) ΔG = -nFε
ε = εo
– (RT/nF) ln Q ε = εo
– (0.0591/n) log Q
ΔG = ΔH – TΔS ΔSuniv = ΔSsys + ΔSsurr
ΔSsurr = -ΔH/T ΔG = ΔGo
+ RT ln(Q)
pH = pKa + log([A-
]/[HA]) ln(K) = -(ΔHo
/RT) + (ΔSo
/R)
ΔHo
rxn = Σnp[ΔHf
o
products] – Σnr[ΔHf
o
reactants] ΔGo
rxn = Σnp[ΔGf
o
products] – Σnr[ΔGf
o
reactants]
ΔSo
rxn = Σnp[ΔSo
products] – Σnr[ΔSo
reactants] RT
Ea
Ae
k /
a
ac
b
b
x
2
4
2
2
1
1
2 1
1
ln
T
T
R
E
k
k a
ln[A] = -kt + ln[A]o (1/[A]) = kt + (1/[A]o) [A] = -kt + [A]o
t1/2 = 0.693/k t1/2 = 1/(k[A]o) t1/2 = [A]o/2k
1
2
1
2 1
1
ln
T
T
R
H
K
K o
rxn
15
Lanthanides
58
Ce
140.1
59
Pr
140.9
60
Nd
144.2
61
Pm
(145)
62
Sm
150.4
63
E u
152.0
64
Gd
157.3
65
Tb
158.9
66
Dy
162
67
Ho
164.9
68
Er
167.3
69
Tm
168.9
70
Yb
173.0
71
L u
175
Actinides
90
Th
232.0
91
Pa
231.0
92
U
238.0
93
Np
237.0
94
P u
(244)
95
Am
(243)
96
Cm
(247)
97
Bk
(247)
98
Cf
(251)
99
Es
(252)
100
Fm
(257)
101
M d
(258)
102
No
(259)
103
Lr
(26)
Useful constants:
c = 3.00 x 108
m/s R = 8.314 J/K*mol = 0.08206 L*atm/K*mol
F = 96485 C/mol e-
1 A = 1 C/s
Kw = 1 x 10-14
@ 25 o
C 1 atm = 760 torr
1 eV = 1.6022 x 10-19
J
Useful equations:
ΔGo
= -RT ln(K) ΔG = -nFε
ε = εo
– (RT/nF) ln Q ε = εo
– (0.0591/n) log Q
ΔG = ΔH – TΔS ΔSuniv = ΔSsys + ΔSsurr
ΔSsurr = -ΔH/T ΔG = ΔGo
+ RT ln(Q)
pH = pKa + log([A-
]/[HA]) ln(K) = -(ΔHo
/RT) + (ΔSo
/R)
ΔHo
rxn = Σnp[ΔHf
o
products] – Σnr[ΔHf
o
reactants] ΔGo
rxn = Σnp[ΔGf
o
products] – Σnr[ΔGf
o
reactants]
ΔSo
rxn = Σnp[ΔSo
products] – Σnr[ΔSo
reactants] RT
Ea
Ae
k /
a
ac
b
b
x
2
4
2
2
1
1
2 1
1
ln
T
T
R
E
k
k a
ln[A] = -kt + ln[A]o (1/[A]) = kt + (1/[A]o) [A] = -kt + [A]o
t1/2 = 0.693/k t1/2 = 1/(k[A]o) t1/2 = [A]o/2k
1
2
1
2 1
1
ln
T
T
R
H
K
K o
rxn
Supplemental Materials for Exam 1 (Chem115b)
Summary of reaction kinetics:
Zero order:
0
1/ 2
2
C
t
First order:
Second order: for 2A → products
for A → products
Arrhenius equaiton:
R= 0.0082 L atm mol-1K-1 = 8.314 J mol-1K-1
( )
a
E
RT
k T Ae
−
=
0
C C kt
= −
k
=
e 1/ 2
ln 2
t =
0
kt
C C −
= k
1/ 2
0
1
0
1 1
2kt
2
t =
C C
= +
kC
1/ 2
0
1
0
1 1
kt t
kC
=
C C
= +

More Related Content

What's hot (19)

Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
Pembahasan Soal2 termokimia
Pembahasan Soal2 termokimiaPembahasan Soal2 termokimia
Pembahasan Soal2 termokimia
 
gaseous state
gaseous stategaseous state
gaseous state
 
Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)
 
Ch17
Ch17Ch17
Ch17
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
Aieee chemistry - 2007
Aieee chemistry - 2007Aieee chemistry - 2007
Aieee chemistry - 2007
 
Ch.15
Ch.15Ch.15
Ch.15
 
Sample paper 3 Class xi chem
Sample paper 3 Class xi chem Sample paper 3 Class xi chem
Sample paper 3 Class xi chem
 
Sample paper xi chem 2
Sample paper xi chem 2Sample paper xi chem 2
Sample paper xi chem 2
 
Class XI Sample paper 1 Chemistry
Class XI Sample paper 1 ChemistryClass XI Sample paper 1 Chemistry
Class XI Sample paper 1 Chemistry
 
Analytical chemistry ch01 chemical measurements
Analytical chemistry ch01 chemical measurementsAnalytical chemistry ch01 chemical measurements
Analytical chemistry ch01 chemical measurements
 
Physical chemi gases
Physical chemi gasesPhysical chemi gases
Physical chemi gases
 
Barker 1980 JChemSocPerkinTrans2
Barker 1980 JChemSocPerkinTrans2Barker 1980 JChemSocPerkinTrans2
Barker 1980 JChemSocPerkinTrans2
 
Ch19
Ch19Ch19
Ch19
 
Ch08
Ch08Ch08
Ch08
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gases
 
Ch06
Ch06Ch06
Ch06
 
Ch23
Ch23Ch23
Ch23
 

Viewers also liked

Preliminary Task - Locations
Preliminary Task - LocationsPreliminary Task - Locations
Preliminary Task - LocationsMea_Fenwick
 
INSPHERE - Productivity from enhanced metrology
INSPHERE - Productivity from enhanced metrologyINSPHERE - Productivity from enhanced metrology
INSPHERE - Productivity from enhanced metrologyBen Adeline
 
Ganesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_Exp
Ganesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_ExpGanesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_Exp
Ganesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_ExpGanesamoorthi Pandi
 
Lean 6 sigma metrology - Productivity from enhanced metrology
Lean 6 sigma metrology - Productivity from enhanced metrologyLean 6 sigma metrology - Productivity from enhanced metrology
Lean 6 sigma metrology - Productivity from enhanced metrologyBen Adeline
 
Fenomenos de transporte - Manometria
Fenomenos de transporte - ManometriaFenomenos de transporte - Manometria
Fenomenos de transporte - ManometriaSérgio Henrique
 
Telecommunications Technician III
Telecommunications Technician IIITelecommunications Technician III
Telecommunications Technician IIIRichard Grider
 
HM 598 Emergency Management Innovation
HM 598 Emergency Management InnovationHM 598 Emergency Management Innovation
HM 598 Emergency Management Innovationjtarnue
 
Company Overview 2016.compressed
Company Overview 2016.compressedCompany Overview 2016.compressed
Company Overview 2016.compressedBen Adeline
 

Viewers also liked (15)

slideshare
slideshareslideshare
slideshare
 
Media
MediaMedia
Media
 
PRUEBA
PRUEBAPRUEBA
PRUEBA
 
Preliminary Task - Locations
Preliminary Task - LocationsPreliminary Task - Locations
Preliminary Task - Locations
 
Uber vs. Lyft
Uber vs. LyftUber vs. Lyft
Uber vs. Lyft
 
Target's Sharp Aim
Target's Sharp AimTarget's Sharp Aim
Target's Sharp Aim
 
OSTER Cat.2015-linkedin
OSTER Cat.2015-linkedinOSTER Cat.2015-linkedin
OSTER Cat.2015-linkedin
 
INSPHERE - Productivity from enhanced metrology
INSPHERE - Productivity from enhanced metrologyINSPHERE - Productivity from enhanced metrology
INSPHERE - Productivity from enhanced metrology
 
Ganesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_Exp
Ganesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_ExpGanesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_Exp
Ganesamoorthi P_Performance_Testing_Loadrunner_2.9_yrs_of_Exp
 
Lean 6 sigma metrology - Productivity from enhanced metrology
Lean 6 sigma metrology - Productivity from enhanced metrologyLean 6 sigma metrology - Productivity from enhanced metrology
Lean 6 sigma metrology - Productivity from enhanced metrology
 
Fenomenos de transporte - Manometria
Fenomenos de transporte - ManometriaFenomenos de transporte - Manometria
Fenomenos de transporte - Manometria
 
Telecommunications Technician III
Telecommunications Technician IIITelecommunications Technician III
Telecommunications Technician III
 
HM 598 Emergency Management Innovation
HM 598 Emergency Management InnovationHM 598 Emergency Management Innovation
HM 598 Emergency Management Innovation
 
Company Overview 2016.compressed
Company Overview 2016.compressedCompany Overview 2016.compressed
Company Overview 2016.compressed
 
Manifest destiny
Manifest destinyManifest destiny
Manifest destiny
 

CHEM 115b Final Exam Review 2015

  • 1. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si Final Exam Review Chemical Kinetics, Light and Absorbance 1. In a bimolecular second-order decomposition reaction, 53.8% of the reactant is converted to products in 6.39 hours. a. Calculate the rate constant. b. Before beginning this experiment, you shined 240 nm light at the solution and 46% of the light was absorbed. Shining this light through a reference cell resulted in transmittance of 90% of the light. If your reactant has a molar extinction coefficient of 1.5 L mol-1 cm-1 and you’ve been using a cuvette with a path length of 1.0 cm, find the half-life of this reaction. c. How long would it take to have only 7.2% reactant left? 2. Take a look at the following elementary reaction: CH3Br (aq) + OH- (aq) ! CH3OH (aq) + Br- (aq). An experiment is run using 0.100 M of OH- and 0.00100 M of CH3Br. A graph of ln[CH3Br] versus time yields a straight line, with a slope of -403 s-1 . Find the k-value for this pseudo-first-order reaction. 3. Consider the following two reaction mechanisms and propose a rate expression for both: A: NO2 "! O + NO Fast equilibrium, k = k1, k-1 O3 + O ! 2 O2 Fast, k = k2
  • 2. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si B: A2 "! A + A Fast equilibrium, k = k1, k-1 A + B2 "! AB + B Fast equilibrium, k = k2, k-2 B + A2 ! AB + A Slow, k = k3 Chemical Equilibrium 4. At a brisk temperature of 1200 K, it was found that the reaction 3 Fe (s) + 4 H2O (g) "! Fe3O4 (s) + 4 H2 (g) has an equilibrium water vapor pressure of 0.0197 atm and a total pressure of 0.0478 atm. Calculate Kp at 1200 K. What is Kp for the reverse reaction? 5. Given the following reaction at equilibrium, how would the following reaction shift and how would K change if: 2 NO2 (g) + 7 H2 (g) "! 2 NH3 (g) + 4 H2O (g) ∆H = -87kJ/mol a. Total pressure is doubled at constant V, T b. Decrease pressure at constant T c. You increase the temperature d. A catalyst is added e. [NH3] is decreased f. Add helium gas at constant P, T Acid-Base Reactions 6. What is the pH of a 1.0 L buffer solution made with 0.400 moles of sodium formate (NaCOOH) and 0.200 moles of formic acid (HCOOH, Ka = 1.77 x 10-4 )?
  • 3. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si a. Your good friend Perry prepares this buffer but then accidentally drops a bunch of solid HCl into the solution without changing the volume. The new pH is equal to 3.65. How much acid did Perry spill? 7. Suppose you have 1.0 L of 2.0 M HC2H3O2 (Ka = 1.8 x 10-5 ). How many moles of NaOH would you have to add, assuming no volume change, to have a solution buffered at pH = 4.00? Solubility Equilibrium 8. A solution contains 3.5 x 10-4 M Ag+ and 6.3 x 10-2 M Pb2+ . a. If Cl- is gradually added to the solution, will AgCl (Ksp = 1.6 x 10-10 ) or PbCl2 (Ksp = 1.6 x 10-5 ) precipitate first? What concentration of Cl- is necessary to precipitate each salt?
  • 4. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si 9. Calculate how many moles of AgCl will dissolve in 1.0 L of 1.0 M NH3 solution, if the diamminesilver (I) ion forms simultaneously. Ksp = 1.6 x 10-10 ; Kf = 1.7 x 107 . Thermodynamics 10. For the reaction A (g) + 2 B (g) "! C (g), the initial pressures are all 0.100 atm. If equilibrium is established, one finds that PC = 0.040 atm. What is ∆Gº for the reaction at 25 ºC? a. If the initial pressures of A, B, and C were 0.100 atm, 0.500 atm, and 0.0100 atm, respectively, what would ∆G be for this reaction? 11. For the autoionization of water, H2O (l) "! H+ (aq) + OH- (aq), Kw = 1.139 x 10-15 at 0 ºC and 9.614 x 10-14 at 60 ºC. Assuming ∆Hº and ∆Sº don’t change much over this temperature range, calculate ∆Hº and ∆Sº for this reaction.
  • 5. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si Electrochemistry 12. A galvanic cell consists of a silver cathode suspended in 0.500 M AgNO3 and a nickel anode suspended in 0.100 M Ni(NO3)2 at 0 ºC. a. Calculate the standard cell voltage, if the standard reduction potentials of Ag+ and Ni2+ are 0.80 V and -0.25 V, respectively. b. Draw a diagram of this cell and label the anode, cathode, and the direction of electron flow. c. Calculate the cell potential at the given conditions. d. Calculate ∆Gº and K for the reaction at 25ºC. 13. A buffer with pH = 4.05 is connected to a solution with pH = 0 to form an electrochemical cell. What is the voltage of this cell at 25 ºC?
  • 6. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si Nuclear Chemistry 14. Calculate the amount of energy released, in kJ/nucleon of uranium, in the reaction used in the first generation atomic bombs: 235 92 U + 1 0 n ! 94 36 Kr + 139 56 Ba + 3 1 0 n. Atomic masses of U, Kr, and Ba are 235.044 amu, 93.919 amu, and 138.909 amu, respectively. mp = 1.00728 amu; mn = 1.00866 amu; me = 5.48580 x 10-4 amu; 1 eV = 1.602 x 10-19 J; 1 amu = 1.6605 x 10-27 kg Coordination Compounds, Isomerism, Crystal Field Theory 15. Draw all isomers for [Zn(NO2)2Br4]-4 . Write its name out. Is it paramagnetic or diamagnetic? Organic Chemistry 16. Draw structures for the organic compounds below. If you have an alcohol or amine, classify it. a. 2-ethylbutanoic acid b. 4-fluoro-2-propylpentanal
  • 7. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si c. 2-amino-4-sec-butyl-3,5-dichlorooctane 17. Name the organic compounds below. If you have an alcohol or amine, classify it. a. b. 18. Identify all the functional groups in the following molecule: OH O Br Cl Cl O NH O O N OH F OH O O O O
  • 8. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si 19. Identify all the chiral centers in the following molecule: 20. Complete the following reactions: a. CH3CH3 + Cl2 ! b. c. 21. Polyvinyl chloride (PVC) is formed by addition polymerization of vinyl chloride . Draw a portion of PVC that contains three monomer subunits. Cl Cl OH F O + HO HO O Dehydration OH Cl
  • 9. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si 22. Given the two monomers shown below, draw the structure of one dimer unit formed if the two undergo condensation copolymerization. H2N NH2 HO OH O O Initials: __________ I VIII 1 H 1.01 II III IV V VI VII 2 He 4.003 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 M g 24.31 13 Al 26.98 14 Si 28.09 15 P 30.97 16 S 32.07 17 Cl 35.45 18 Ar 39.95 19 K 39.10 20 Ca 40.08 21 Sc 44.97 22 Ti 47.88 23 V 50.94 24 Cr 52.00 25 M n 54.94 26 Fe 55.85 27 Co 58.93 28 Ni 58.69 29 C u 63.55 30 Zn 65.38 31 Ga 69.72 32 Ge 72.59 33 As 74.92 34 Se 78.96 35 Br 79.90 36 Kr 83.80 37 Rb 85.47 38 Sr 87.62 39 Y 88.91 40 Zr 91.22 41 Nb 92.91 42 M o 95.94 43 Tc (99) 44 R u 101.1 45 Rh 102.9 46 Pd 106.4 47 Ag 107.9 48 Cd 112.4 49 I n 114.8 50 S n 118.7 51 S b 121.8 52 Te 127.6 53 I 126.9 54 Xe 131.3 55 Cs 132.9 56 Ba 137.3 57 La 138.9 72 Hf 178.5 73 Ta 180.9 74 W 183.9 75 Re 186.2 76 Os 190.2 77 Ir 192.2 78 Pt 195.1 79 A u 197.0 80 Hg 200.6 81 Tl 204.4 82 Pb 207.2 83 Bi 209.0 84 Po (209) 85 At (210) 86 R n (222) 87 Fr (223) 88 Ra 226.0 89 Ac 227.0 104 Rf (261) 105 Db (262) 106 Sg (263) 107 Bh (262) 108 Hs (265) 109 Mt (268) Lanthanides 58 Ce 140.1 59 Pr 140.9 60 Nd 144.2 61 Pm (145) 62 S m 150.4 63 E u 152.0 64 Gd 157.3 65 Tb 158.9 66 Dy 162 67 Ho 164.9 68 Er 167.3 69 Tm 168.9 70 Yb 173.0 71 L u 175 Actinides 90 Th 232.0 91 Pa 231.0 92 U 238.0 93 Np 237.0 94 P u (244) 95 Am (243) 96 Cm (247) 97 Bk (247) 98 Cf (251) 99 Es (252) 100 Fm (257) 101 M d (258) 102 No (259) 103 Lr (26) Useful constants: c = 3.00 x 108 m/s R = 8.314 J/K*mol = 0.08206 L*atm/K*mol F = 96485 C/mol e- 1 A = 1 C/s -14 o
  • 10. Supplemental Instruction CHEM 115b Professors Krylov and Parr Perry Kumagai pkumagai@usc.edu www.usc.edu/si 1 Lanthanides 58 Ce 140.1 59 Pr 140.9 60 Nd 144.2 61 Pm (145) 62 S m 150.4 63 E u 152.0 64 Gd 157.3 65 Tb 158.9 66 Dy 162 67 Ho 164.9 68 Er 167.3 69 Tm 168.9 70 Yb 173.0 71 L u 175 Actinides 90 Th 232.0 91 Pa 231.0 92 U 238.0 93 Np 237.0 94 P u (244) 95 Am (243) 96 Cm (247) 97 Bk (247) 98 Cf (251) 99 Es (252) 100 Fm (257) 101 M d (258) 102 No (259) 103 Lr (26) Useful constants: c = 3.00 x 108 m/s R = 8.314 J/K*mol = 0.08206 L*atm/K*mol F = 96485 C/mol e- 1 A = 1 C/s Kw = 1 x 10-14 @ 25 o C 1 atm = 760 torr 1 eV = 1.6022 x 10-19 J Useful equations: ΔGo = -RT ln(K) ΔG = -nFε ε = εo – (RT/nF) ln Q ε = εo – (0.0591/n) log Q ΔG = ΔH – TΔS ΔSuniv = ΔSsys + ΔSsurr ΔSsurr = -ΔH/T ΔG = ΔGo + RT ln(Q) pH = pKa + log([A- ]/[HA]) ln(K) = -(ΔHo /RT) + (ΔSo /R) ΔHo rxn = Σnp[ΔHf o products] – Σnr[ΔHf o reactants] ΔGo rxn = Σnp[ΔGf o products] – Σnr[ΔGf o reactants] ΔSo rxn = Σnp[ΔSo products] – Σnr[ΔSo reactants] RT Ea Ae k / a ac b b x 2 4 2 2 1 1 2 1 1 ln T T R E k k a ln[A] = -kt + ln[A]o (1/[A]) = kt + (1/[A]o) [A] = -kt + [A]o t1/2 = 0.693/k t1/2 = 1/(k[A]o) t1/2 = [A]o/2k 1 2 1 2 1 1 ln T T R H K K o rxn 15 Lanthanides 58 Ce 140.1 59 Pr 140.9 60 Nd 144.2 61 Pm (145) 62 Sm 150.4 63 E u 152.0 64 Gd 157.3 65 Tb 158.9 66 Dy 162 67 Ho 164.9 68 Er 167.3 69 Tm 168.9 70 Yb 173.0 71 L u 175 Actinides 90 Th 232.0 91 Pa 231.0 92 U 238.0 93 Np 237.0 94 P u (244) 95 Am (243) 96 Cm (247) 97 Bk (247) 98 Cf (251) 99 Es (252) 100 Fm (257) 101 M d (258) 102 No (259) 103 Lr (26) Useful constants: c = 3.00 x 108 m/s R = 8.314 J/K*mol = 0.08206 L*atm/K*mol F = 96485 C/mol e- 1 A = 1 C/s Kw = 1 x 10-14 @ 25 o C 1 atm = 760 torr 1 eV = 1.6022 x 10-19 J Useful equations: ΔGo = -RT ln(K) ΔG = -nFε ε = εo – (RT/nF) ln Q ε = εo – (0.0591/n) log Q ΔG = ΔH – TΔS ΔSuniv = ΔSsys + ΔSsurr ΔSsurr = -ΔH/T ΔG = ΔGo + RT ln(Q) pH = pKa + log([A- ]/[HA]) ln(K) = -(ΔHo /RT) + (ΔSo /R) ΔHo rxn = Σnp[ΔHf o products] – Σnr[ΔHf o reactants] ΔGo rxn = Σnp[ΔGf o products] – Σnr[ΔGf o reactants] ΔSo rxn = Σnp[ΔSo products] – Σnr[ΔSo reactants] RT Ea Ae k / a ac b b x 2 4 2 2 1 1 2 1 1 ln T T R E k k a ln[A] = -kt + ln[A]o (1/[A]) = kt + (1/[A]o) [A] = -kt + [A]o t1/2 = 0.693/k t1/2 = 1/(k[A]o) t1/2 = [A]o/2k 1 2 1 2 1 1 ln T T R H K K o rxn Supplemental Materials for Exam 1 (Chem115b) Summary of reaction kinetics: Zero order: 0 1/ 2 2 C t First order: Second order: for 2A → products for A → products Arrhenius equaiton: R= 0.0082 L atm mol-1K-1 = 8.314 J mol-1K-1 ( ) a E RT k T Ae − = 0 C C kt = − k = e 1/ 2 ln 2 t = 0 kt C C − = k 1/ 2 0 1 0 1 1 2kt 2 t = C C = + kC 1/ 2 0 1 0 1 1 kt t kC = C C = +