SlideShare a Scribd company logo
1 of 70
TCP/IP Protocol Suite 1
Objectives
Upon completion you will be able to:
IP Addresses:
Classful Addressing
• Understand IPv4 addresses and classes
• Identify the class of an IP address
• Find the network address given an IP address
• Understand masks and how to use them
• Understand subnets and supernets
TCP/IP Protocol Suite 2
4.1 INTRODUCTION
4.1 INTRODUCTION
The identifier used in the IP layer of the TCP/IP protocol suite to identify
each device connected to the Internet is called the Internet address or IP
address. An IP address is a 32-bit address that uniquely and universally
defines the connection of a host or a router to the Internet. IP addresses
are unique. They are unique in the sense that each address defines one,
and only one, connection to the Internet. Two devices on the Internet can
never have the same address.
The topics discussed in this section include:
Address Space
Notation
TCP/IP Protocol Suite 3
An IP address is a 32-bit address.
Note:
TCP/IP Protocol Suite 4
The IP addresses are unique.
Note:
TCP/IP Protocol Suite 5
The address space of IPv4 is
232 or 4,294,967,296.
Note:
TCP/IP Protocol Suite 6
Figure 4.1 Dotted-decimal notation
TCP/IP Protocol Suite 7
The binary, decimal, and hexadecimal
number systems are reviewed in
Appendix B.
Note:
TCP/IP Protocol Suite 8
Change the following IP addresses from binary notation to
dotted-decimal notation.
a. 10000001 00001011 00001011 11101111
b. 11000001 10000011 00011011 11111111
c. 11100111 11011011 10001011 01101111
d. 11111001 10011011 11111011 00001111
Example 1
Solution
We replace each group of 8 bits with its equivalent decimal
number (see Appendix B) and add dots for separation:
a. 129.11.11.239 b. 193.131.27.255
c. 231.219.139.111 d. 249.155.251.15
TCP/IP Protocol Suite 9
Change the following IP addresses from dotted-decimal
notation to binary notation.
a. 111.56.45.78 b. 221.34.7.82
c. 241.8.56.12 d. 75.45.34.78
Example 2
Solution
We replace each decimal number with its binary equivalent:
a. 01101111 00111000 00101101 01001110
b. 11011101 00100010 00000111 01010010
c. 11110001 00001000 00111000 00001100
d. 01001011 00101101 00100010 01001110
TCP/IP Protocol Suite 10
Find the error, if any, in the following IP addresses:
a. 111.56.045.78 b. 221.34.7.8.20
c. 75.45.301.14 d. 11100010.23.14.67
Example 3
Solution
a. There are no leading zeroes in dotted-decimal notation (045).
b. We may not have more than four numbers in an IP address.
c. In dotted-decimal notation, each number is less than or equal
to 255; 301 is outside this range.
d. A mixture of binary notation and dotted-decimal notation is not
allowed.
TCP/IP Protocol Suite 11
Change the following IP addresses from binary notation to
hexadecimal notation.
a. 10000001 00001011 00001011 11101111
b. 11000001 10000011 00011011 11111111
Example 4
Solution
We replace each group of 4 bits with its hexadecimal equivalent
(see Appendix B). Note that hexadecimal notation normally has
no added spaces or dots; however, 0X (or 0x) is added at the
beginning or the subscript 16 at the end to show that the
number is in hexadecimal.
a. 0X810B0BEF or 810B0BEF16
b. 0XC1831BFF or C1831BFF16
TCP/IP Protocol Suite 12
4.2 CLASSFUL ADDRESSING
IP addresses, when started a few decades ago, used the concept of
classes. This architecture is called classful addressing. In the mid-1990s,
a new architecture, called classless addressing, was introduced and will
eventually supersede the original architecture. However, part of the
Internet is still using classful addressing, but the migration is very fast.
The topics discussed in this section include:
Recognizing Classes
Netid and Hostid
Classes and Blocks
Network Addresses
Sufficient Information
Mask
CIDR Notation
Address Depletion
TCP/IP Protocol Suite 13
Figure 4.2 Occupation of the address space
TCP/IP Protocol Suite 14
Table 4.1 Addresses per class
TCP/IP Protocol Suite 15
Figure 4.3 Finding the class in binary notation
TCP/IP Protocol Suite 16
Figure 4.4 Finding the address class
TCP/IP Protocol Suite 17
How can we prove that we have 2,147,483,648 addresses in
class A?
Example 5
Solution
In class A, only 1 bit defines the class. The remaining 31 bits
are available for the address. With 31 bits, we can have 231
or 2,147,483,648 addresses.
TCP/IP Protocol Suite 18
Find the class of each address:
a. 00000001 00001011 00001011 11101111
b. 11000001 10000011 00011011 11111111
c. 10100111 11011011 10001011 01101111
d. 11110011 10011011 11111011 00001111
Example 6
Solution
See the procedure in Figure 4.4.
a. The first bit is 0. This is a class A address.
b. The first 2 bits are 1; the third bit is 0. This is a class C address.
c. The first bit is 0; the second bit is 1. This is a class B address.
d. The first 4 bits are 1s. This is a class E address..
TCP/IP Protocol Suite 19
Figure 4.5 Finding the class in decimal notation
TCP/IP Protocol Suite 20
Find the class of each address:
a. 227.12.14.87 b.193.14.56.22 c.14.23.120.8
d. 252.5.15.111 e.134.11.78.56
Example 7
Solution
a. The first byte is 227 (between 224 and 239); the class is D.
b. The first byte is 193 (between 192 and 223); the class is C.
c. The first byte is 14 (between 0 and 127); the class is A.
d. The first byte is 252 (between 240 and 255); the class is E.
e. The first byte is 134 (between 128 and 191); the class is B.
TCP/IP Protocol Suite 21
In Example 5 we showed that class A has 231 (2,147,483,648)
addresses. How can we prove this same fact using dotted-
decimal notation?
Example 8
Solution
The addresses in class A range from 0.0.0.0 to 127.255.255.255.
We need to show that the difference between these two numbers
is 2,147,483,648. This is a good exercise because it shows us
how to define the range of addresses between two addresses.
We notice that we are dealing with base 256 numbers here.
Each byte in the notation has a weight. The weights are as
follows (see Appendix B):
See Next Slide
TCP/IP Protocol Suite 22
2563, 2562, 2561, 2560
Example 8 (continued)
Last address: 127 × 2563 + 255 × 2562 +
255 × 2561 + 255 × 2560 = 2,147,483,647
First address: = 0
Now to find the integer value of each number, we multiply each
byte by its weight:
If we subtract the first from the last and add 1 to the result
(remember we always add 1 to get the range), we get
2,147,483,648 or 231.
TCP/IP Protocol Suite 23
Figure 4.6 Netid and hostid
TCP/IP Protocol Suite 24
Millions of class A addresses are
wasted.
Note:
TCP/IP Protocol Suite 25
Figure 4.7 Blocks in class A
TCP/IP Protocol Suite 26
Figure 4.8 Blocks in class B
TCP/IP Protocol Suite 27
Many class B addresses are wasted.
Note:
TCP/IP Protocol Suite 28
Figure 4.9 Blocks in class C
TCP/IP Protocol Suite 29
The number of addresses in class C is
smaller than the needs of most
organizations.
Note:
TCP/IP Protocol Suite 30
Class D addresses are used for
multicasting; there is only one block in
this class.
Note:
TCP/IP Protocol Suite 31
Class E addresses are reserved for
future purposes; most of the block is
wasted.
Note:
TCP/IP Protocol Suite 32
In classful addressing, the network
address (the first address in the block)
is the one that is assigned to the
organization. The range of addresses
can automatically be inferred from the
network address.
Note:
TCP/IP Protocol Suite 33
Given the network address 17.0.0.0, find the class, the block,
and the range of the addresses.
Example 9
Solution
The class is A because the first byte is between 0 and 127. The
block has a netid of 17. The addresses range from 17.0.0.0 to
17.255.255.255.
TCP/IP Protocol Suite 34
Given the network address 132.21.0.0, find the class, the block,
and the range of the addresses.
Example 10
Solution
The class is B because the first byte is between 128 and 191.
The block has a netid of 132.21. The addresses range from
132.21.0.0 to 132.21.255.255.
TCP/IP Protocol Suite 35
Given the network address 220.34.76.0, find the class, the
block, and the range of the addresses.
Example 11
Solution
The class is C because the first byte is between 192
and 223. The block has a netid of 220.34.76. The
addresses range from 220.34.76.0 to 220.34.76.255.
TCP/IP Protocol Suite 36
Figure 4.10 Masking concept
TCP/IP Protocol Suite 37
Figure 4.11 AND operation
TCP/IP Protocol Suite 38
Table 4.2 Default masks
TCP/IP Protocol Suite 39
The network address is the beginning
address of each block. It can be found
by applying the default mask to any of
the addresses in the block (including
itself). It retains the netid of the block
and sets the hostid to zero.
Note:
TCP/IP Protocol Suite 40
Given the address 23.56.7.91, find the beginning address
(network address).
Example 12
Solution
The default mask is 255.0.0.0, which means that only the first
byte is preserved and the other 3 bytes are set to 0s. The
network address is 23.0.0.0.
TCP/IP Protocol Suite 41
Given the address 132.6.17.85, find the beginning address
(network address).
Example 13
Solution
The default mask is 255.255.0.0, which means that the first 2
bytes are preserved and the other 2 bytes are set to 0s. The
network address is 132.6.0.0.
TCP/IP Protocol Suite 42
Given the address 201.180.56.5, find the beginning address
(network address).
Example 14
Solution
The default mask is 255.255.255.0, which means that the first 3
bytes are preserved and the last byte is set to 0. The network
address is 201.180.56.0.
TCP/IP Protocol Suite 43
Note that we must not apply the
default mask of one class to an address
belonging to another class.
Note:
TCP/IP Protocol Suite 44
4.3 OTHER ISSUES
In this section, we discuss some other issues that are related to
addressing in general and classful addressing in particular.
The topics discussed in this section include:
Multihomed Devices
Location, Not Names
Special Addresses
Private Addresses
Unicast, Multicast, and Broadcast Addresses
TCP/IP Protocol Suite 45
Figure 4.12 Multihomed devices
TCP/IP Protocol Suite 46
Table 4.3 Special addresses
TCP/IP Protocol Suite 47
Figure 4.13 Network address
TCP/IP Protocol Suite 48
Figure 4.14 Example of direct broadcast address
TCP/IP Protocol Suite 49
Figure 4.15 Example of limited broadcast address
TCP/IP Protocol Suite 50
Figure 4.16 Examples of “this host on this network”
TCP/IP Protocol Suite 51
Figure 4.17 Example of “specific host on this network”
TCP/IP Protocol Suite 52
Figure 4.18 Example of loopback address
TCP/IP Protocol Suite 53
Table 4.5 Addresses for private networks
TCP/IP Protocol Suite 54
Multicast delivery will be discussed in
depth in Chapter 15.
Note:
TCP/IP Protocol Suite 55
Table 4.5 Category addresses
TCP/IP Protocol Suite 56
Table 4.6 Addresses for conferencing
TCP/IP Protocol Suite 57
Figure 4.19 Sample internet
TCP/IP Protocol Suite 58
4.4 SUBNETTING AND
SUPERNETTING
In the previous sections we discussed the problems associated with
classful addressing. Specifically, the network addresses available for
assignment to organizations are close to depletion. This is coupled with
the ever-increasing demand for addresses from organizations that want
connection to the Internet. In this section we briefly discuss two
solutions: subnetting and supernetting.
The topics discussed in this section include:
Subnetting
Supernetting
Supernet Mask
Obsolescence
TCP/IP Protocol Suite 59
IP addresses are designed with two
levels of hierarchy.
Note:
TCP/IP Protocol Suite 60
Figure 4.20 A network with two levels of hierarchy (not subnetted)
TCP/IP Protocol Suite 61
Figure 4.21 A network with three levels of hierarchy (subnetted)
TCP/IP Protocol Suite 62
Figure 4.22 Addresses in a network with and without subnetting
TCP/IP Protocol Suite 63
Figure 4.23 Hierarchy concept in a telephone number
TCP/IP Protocol Suite 64
Figure 4.24 Default mask and subnet mask
TCP/IP Protocol Suite 65
What is the subnetwork address if the destination address is
200.45.34.56 and the subnet mask is 255.255.240.0?
Example 15
Solution
We apply the AND operation on the address and the subnet
mask.
Address ➡ 11001000 00101101 00100010 00111000
Subnet Mask ➡ 11111111 11111111 11110000 00000000
Subnetwork Address ➡ 11001000 00101101 00100000 00000000.
TCP/IP Protocol Suite 66
Figure 4.25 Comparison of a default mask and a subnet mask
TCP/IP Protocol Suite 67
Figure 4.26 A supernetwork
TCP/IP Protocol Suite 68
In subnetting, we need the first
address of the subnet and the subnet
mask to define the range of addresses.
In supernetting, we need the first
address of the supernet and the
supernet mask to define the range of
addresses.
Note:
TCP/IP Protocol Suite 69
Figure 4.27 Comparison of subnet, default, and supernet masks
TCP/IP Protocol Suite 70
The idea of subnetting and
supernetting of classful addresses is
almost obsolete.
Note:

More Related Content

Similar to 1606660774-ip-addresses-classful-3.ppt

Internet Technology
Internet TechnologyInternet Technology
Internet Technologyhome
 
Chap 05 ip addresses classfless
Chap 05 ip addresses classflessChap 05 ip addresses classfless
Chap 05 ip addresses classflessNoctorous Jamal
 
Classless addressing
Classless addressingClassless addressing
Classless addressingIqra Abbas
 
Chap 04
Chap 04Chap 04
Chap 04IGNOU
 
Lecture W4 CN IP Addressing P1.pptx
Lecture W4 CN IP Addressing P1.pptxLecture W4 CN IP Addressing P1.pptx
Lecture W4 CN IP Addressing P1.pptxssuserc1e786
 
IPv4 Address uploading.ppt
IPv4 Address uploading.pptIPv4 Address uploading.ppt
IPv4 Address uploading.pptSanthiS10
 
IP addressing and subnetting.pptx
IP addressing and subnetting.pptxIP addressing and subnetting.pptx
IP addressing and subnetting.pptxnaseerahmad707715
 
Network_layer_addressing.pptx
Network_layer_addressing.pptxNetwork_layer_addressing.pptx
Network_layer_addressing.pptxlaiba29012
 
IP-address trial.ppt
IP-address trial.pptIP-address trial.ppt
IP-address trial.pptsol zem
 
4a logical laddressing
4a logical laddressing4a logical laddressing
4a logical laddressingkavish dani
 
NP - Unit 2 - Internet Addressing, ARP and RARP
NP - Unit 2 - Internet Addressing, ARP and RARP NP - Unit 2 - Internet Addressing, ARP and RARP
NP - Unit 2 - Internet Addressing, ARP and RARP hamsa nandhini
 
Basics of IP Addressing
Basics of IP AddressingBasics of IP Addressing
Basics of IP AddressingKushal Sheth
 
Subnet Masking in Computer Network--CST 2nd year by Tanushree Bhadra
Subnet Masking in Computer Network--CST 2nd year by Tanushree BhadraSubnet Masking in Computer Network--CST 2nd year by Tanushree Bhadra
Subnet Masking in Computer Network--CST 2nd year by Tanushree BhadraSovonesh Pal
 

Similar to 1606660774-ip-addresses-classful-3.ppt (20)

Ip addressing classless
Ip addressing classlessIp addressing classless
Ip addressing classless
 
Ip addressing classless
Ip addressing classlessIp addressing classless
Ip addressing classless
 
Chap 05
Chap 05Chap 05
Chap 05
 
Internet Technology
Internet TechnologyInternet Technology
Internet Technology
 
Chap 05 ip addresses classfless
Chap 05 ip addresses classflessChap 05 ip addresses classfless
Chap 05 ip addresses classfless
 
Classless addressing
Classless addressingClassless addressing
Classless addressing
 
Chap 04
Chap 04Chap 04
Chap 04
 
About ip address
About ip addressAbout ip address
About ip address
 
Ch04
Ch04Ch04
Ch04
 
Lecture W4 CN IP Addressing P1.pptx
Lecture W4 CN IP Addressing P1.pptxLecture W4 CN IP Addressing P1.pptx
Lecture W4 CN IP Addressing P1.pptx
 
IPv4 Address uploading.ppt
IPv4 Address uploading.pptIPv4 Address uploading.ppt
IPv4 Address uploading.ppt
 
Lecture 03 networking
Lecture 03 networkingLecture 03 networking
Lecture 03 networking
 
CN Unit 3
CN Unit 3 CN Unit 3
CN Unit 3
 
IP addressing and subnetting.pptx
IP addressing and subnetting.pptxIP addressing and subnetting.pptx
IP addressing and subnetting.pptx
 
Network_layer_addressing.pptx
Network_layer_addressing.pptxNetwork_layer_addressing.pptx
Network_layer_addressing.pptx
 
IP-address trial.ppt
IP-address trial.pptIP-address trial.ppt
IP-address trial.ppt
 
4a logical laddressing
4a logical laddressing4a logical laddressing
4a logical laddressing
 
NP - Unit 2 - Internet Addressing, ARP and RARP
NP - Unit 2 - Internet Addressing, ARP and RARP NP - Unit 2 - Internet Addressing, ARP and RARP
NP - Unit 2 - Internet Addressing, ARP and RARP
 
Basics of IP Addressing
Basics of IP AddressingBasics of IP Addressing
Basics of IP Addressing
 
Subnet Masking in Computer Network--CST 2nd year by Tanushree Bhadra
Subnet Masking in Computer Network--CST 2nd year by Tanushree BhadraSubnet Masking in Computer Network--CST 2nd year by Tanushree Bhadra
Subnet Masking in Computer Network--CST 2nd year by Tanushree Bhadra
 

Recently uploaded

Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111GangaMaiya1
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptxJoelynRubio1
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17Celine George
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactisticshameyhk98
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsNbelano25
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answersdalebeck957
 

Recently uploaded (20)

Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Call Girls in Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in  Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in  Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answers
 

1606660774-ip-addresses-classful-3.ppt

  • 1. TCP/IP Protocol Suite 1 Objectives Upon completion you will be able to: IP Addresses: Classful Addressing • Understand IPv4 addresses and classes • Identify the class of an IP address • Find the network address given an IP address • Understand masks and how to use them • Understand subnets and supernets
  • 2. TCP/IP Protocol Suite 2 4.1 INTRODUCTION 4.1 INTRODUCTION The identifier used in the IP layer of the TCP/IP protocol suite to identify each device connected to the Internet is called the Internet address or IP address. An IP address is a 32-bit address that uniquely and universally defines the connection of a host or a router to the Internet. IP addresses are unique. They are unique in the sense that each address defines one, and only one, connection to the Internet. Two devices on the Internet can never have the same address. The topics discussed in this section include: Address Space Notation
  • 3. TCP/IP Protocol Suite 3 An IP address is a 32-bit address. Note:
  • 4. TCP/IP Protocol Suite 4 The IP addresses are unique. Note:
  • 5. TCP/IP Protocol Suite 5 The address space of IPv4 is 232 or 4,294,967,296. Note:
  • 6. TCP/IP Protocol Suite 6 Figure 4.1 Dotted-decimal notation
  • 7. TCP/IP Protocol Suite 7 The binary, decimal, and hexadecimal number systems are reviewed in Appendix B. Note:
  • 8. TCP/IP Protocol Suite 8 Change the following IP addresses from binary notation to dotted-decimal notation. a. 10000001 00001011 00001011 11101111 b. 11000001 10000011 00011011 11111111 c. 11100111 11011011 10001011 01101111 d. 11111001 10011011 11111011 00001111 Example 1 Solution We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add dots for separation: a. 129.11.11.239 b. 193.131.27.255 c. 231.219.139.111 d. 249.155.251.15
  • 9. TCP/IP Protocol Suite 9 Change the following IP addresses from dotted-decimal notation to binary notation. a. 111.56.45.78 b. 221.34.7.82 c. 241.8.56.12 d. 75.45.34.78 Example 2 Solution We replace each decimal number with its binary equivalent: a. 01101111 00111000 00101101 01001110 b. 11011101 00100010 00000111 01010010 c. 11110001 00001000 00111000 00001100 d. 01001011 00101101 00100010 01001110
  • 10. TCP/IP Protocol Suite 10 Find the error, if any, in the following IP addresses: a. 111.56.045.78 b. 221.34.7.8.20 c. 75.45.301.14 d. 11100010.23.14.67 Example 3 Solution a. There are no leading zeroes in dotted-decimal notation (045). b. We may not have more than four numbers in an IP address. c. In dotted-decimal notation, each number is less than or equal to 255; 301 is outside this range. d. A mixture of binary notation and dotted-decimal notation is not allowed.
  • 11. TCP/IP Protocol Suite 11 Change the following IP addresses from binary notation to hexadecimal notation. a. 10000001 00001011 00001011 11101111 b. 11000001 10000011 00011011 11111111 Example 4 Solution We replace each group of 4 bits with its hexadecimal equivalent (see Appendix B). Note that hexadecimal notation normally has no added spaces or dots; however, 0X (or 0x) is added at the beginning or the subscript 16 at the end to show that the number is in hexadecimal. a. 0X810B0BEF or 810B0BEF16 b. 0XC1831BFF or C1831BFF16
  • 12. TCP/IP Protocol Suite 12 4.2 CLASSFUL ADDRESSING IP addresses, when started a few decades ago, used the concept of classes. This architecture is called classful addressing. In the mid-1990s, a new architecture, called classless addressing, was introduced and will eventually supersede the original architecture. However, part of the Internet is still using classful addressing, but the migration is very fast. The topics discussed in this section include: Recognizing Classes Netid and Hostid Classes and Blocks Network Addresses Sufficient Information Mask CIDR Notation Address Depletion
  • 13. TCP/IP Protocol Suite 13 Figure 4.2 Occupation of the address space
  • 14. TCP/IP Protocol Suite 14 Table 4.1 Addresses per class
  • 15. TCP/IP Protocol Suite 15 Figure 4.3 Finding the class in binary notation
  • 16. TCP/IP Protocol Suite 16 Figure 4.4 Finding the address class
  • 17. TCP/IP Protocol Suite 17 How can we prove that we have 2,147,483,648 addresses in class A? Example 5 Solution In class A, only 1 bit defines the class. The remaining 31 bits are available for the address. With 31 bits, we can have 231 or 2,147,483,648 addresses.
  • 18. TCP/IP Protocol Suite 18 Find the class of each address: a. 00000001 00001011 00001011 11101111 b. 11000001 10000011 00011011 11111111 c. 10100111 11011011 10001011 01101111 d. 11110011 10011011 11111011 00001111 Example 6 Solution See the procedure in Figure 4.4. a. The first bit is 0. This is a class A address. b. The first 2 bits are 1; the third bit is 0. This is a class C address. c. The first bit is 0; the second bit is 1. This is a class B address. d. The first 4 bits are 1s. This is a class E address..
  • 19. TCP/IP Protocol Suite 19 Figure 4.5 Finding the class in decimal notation
  • 20. TCP/IP Protocol Suite 20 Find the class of each address: a. 227.12.14.87 b.193.14.56.22 c.14.23.120.8 d. 252.5.15.111 e.134.11.78.56 Example 7 Solution a. The first byte is 227 (between 224 and 239); the class is D. b. The first byte is 193 (between 192 and 223); the class is C. c. The first byte is 14 (between 0 and 127); the class is A. d. The first byte is 252 (between 240 and 255); the class is E. e. The first byte is 134 (between 128 and 191); the class is B.
  • 21. TCP/IP Protocol Suite 21 In Example 5 we showed that class A has 231 (2,147,483,648) addresses. How can we prove this same fact using dotted- decimal notation? Example 8 Solution The addresses in class A range from 0.0.0.0 to 127.255.255.255. We need to show that the difference between these two numbers is 2,147,483,648. This is a good exercise because it shows us how to define the range of addresses between two addresses. We notice that we are dealing with base 256 numbers here. Each byte in the notation has a weight. The weights are as follows (see Appendix B): See Next Slide
  • 22. TCP/IP Protocol Suite 22 2563, 2562, 2561, 2560 Example 8 (continued) Last address: 127 × 2563 + 255 × 2562 + 255 × 2561 + 255 × 2560 = 2,147,483,647 First address: = 0 Now to find the integer value of each number, we multiply each byte by its weight: If we subtract the first from the last and add 1 to the result (remember we always add 1 to get the range), we get 2,147,483,648 or 231.
  • 23. TCP/IP Protocol Suite 23 Figure 4.6 Netid and hostid
  • 24. TCP/IP Protocol Suite 24 Millions of class A addresses are wasted. Note:
  • 25. TCP/IP Protocol Suite 25 Figure 4.7 Blocks in class A
  • 26. TCP/IP Protocol Suite 26 Figure 4.8 Blocks in class B
  • 27. TCP/IP Protocol Suite 27 Many class B addresses are wasted. Note:
  • 28. TCP/IP Protocol Suite 28 Figure 4.9 Blocks in class C
  • 29. TCP/IP Protocol Suite 29 The number of addresses in class C is smaller than the needs of most organizations. Note:
  • 30. TCP/IP Protocol Suite 30 Class D addresses are used for multicasting; there is only one block in this class. Note:
  • 31. TCP/IP Protocol Suite 31 Class E addresses are reserved for future purposes; most of the block is wasted. Note:
  • 32. TCP/IP Protocol Suite 32 In classful addressing, the network address (the first address in the block) is the one that is assigned to the organization. The range of addresses can automatically be inferred from the network address. Note:
  • 33. TCP/IP Protocol Suite 33 Given the network address 17.0.0.0, find the class, the block, and the range of the addresses. Example 9 Solution The class is A because the first byte is between 0 and 127. The block has a netid of 17. The addresses range from 17.0.0.0 to 17.255.255.255.
  • 34. TCP/IP Protocol Suite 34 Given the network address 132.21.0.0, find the class, the block, and the range of the addresses. Example 10 Solution The class is B because the first byte is between 128 and 191. The block has a netid of 132.21. The addresses range from 132.21.0.0 to 132.21.255.255.
  • 35. TCP/IP Protocol Suite 35 Given the network address 220.34.76.0, find the class, the block, and the range of the addresses. Example 11 Solution The class is C because the first byte is between 192 and 223. The block has a netid of 220.34.76. The addresses range from 220.34.76.0 to 220.34.76.255.
  • 36. TCP/IP Protocol Suite 36 Figure 4.10 Masking concept
  • 37. TCP/IP Protocol Suite 37 Figure 4.11 AND operation
  • 38. TCP/IP Protocol Suite 38 Table 4.2 Default masks
  • 39. TCP/IP Protocol Suite 39 The network address is the beginning address of each block. It can be found by applying the default mask to any of the addresses in the block (including itself). It retains the netid of the block and sets the hostid to zero. Note:
  • 40. TCP/IP Protocol Suite 40 Given the address 23.56.7.91, find the beginning address (network address). Example 12 Solution The default mask is 255.0.0.0, which means that only the first byte is preserved and the other 3 bytes are set to 0s. The network address is 23.0.0.0.
  • 41. TCP/IP Protocol Suite 41 Given the address 132.6.17.85, find the beginning address (network address). Example 13 Solution The default mask is 255.255.0.0, which means that the first 2 bytes are preserved and the other 2 bytes are set to 0s. The network address is 132.6.0.0.
  • 42. TCP/IP Protocol Suite 42 Given the address 201.180.56.5, find the beginning address (network address). Example 14 Solution The default mask is 255.255.255.0, which means that the first 3 bytes are preserved and the last byte is set to 0. The network address is 201.180.56.0.
  • 43. TCP/IP Protocol Suite 43 Note that we must not apply the default mask of one class to an address belonging to another class. Note:
  • 44. TCP/IP Protocol Suite 44 4.3 OTHER ISSUES In this section, we discuss some other issues that are related to addressing in general and classful addressing in particular. The topics discussed in this section include: Multihomed Devices Location, Not Names Special Addresses Private Addresses Unicast, Multicast, and Broadcast Addresses
  • 45. TCP/IP Protocol Suite 45 Figure 4.12 Multihomed devices
  • 46. TCP/IP Protocol Suite 46 Table 4.3 Special addresses
  • 47. TCP/IP Protocol Suite 47 Figure 4.13 Network address
  • 48. TCP/IP Protocol Suite 48 Figure 4.14 Example of direct broadcast address
  • 49. TCP/IP Protocol Suite 49 Figure 4.15 Example of limited broadcast address
  • 50. TCP/IP Protocol Suite 50 Figure 4.16 Examples of “this host on this network”
  • 51. TCP/IP Protocol Suite 51 Figure 4.17 Example of “specific host on this network”
  • 52. TCP/IP Protocol Suite 52 Figure 4.18 Example of loopback address
  • 53. TCP/IP Protocol Suite 53 Table 4.5 Addresses for private networks
  • 54. TCP/IP Protocol Suite 54 Multicast delivery will be discussed in depth in Chapter 15. Note:
  • 55. TCP/IP Protocol Suite 55 Table 4.5 Category addresses
  • 56. TCP/IP Protocol Suite 56 Table 4.6 Addresses for conferencing
  • 57. TCP/IP Protocol Suite 57 Figure 4.19 Sample internet
  • 58. TCP/IP Protocol Suite 58 4.4 SUBNETTING AND SUPERNETTING In the previous sections we discussed the problems associated with classful addressing. Specifically, the network addresses available for assignment to organizations are close to depletion. This is coupled with the ever-increasing demand for addresses from organizations that want connection to the Internet. In this section we briefly discuss two solutions: subnetting and supernetting. The topics discussed in this section include: Subnetting Supernetting Supernet Mask Obsolescence
  • 59. TCP/IP Protocol Suite 59 IP addresses are designed with two levels of hierarchy. Note:
  • 60. TCP/IP Protocol Suite 60 Figure 4.20 A network with two levels of hierarchy (not subnetted)
  • 61. TCP/IP Protocol Suite 61 Figure 4.21 A network with three levels of hierarchy (subnetted)
  • 62. TCP/IP Protocol Suite 62 Figure 4.22 Addresses in a network with and without subnetting
  • 63. TCP/IP Protocol Suite 63 Figure 4.23 Hierarchy concept in a telephone number
  • 64. TCP/IP Protocol Suite 64 Figure 4.24 Default mask and subnet mask
  • 65. TCP/IP Protocol Suite 65 What is the subnetwork address if the destination address is 200.45.34.56 and the subnet mask is 255.255.240.0? Example 15 Solution We apply the AND operation on the address and the subnet mask. Address ➡ 11001000 00101101 00100010 00111000 Subnet Mask ➡ 11111111 11111111 11110000 00000000 Subnetwork Address ➡ 11001000 00101101 00100000 00000000.
  • 66. TCP/IP Protocol Suite 66 Figure 4.25 Comparison of a default mask and a subnet mask
  • 67. TCP/IP Protocol Suite 67 Figure 4.26 A supernetwork
  • 68. TCP/IP Protocol Suite 68 In subnetting, we need the first address of the subnet and the subnet mask to define the range of addresses. In supernetting, we need the first address of the supernet and the supernet mask to define the range of addresses. Note:
  • 69. TCP/IP Protocol Suite 69 Figure 4.27 Comparison of subnet, default, and supernet masks
  • 70. TCP/IP Protocol Suite 70 The idea of subnetting and supernetting of classful addresses is almost obsolete. Note: