SlideShare a Scribd company logo
1 of 57
Download to read offline
№34/2019
Norwegian Journal of development of the International Science
ISSN 3453-9875
VOL.1
It was established in November 2016 with support from the Norwegian Academy of Science.
DESCRIPTION
The Scientific journal “Norwegian Journal of development of the International Science” is issued 12 times a year
and is a scientific publication on topical problems of science.
Editor in chief – Karin Kristiansen (University of Oslo, Norway)
The assistant of theeditor in chief – Olof Hansen
 James Smith (University of Birmingham, UK)
 Kristian Nilsen (University Centre in Svalbard, Norway)
 Arne Jensen (Norwegian University of Science and Technology, Norway)
 Sander Svein (University of Tromsø, Norway)
 Lena Meyer (University of Gothenburg, Sweden)
 Hans Rasmussen (University of Southern Denmark, Denmark)
 Chantal Girard (ESC Rennes School of Business, France)
 Ann Claes (University of Groningen, Netherlands)
 Ingrid Karlsen (University of Oslo, Norway)
 Terje Gruterson (Norwegian Institute of Public Health, Norway)
 Sander Langfjord (University Hospital, Norway)
 Fredrik Mardosas (Oslo and Akershus University College, Norway)
 Emil Berger (Ministry of Agriculture and Food, Norway)
 Sofie Olsen (BioFokus, Norway)
 Rolf Ulrich Becker (University of Duisburg-Essen, Germany)
 Lutz Jäncke (University of Zürich, Switzerland)
 Elizabeth Davies (University of Glasgow, UK)
 Chan Jiang(Peking University, China)
and other independent experts
1000 copies
Norwegian Journal of development of the International Science
Iduns gate 4A, 0178, Oslo, Norway
email: publish@njd-iscience.com
site: http://www.njd-iscience.com
CONTENT
CHEMICAL SCIENCES
Kontsevoy A., Kontsevoy S.,Fedenko Y.
THE STATIC AND DYNAMICS MODELING OF ION
EXCHANGE IN WATER SOLUTIONS..............................3
MEDICAL SCIENCES
Ali-Zade S.
OPTIMIZATION OF METHODS FOR DIAGNOSTIC AND
TREATMENT OF PATIENTS WITH HEPATIC
ABCESSES ..................................................................11
Kaminska A., Pshuk N., Stukan L.
PSYCHOEDUCATIONAL MODULE AS A COMPONENT
OF COMPLEX SYSTEM OF MEDICAL-PSYCHOLOGICAL
SUPPORT FOR FAMILIES, WHERE A PATIENT WITH
ENDOGENOUS MENTAL DISORDER LIVES.................15
Mikhailova I., Orlova V.,
MinutkoV.,Simonova A.
THE RELATIONSHIP BETWEEN PECULIARITIES OF THE
IMMUNITY AND CLINICAL SYMPTOMS IN EPISODIC
PARANOID SCHIZOPHRENIA......................................19
Tabachnikov S., Osukhovskaya O.,
Vasylyeva G., Kharchenko E.,
Salden V.,Chepunna A.
PSYCHOEMOTIONAL SYNERGY REGISTER OF NON-
CHEMICAL ADDICTION AND TOBACCO SMOKING IN
YOUTH .......................................................................28
Tymoshchuk O.
PECULIARITIES OF PSYCHO-PHYSIOLOGICAL
ADAPTATION OF MODERN PUPILS AND STUDENTS
DURING THE CONDITIONS OF MODERN EDUCATION
EDUCATION ...............................................................31
PHYSICAL SCIENCES
Gladyshev G.
ON THE STABILITY OF NUCLIDES AND CHEMICALS ...37
Mardasova E.
ENERGY SAVING AT HOME........................................40
Naziyev J.
CALCULATION OF CORRECTIONS ON THE VARIABILITY
OF THERMOPHYSICAL CHARACTERISTICS OF LIQUIDS
AND GASES IN THE INVESTIGATION IN THE REGULAR
HEAT MODE OF THE FIRST KIND ...............................41
TECHNICAL SCIENCES
Akimov S.
HISTORY OF DEVELOPMENT OF THE METHOD OF
MAP FLOWS OF CREATION OF VALUE ......................45
Ryapolova E.
CALCULATION OF THE SECURITY LEVEL OF THE
CONFIDENTIAL DOCUMENT TURNOVER SYSTEM
BASED ON CRYPTOGRAPHIC MEANS OF
PROTECTION .............................................................48
Khalikov A., Urakov O.
DISTRIBUTION OF TELEPHONE LOAD IN THE
NETWORKS OF OPERATIONAL AND TECHNOLOGICAL
COMMUNICATION OF JSC "UZBEKISTAN
RAILWAYS" ................................................................53
Norwegian Journal of development of the International Science No 34/2019 3
CHEMICAL SCIENCES
THE STATIC AND DYNAMICS MODELING OF ION EXCHANGE IN WATER SOLUTIONS
Kontsevoy A.
Ph.D., assoc. prof., The Department of Technology of Inorganic Substances,
Water Purification and General Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute
Kontsevoy S.
Ph.D., assoc. prof., The Department of Technology of Inorganic Substances,
Water Purification and General Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute
Fedenko Y.
Ph.D., assistant, The Department of Technology of Inorganic Substances,
Water Purification and General Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute
Abstract
The mathematical models for the exchange of double-charged and singly charged ions in statics and dynamics
conditions are designed and methods of their solution in Excel (static) and Mathcad (static and dynamics of ex-
change) are proposed. The coefficients of the known equation for the distribution of ion's initial concentration
along the water flow in a filter are calculated. The features of exchange between differently charged ions are
studying based on computer experiments. The "method of a characteristic" was adapted for the wave propagation
analysis of double-charged ion concentrations in a filter. Convex isotherms of ion exchange lead to "breakfront"
of concentrations (their rapid decrease) clearly visible at 2D and 3D figures. The proposed model provides varying
technological and design parameters as input data in order to estimate their effect on the exchange process quality.
Keywords: ion exchange, exchange isotherm, ion charge, mathematical model, dynamics of the equilibrium
exchange, the front of the concentrations.
Introduction
Ion exchange is one of the typical processes of wa-
ter purification and one of perspective sorption meth-
ods. It is carried out by usage of ion exchange materials.
The problem of calculation of filter is conditionally di-
vided on the task of describing static (equilibrium) and
modeling of dynamic of ion exchange, including
charges of ions, which is capable to exchange. Iso-
therms of ion exchange determine movement of ions
that are absorbed and are part of the mathematic model
of ion exchange filters – the main technological equip-
ment of heat and atomic electric stations. The stage of
the work cycle of an ion exchange filter is carried out
at convex isotherm. Ion exchange at convex isotherm
allows increasing the concentration in ion exchanger in
comparison with their concentration in solution. Re-
generation is realized at concave isotherm. The dy-
namic model must include the fact, that, at passing of
solution through the filter, different concentration
points will move with different rates. Depending on the
kind of isotherm – convex or concave –«breakage» (the
concentration of ion in solution is changed jump-like
from с = с0 to с = 0) or «blurred» concentration front
can be observed, respectively. Excel and Mathcad had
been used in this work for analysis of a mathematic
model for ion exchange filters.
The goal was to design the mathematic model of
static and dynamic of ion exchange for ions of different
charge. For reaching this goal it was necessary to bring
out the equation of isotherm of ion exchange, basing on
mass action law, to adapt the mathematic apparatus and
software solutions for single-charged ions and to give
the solution of static and dynamic of ion exchange of
ions of different charge. It is also necessary to justify
the equation of the initial distribution of the relative
concentration along the filter and find the correspond-
ing coefficients.
Discussion
The classification and principles of working of
fuel cells
Fuel cells are an autonomous source of energy in-
dependent of fossil fuels. In addition, the lack of com-
bustion of fuel at high temperatures means the environ-
mental purity of such devices. In addition to high
productivity and efficiency, the process of producing
electricity in a fuel cell is accompanied by a minimal
impact on the environment, which is especially im-
portant in view of the serious deterioration of the over-
all environmental situation in the modern world.
Other advantages of fuel cells can be attributed
[5]:
• these are noiseless energy sources (the fuel cell
itself doesn’t have moving parts);
• the possibility of using different types of fuel;
• a wide range of capacities (from 1 to 10000 kW);
• rapid response to load variables;
• high reliability and safety of low-temperature de-
vices;
• modular design, which allows relatively easy to
increase the capacity of already existing power plants
with FC.
Most often, FC is classified by the type of electro-
lyte as a medium for the internal transport of ions. The
nature of the electrolyte determines the operating tem-
perature of the FC, from which, in turn, the choice of
catalyst and auxiliary materials depends. There are five
main types of FC [6], which are discussed below.
In solid-polymeric fuel cells (SPFC) electrolyte is
a proton exchange polymer membrane. Currently, there
4 Norwegian Journal of development of the International Science No 34/2019
are several different types of polymer membranes – flu-
orine-containing polymer based on sulfonic acids;
membranes based on aromatic polymers (polyether ke-
tones, polysulfones, polyether sulfones); membranes
based on polyimides, polyvinyl alcohols. Nafion per-
fluorinated electrolyte membranes (Du Pont company)
became the most widely used. An important property of
such membranes is high proton conductivity in an oiled
state, and therefore, for the effective operation of FC, it
is necessary to select and adhere to the regime of opti-
mal distribution of moisture (water management). The
operating temperature is not higher than 100 °С, fuel is
hydrogen, without CO contamination, to prevent poi-
soning of Pt catalyst. A solid fuel cell electrolyte is
much easier to use than a liquid analogue. A thin plati-
num catalyst chemically activates the reaction on the
electrodes. In the past, these devices were very expen-
sive through platinum, but new technologies signifi-
cantly reduced the thickness of the platinum layer,
which allowed, accordingly, to reduce the price.
In alkaline fuel cells (AFC), a concentrated KOH
solution immobilized in an asbestos matrix used as an
electrolyte. Depending on the alkali content, such FC
can operate in the temperature range from 65 °C (35–
50 % by weight KOH) to 250 °C. (~85 % by weight
KOH). The catalyst can be noble metals, Ni, complex
oxides. Alkaline FC must be protected from the influ-
ence of CO and CO2; the first, as in the previous case,
is a catalytic poison, and the second interacts with the
electrolyte, changing its composition. Algal fuel cells
are widely used in spacecraft. They were developed by
NASA for use in the Gemini project and further used
on Space Shuttle. AFCs are very effective, release only
pure water after the reaction. However, these devices
require the purest of hydrogen and oxygen and an elec-
trolyte with KOH, which is very expensive.
In phosphoric acid fuel cells (PAFC), the transfer
of protons from the anode to the cathode is carried out
in a concentrated solution of phosphoric acid (85-100
% v / v), fixed on a carrier with SiC. The operating tem-
perature of 150–220 °C provides high conductivity of
the electrolyte. The catalyst is platinum. This kind of
FC is commercially available, since 1992, PAFC has
the potential for use in small, stationary power genera-
tion systems. They are known for their reliability, per-
fect work and high efficiency. They can work on con-
taminated water spills. The world's largest 11 MW
phosphorus works in Tokyo.
In carbonate-fusible fuel cells (CFFC), the elec-
trolyte is a melt of a mixture of alkali metal carbonates
in a ceramic matrix with LiAlO2. At a temperature of
about 600–700 °C, this melt is a good conductor of
CO3
2-
ions. A fairly high working temperature allows
the use of fuel in the CFFC directly without any addi-
tional preparation, and nickel - as a catalyst. Since
CFFCs operate at a temperature of 650 ºС, it is more
expedient to use them on large stationary installations.
They are especially useful in hospitals or in such build-
ings where there is a constant need for electric and ther-
mal energy (heating or cooling).
In solid oxide fuel cells (SOFC) electrolyte is a
dense ceramic membrane with ZrO2. For the appear-
ance of sufficient oxygen-ion conductivity in this
phase, it is necessary to heat up to temperatures of 600–
1000 °C. Oxidation of fuel (H2, CO, CH4) occurs at the
anode, which is a metal-ceramic composite Ni / ZrO2
or Co / ZrO2; as a cathode, complex oxides are used,
which have an electron (La1-xSrxMnO3-δ) or a mixed
(La1-xSrxCoO3-δ) conductivity. These fuel cells are most
suitable for large stationary electric generators that can
supply a factory or city with electricity.
The main performance characteristics of FC of dif-
ferent types are summarized in Table 1.
The greatest successes have been achieved in the
field of membrane fuel cells (MFC). Currently, one of
the most promising fuel cells for wide application are
solid-polymer (SPFC), which have a high density of
power and have reached the highest technological read-
iness. The main obstacle to their widespread use is still
high cost compared to traditional energy-generating de-
vices.
Table 1.
The main performance characteristics of FC of different types [7]
FC type SPFC L PAFC CFFC SOFC
Temperature, о
С 80-100 65-250 150-220 600-1000 600-1000
Material of anode
Pt/C,
Pt-Ru/C
Pt/C,
Pt-Co/C
Pt/C,
Pt-Ru/C
Ni-Al,
Ni-Cr
Ni, NiO
Material of cathode Pt/C
Pd/C
Ni (Pt)
Pt/C,
Pt-WO3/C
NiO, LiFeO2 LaSrMnO3
Electrolyte
Polymer mem-
brane (ionomer)
KOH/ NаOH
on the career
H3PO4 on
the career
LiKCO3, LiN-
aCO3 on the ca-
reer
ZrO2, CeO2,
Y2O3
The range of optimal
capacities, kW
0,01÷100 kW ~ 100 kW ~100 kW ≥ 1 MW ≥ 1 MW
Resource, h until 2⋅104
until 104
until 5⋅104
until 2⋅104
until 6⋅104
The main components of the fuel cell are anode,
cathode and electrolyte. Anod provides fuel in the form
of combustible gas (hydrogen, hydrocarbon com-
pounds, CO etc.), where the catalyst dissociates fuel
molecules into cations. At the same time, an oxidizing
gas (oxygen, air) is fed to the cathode. At the cathode
is the reaction of oxygen recovery, while it is ionized.
Anions of oxygen pass through a dense ceramic elec-
trolyte to the anode. At an anode there is a reaction of
oxidation of fuel, which involves cations of fuel and
oxygen anions. As a result of the reaction, electrons and
heat energy are released. Also, the reaction products are
water vapor (using pure hydrogen) or water vapor and
carbon dioxide (with hydrocarbon fuels) [8].
Norwegian Journal of development of the International Science No 34/2019 5
Figure 1. The principle of work on the example of a ceramic fuel cell [8].
The catalytic layer is one of the main components
of fuel cells. It is a thin (5–20 microns) gas-permeable
layer containing a fine-dispersed catalyst with a devel-
oped surface. On the one hand, the catalytic layer ad-
joins the proton conductive membrane, and on the other
hand – to the gas diffusion layer.
Platinum and metals of platinum group (MPGs)
are commonly used to catalyze the oxidation of hydro-
gen, as well as the recovery of oxygen occurring in fuel
cells.
The high cost and scarcity of metals make, how-
ever, the use of pure metal catalysts unprofitable and
require a reduction in their number with the maximum
effectiveness of their use. This is achieved by the use
and development of new catalysts on carriers. The car-
rier should be cheap, have electrical conductivity and
sufficient chemical and electrochemical stability. In ad-
dition, the catalytic bed should have good gas permea-
bility and provide good contact with the proton ex-
change membrane. The specified requirements are sat-
isfied with carbon materials.
Generators of hydrogen based on sodium borohy-
dride. The usage of hydrogen generators allows you to
obtain H2 directly at the site of its use, eliminating the
problems of its storage, storage and transportation.
Physical methods of hydrogen storage in the form of
cryogenic liquid or compressed gas in most cases are
ineffective (low volume density, high energy consump-
tion, the ability to evaporate), and also insufficiently
comfortable and safe (explosive gas under high pres-
sure), therefore storage of hydrogen in the state of
chemical compounds (hydrocarbons, water, hydrides)
is an interesting and promising alternative [9].
At creation of such sources of hydrogen for mobile
power installations on the basis of fuel elements in re-
cent times special attention is paid to binary and com-
plex hydrides as a compact form of storage of hydrogen
[10,11].
The reasons for the use of hydrides as a hydrogen
source are the high-volume density of hydrogen in hy-
drides and the relative ease of its production from these
compounds. Among hydrides, sodium borohydride
(NaBH4) has a special place due to the high content of
H2 (10.8 % by weight), an acceptable price and stability
of its alkaline solutions. The process of catalytic hy-
drolysis of sodium borohydride is a promising way of
obtaining high-purity hydrogen, with half of hydrogen
released from water [12,13]:
NaBH4 + 2H2O
kat
→ NaBO2 + 4H2. (1.4)
The usage of catalysts ensures hydrogen produc-
tion in the temperature range from – 40 °С to + 85 °С,
accelerates the process of generation of H2, prevents the
formation of by-products, and also makes it easy to
control the process of hydrogen generation, stop it and
start it at the consumer's request.
At present, an important task is to create new cat-
alytically active materials for use in portable hydrogen
generators based on sodium borohydride. In the pro-
posed generators, expensive catalysts based on plati-
num group metals are used [14-17]. For this reason, the
most relevant are studies aimed at reducing their con-
tent in catalysts or replacements for transition metals.
According to the literature, the most promising are
catalysts based on amorphous cobalt borides [18,19].
However, because of the applied nature of most works,
the results obtained are not systematized, the reasons
for most of the revealed patterns remain unpublished.
The results obtained by different authors are incorrectly
compared because of the difference in the conditions of
experiments.
Therefore, there is an active search for catalysts of
the hydrolysis process of sodium borohydride. The cat-
alytic activity of acids [20], noble [21,22] and transition
metals [22,23] is shown.
Hydrogen peroxide as the oxidizer for FC
Fuel cells designed for use in non-atmospheric air,
for example in space or at the bottom of reservoirs, re-
quire liquid or compressed O2 as a cathode oxidizer.
The O2 transport tank significantly reduces oxy-
gen density and safety standards for fuel cell systems.
As these indicators are critical for fuel cells used as
space or underwater energy sources, alternative oxi-
dants other than O2, such as H2O2, have been investi-
gated.
Several types of fuel cells using H2O2 as an oxi-
dizer have been developed in recent years, including
methanol fuel cells with hydrogen peroxide [24-26],
hydrogen peroxide borohydride fuel elements [27-29]
and fuel cells with transition metals and hydrogen per-
oxide [30-35].
6 Norwegian Journal of development of the International Science No 34/2019
The productivity of the cathode essentially de-
pends on the nature of the cathode catalysts. Several
types of catalysts for the H2O2 electrical conducting re-
action, including noble metals (Pt, Pd, Ir, Au, Ag and a
combination of these metals) [27-31,36], macrocyclic
complexes of transition metals (complexes of porphy-
rin Fe and Co, complexes of Cu triazine) [37] and other
types such as PbSO4 and Co3O4 [35,38]. Among these
types of electrical catalysts are the most active and sta-
ble catalysts of noble metals. However, precious met-
als, other than expensive, also catalyze the chemical de-
composition of H2O2 to O2. Therefore, it is necessary to
look for electrical catalysts with low cost and greater
resistance to the decomposition of H2O2.
A preliminary literature review [35] shows that
Co3O4 nanoparticles have good activity and resistance
to electro-catalytic reduction of H2O2 in alkaline solu-
tion.
Electrical catalytic activity of cobalt-containing
catalysts. Texas specialists suggest the use of platinum
alloy with cobalt and copper. The new catalyst is an al-
loy of particles, the metal content of which varies from
surface to nucleus: the surface of particles is enriched
with platinum, and the core consists predominantly of
copper and cobalt. The first tests of this catalyst showed
an efficiency that exceeds a similar indicator of modern
catalysts for fuel cells in 4-5 times. In addition, the
nano-catalyst was significantly cheaper [39].
For the production of a catalyst, deposited on a
graphite electrode, metal particles were placed in an
acid solution and subjected to cyclic effects of alternat-
ing voltage. Less noble metals, especially copper, dis-
solved from the surface, leaving it enriched with plati-
num. The core had the same composition as the original
alloy.
Moreover, formed as a result of electrochemical
etching of copper and cobalt, voids on the surface of the
particles resulted not only in the enrichment of the sur-
face with platinum, but also in a significant increase in
the surface area of the catalyst. However, the increase
of the catalyst's efficiency by 4-5 times compared to
pure platinum catalyst, according to Strasseur, cannot
be explained solely by an increase in surface area.
Computer calculations have shown that the dis-
tance between the platinum atoms in the enriched shell
is shorter compared with the same distance in pure plat-
inum. Such "compressed" state is fixed with the help of
enriched cobalt and copper core. The shortened intera-
tomic distance platinum platinum promotes a more
readily adsorption of oxygen. This, apparently, changes
the electronic structure of the shell so that the process
of transferring an electron to the formation of a nega-
tively charged molecule of oxygen becomes much sim-
plified [39].
A new material based on graphene has been devel-
oped at Brown University (Rhode Island), which is ca-
pable of serving as an almost effective catalyst of the
oxygen-reducing reaction, as well as platinum, but at
the same time it is more stable. This material is a gra-
phene sheet coated with cobalt nanoparticles and its ox-
ide [40].
A number of scientists have succeeded in reducing
the content of platinum in catalysts, but at the very least
to abandon its use has still not succeeded.
The cobalt catalyst described in the article for the
online edition of Angewandte Chemie was the first al-
ternative solution that does not contain precious metals.
Cobalt is a fairly widespread metal and costs many
times cheaper than platinum.
Laboratory tests have shown that the new catalyst
is slightly inferior to platinum at the initiation rate of
the reaction, but during its course it restores oxygen at
a faster pace than platinum. Graphene-cobalt material
has also shown better resistance to degradation. After
17 hours of operation, it retained 70 % of initial effi-
ciency, compared with 60 % for platinum over the same
period of time.
Scientists have used the self-assembly method to
produce material, which provides the best control of the
size, shape and location of nanoparticles. To do this,
they prepared two separate solutions for cobalt and gra-
phene nanoparticles, and then carefully mixed them
with the use of sound waves. Graphene material with
uniform cobalt inlaid was deposited from a solution in
a centrifuge and dried. In the open atmosphere, the
outer layers of atomic cobalt oxidized, forming on each
nanoparticle a shell protecting the cobalt core (see Fig.
2) [40].
Figure 2. Graphene with inlaid metal cobalt [40].
The thickness of the shell was controlled by vary-
ing the residence time of the material in a state heated
to 70 °C. Experimentally it was found that in the best
way the catalytic properties of the material are detected
with a shell thickness of 1 nm [40].
Norwegian Journal of development of the International Science No 34/2019 7
The catalyst that was created in this way brought
out fuel cells from the laboratory phase in their wide-
spread commercial distribution.
Usage of cobalt as electrical catalyst of FC. Cath-
odes containing cobalt and used in solid oxide fuel cells
(SOFCs) are known for their ability to operate at high
temperatures.
The Cathode Oxygen Reaction (ORR) is im-
portant for a Microbial Fuel Cell (MFC). A carbon-
based catalyst, doped with nitrogen and cobalt (CoNC),
was synthesized to initiate ORR in MFC. CoNC, pre-
pared at 900 °C (CoNC-900), demonstrated high cata-
lytic activity and excellent resistance (5.5 % reduction
after 10000 cycles). Long-term performance tests have
shown that the CoNC-900 MFC is very stable [41].
A platinum-free catalyst for Oxygen Reaction
(ORR) and hydrogen oxidation reactions (HOR) was
developed for a fuel cell with a proton exchange mem-
brane (PEMFC). The synthesized catalyst is two-func-
tional and consists of cobalt with palladium and nitro-
gen. Palladium-cobalt nanoparticles of bimetallic alloy
are scattered over graphite carbon nitride (Pd-Co /
gCN), and they serve as an effective anode and cathode
catalyst in a fuel cell with a proton-exchange mem-
brane. The inclusion of cobalt with palladium in the
material changes the bond strength of the palladium-
hydrogen (Pd-H) complex and promotes the initiation
of HOR, which leads to a significant improvement in
the super-potential at the anode, while cobalt, coordi-
nated with nitrogen, mainly increases the activity of the
ORR on the cathode in an acidic medium [42].
Another type of catalyst – a catalyst for cobalt hy-
droxide oxide (CoOOH-PPy-BP), modified polypyr-
role – was obtained by chemical impregnation and used
as a cathode catalyst in hydrocarbon fuel cells. CoOH
surface oxygen vacancies provide favorable sites for O2
uptake, accelerating the activation of O2. And elec-
tronic holes created due to vacancies of oxygen on
CoOOH capture electrons from the anode, forming ex-
cited cationic states [Co3+
+ e-
] [43].
The efficiency of the fuel element with borohy-
dride (DBFC) depends both on the activity of the anode
catalyst and on the hydrolysis of borohydride. Anode
Co3O4 catalysts from different sources of cobalt were
investigated and it was shown that the catalytic activity
of Co3O4 was related to its microstructure, which was
based on the precursor. The maximum power was 40,
62 and 28 mW·cm-2
DBFC with an anode of CoCl2 and
a Co3O4 catalyst (denoted DBFC-A), Co (NO3)2 (de-
noted DBFC-B) and Co(CH3COO)2 (denoted DBFC-
C), respectively. DBFC-A showed good voltage stabil-
ity with a specific capacity of 720 mA / g and the high-
est amount of electron transfer [44].
A new three-dimensional (3D) porous nickel-co-
balt film (Ni-Co) is successfully applied to nickel foam
and is further used as an effective anode for a fuel cell
containing urea and hydrogen peroxide (DUHPFC).
Schematic principle of this fuel cell is shown in Fig. 3.
By changing the ratio of moles of cobalt / nickel, an
anode of polypropylene Ni-Co / Ni was obtained with
a ratio of 80 % in terms of the best efficiency [45].
Figure 3. Schematic representation of the fuel cell [45].
Electrodeposition of cobalt on ferrite stainless
steel plays an important role in reducing chromium poi-
soning on the cathode side of solid oxide fuel cells
(SOFCs). The electrochemical activity between
La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) and stainless steel with
cobalt coating in the atmosphere at 700 °C was investi-
gated. Thus, the formed Co3O4 layer blocks the chro-
mium migration [46].
Investigation of Co as anode for Li-ion batteries.
The main cathode material of lithium ion batteries is
lithium cobalt oxide (or lithium cobaltate), lithium
manganese oxide (also known as spinel or lithium man-
ganate), lithium phosphate lithium, and lithium nickel
manganese-cobalt (NMC) and lithium-nickel cobalt
alumina (NCA) [47]. Various materials, including sili-
con-based alloys, are also used as anode. Nano-struc-
tured lithium titanate, as an anode additive, shows a
promising life cycle, excellent low temperature charac-
teristics and excellent safety [47].
In order for the battery voltage to be sufficiently
large, Japanese researchers used as active material a
positive electrode of cobalt oxides. Cobalt oxide has a
potential of about 4 V relative to the lithium electrode,
so the operating voltage of the Li-ion battery has a char-
acteristic value of 3 V and above [48].
Lithium-ion battery design with high energy stor-
age and high efficiency is a subject of enhanced re-
search interest, which is of key importance for large-
scale applications and further commercialization.
Conventional lithium-ion batteries are expensive
and have stability problems that restrict their practical
8 Norwegian Journal of development of the International Science No 34/2019
use. In search of cheaper and more secure Li-ion bat-
teries, the concentration gradient method is used to ob-
tain LiNi0.9Co0.1-xTixO2 (0,02 ≤ x ≤ 0,05) cathode mate-
rials enriched on the surface of Co and Ti, which
demonstrate a decrease in oxygen loss and improve-
ment of structural stability. The material with the best
characteristics (x = 0.04) shows a discharge capacity of
214 mAh / h in the range of charge voltage / discharge
3.0–4.3 V (versus Li / Li+
), and perfectly stores up to
98.7 % capacities after 50 cycles [49].
Organic-inorganic hybrids increase the choice of
materials for Li-ion batteries due to the versatility of
organic ligands. As an alternative to carboxylate-based
ligands, Fe and Co methylenediphosphonate was suc-
cessfully synthesized and tested as negative electrodes
based on diphosphonates for Li-ion batteries [50].
Highly active Co / Mn-1,4,5,8-naphthalene tetra-
carboxylate (Co-NTC or Mn-NTC) was synthesized us-
ing a simple rheological phase method with NTCDA.
This complex of Co-NTC or Mn-NTC can be sponta-
neously burned in ambient air to produce nanosized
metal oxide. The cyclic leveling of the charge showed
that the Co-NTC or Mn-NTC combustion product
(used as anode for lithium ion batteries) provides high
discharge and charge output power and provides excel-
lent battery stability [51].
A promising anode material for high-performance
lithium-ion batteries (LIBs) may also be silicon (Si),
but it is rapidly erased due to strong volumetric expan-
sion during the introduction / removal of Li. To miti-
gate structural deterioration Si was doped with various
metal sources, but the resulting materials showed low
electrical conductivity. To solve this contradictory
problem a new nanocomposite of graphene oxide
(rGO) Si / Co-CoSi2 / rGO has been developed by me-
chanical mixing of Si nanoparticles, Co3O4 microparti-
cles and rGO nanowires with subsequent carbon-form-
ing restoration. The proposed nanocomposites demon-
strated a high specific capacity of 952 mAh / h with a
preservation of 79.3 % of the capacity after 80 cycles
of charge / discharge at a current density of 100 mA / g
[52].
The analysis of literary sources shows that pro-
gress in the development of electrochemical energy is
largely determined by the successes in the development
of active and stable nanomaterials for cathodes and an-
odes of fuel cells. However, the high cost and scarcity
of metals make the use of pure metal catalysts unprof-
itable and require a reduction in their number with the
maximum effectiveness of their use. This is achieved
by the use and development of new catalysts on carri-
ers.
Consequently, the necessity to create inexpensive,
stable and efficient electrocatalysts is an urgent task of
today, the solution of which will be of considerable in-
terest in the theoretical and practical aspects.
REFERENCES:
1. Коровин Н. В. Топливные элементы и элек-
трохимические энергоустановки [Текст] / Н. В. Ко-
ровин. – М.: Издательство МЭИ, 2005. – 278 с.
2. Замена платины в топливных элементах
[Електронний ресурс]. – Режим доступа:
https://ria.ru/science/20170116/1485749611.html, сво-
бодный. – Загол. с экрана.
3. Фильштих В. Топливные элементы [Текст]
/ В. Фильштих. – М.: Издательство «МИР», 1968. –
420 с.
4. Ямчук А. И. Топливные элементы и разра-
ботка эффективных катализаторов для их оптими-
зации [Текст] / А. И. Ямчук, В. Г. Систер, М. Р. Та-
расевич // Электрохимическая энергетика:
сб.науч.тр./ ДонНТУ. – Донецк, 2009. – С. 114-117.
5. Архангельский И. В. Низкотемпературные
топливные элементы с протонопроводящей поли-
мерной мембраной: теоретические основы, матери-
алы и конструкции [Текст]: науч.пос. / И. В. Архан-
гельский, Ю. А. Добровольский, Т. Н. Смирнова. –
М.: Московский Государственный Университет
имени М. В. Ломоносова, 2000. – 84 с.
6. Пахомов Н. А. Научные основы приготов-
ления катализаторов: введение в теорию и практику
[Текст]: науч. изд. / Н. А. Пахомов; за общ. Ред В.
А. Садыкова. – Н.: СО РАН, 2011. – 262 с.
7. Електрохімічні генератори. Паливні
комірки [Електронний ресурс]. – Режим доступа:
https://msd.in.ua/elektroximichni-generatori-palivni-
elementi-komirki/, свободный. – Загол. с экрана.
8. Керамічна паливна комірка [Електронний
ресурс]. – Режим доступа: http://sofc-edu.com/, сво-
бодный. – Загол. с экрана.
9. Тарасов Б. П. Проблемы и перспективы со-
здания материалов для хранения водорода в связан-
ном состоянии [Текст] / Б. П. Тарасов // Альтерна-
тивная энергетика и экология. – 2006. – № 2. – С.
11-17.
10. Orimo, S. I. Complex hydrides for hydrogen
storage / S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Zut-
tel, C. M. Jensen // Chem. Rev. – 2007. – V. 107. – №
10. – P. 4111-4132.
11. Тарасов Б. П. Методы хранения водорода и
возможности использования металлогидридов
[Текст] / Б. П. Тарасов, В. В. Бурнашева, М. В. Ло-
тоцкий, В. А. Яртысь // Альтернативная энергетика
и экология. – 2005. – № 12. – С. 14-37.
12. Schlesinger, H. I. Sodium borohydride, its hy-
drolysis and its use as a reduction agent and in the gen-
eration of hydrogen / H. I. Schlesinger, H. C. Brown,
A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, R. K.
Hyde // J. Am. Chem. Soc. – 2003. – V. 75. – P. 215-
219.
13. Galli, S. Development of a compact hydrogen
generator from sodium borohydride / S. Galli, M. Fran-
cesco, G. Monteleone, R. Oronzio, A. Pozio // Int. J.
Hydrogen Energy. – 2010. – V. 35. – № 14. – P. 7344-
7349.
14. Gervasio, D. Room temperature micro-hydro-
gen-generator / D. Gervasio, S. Tasic, F. Zenhausern //
J. Power Sources. – 2005. – V. 149. – P. 15-21.
15. Kojima, Y. Development of 10 kW-scale hy-
drogen generator using chemical hydride / Y. Kojima,
K. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbara, P.
Nakanishi, S. Matsumoto // J. Power Sources. – 2004.
– V. 125. – № 1. – P. 22-26.
Norwegian Journal of development of the International Science No 34/2019 9
16. Hirscher, M. New materials for future energy
storage / M. Hirscher // Handbook of hydrogen storage.
– 2010. – Р. 126-128.
17. Demirci, U. B. Cobalt in NaBH4 hydrolysis /
U. B. Demirci, P. Miele // Phys. Chem. Chem. Phys. –
2010. – V. 12. – № 44. – P. 14651-14665.
18. Muir, S. S. Progress in sodium borohydride as
a hydrogen storage material: Development of hydroly-
sis catalysts and reaction systems / S.S. Muir, X.D. Yao
// Int. J. Hydrogen Energy. – 2011. – № 10. – P. 5983-
5997.
19. Chandra, M. Dissociation and hydrolysis of
ammonia-borane with solid acids and carbon dioxide:
An efficient hydrogen generation system / M. Chandra,
Q. Xu // J. Power Sources. – 2006. – V. 159. – № 2. –
P. 855-860.
20. Xu, Q. Room temperature hydrogen genera-
tion from aqueous ammonia-borane using noble metal
nano-clusters as highly active catalysts. / Q. Xu, M.
Chandra // J. Power Sources. – 2007. – V. 168. – № 1.
– P. 135-142.
21. Umegaki, T. Boron-and nitrogen-based chem-
ical hydrogen storage materials / T. Umegaki, J. M.
Yan, X. B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu
// Int. J. Hydrogen Energy. – 2009. – V. 34. – № 5. – P.
2303-2311.
22. Patel, N. Nanoparticle-assembled Co-B thin
film for the hydrolysis of ammonia borane: A highly
active catalyst for hydrogen production / N. Patel, R.
Fernandes, G. Guella, A. Miotello // Appl. Catal. –
2010. – V. 95. – № 1 – P. 137-143.
23. Tong, D. G. Magnetically recyclable hollow
Co-B nanospindles as catalysts for hydrogen generation
from ammonia borane / D. G. Tong, X. L. Zeng, W.
Chu, D. Wang, P. Wu // J. Mater. Sci. – 2010. – V. 45.
– № 11. – P. 862-867.
24. Prater, D. N. Energy density of a methanol/hy-
drogen-peroxide fuel cell / D. N. Prater, J. J. Rusek //
Appl. Energy. – 2003. – V. 74. – № 1-2. – P. 135-140.
25. Bewer, T. Novel method for investigation of
two-phase flow in liquid feed direct methanol fuel cells
using an aqueous H2O2 solution / T. Bewer, T. Beck-
mann, H. Dohle, J. Mergel, D. Stolten // J. Pow.
Sources. – 2004. – V. 125. – № 1. – P. 1-9.
26. Sung, W. A membraneless microscale fuel cell
using non-noble catalysts in alkaline solution / W.
Sung, J.W. Choi // J. Pow. Sources. – 2007. – V. 172. –
№ 1. – P. 198-208.
27. Gu, L. Cathode electrocatalyst selection and
deposition for a direct borohydride/hydrogen peroxide
fuel cell / L. Gu, N. Luo, G. H. Miley // J. Pow. Sources.
– 2007. – V. 173. – № 1. – P. 77-85.
28. Miley, G. H. Direct NaBH4/H2O2 fuel cells /
G. H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins,
L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides,
J. Laystrom, D. J. Carroll // J. Pow. Sources. – 2007. –
V. 165. – № 2. – P. 509-516.
29. Raman, R. K. A. High Output Voltage Direct
Borohydride Fuel Cell / R. K. Raman, N. A.
Choudhury, A. K. Shukla // Electrochem. Sol. Lett. –
2004. – V. 7. – № 12. – P. 488-491.
30. Yang, W. Nanostructured palladium-silver
coated nickel foam cathode for magnesium–hydrogen
peroxide fuel cells / W. Yang, S. Yang, W. Sun, G. Sun,
Q. Xin // Electrochim. Acta. – 2006. – V. 52. – № 1. –
P. 9-14.
31. Yang, W. Nanostructured silver catalyzed
nickel foam cathode for an aluminum–hydrogen perox-
ide fuel cell / W. Yang, S. Yang, W. Sun, G. Sun, Q.
Xin // Electrochim. Acta. – 2006. – V. 160. – № 2. – P.
1420-1424.
32. Medeiros, M. G. Magnesium-solution phase
catholyte semi-fuel cell for undersea vehicles / M. G.
Medeiros, R. R. Bessette, C. M. Deschenes, C. J. Pa-
trissi, L. G. Carreiro, S. P. Tucker, D. W. Atwater // J.
Pow. Sources. – 2004. – V. 136. – № 2. – P. 226-231.
33. Brodrecht, D. J. Aluminum–hydrogen perox-
ide fuel-cell studies / D. J. Brodrecht, J. J. Rusek //
Appl. Energy. – 2003. – V. 74. – № 1-2. – P. 113-124.
34. Hasvold, O. Power sources for autonomous
underwater vehicles / О. Hasvold, N. J. Stоrkersen, S.
Forseth, T. Lian // J. Pow. Sources. – 2006. – V. 162. –
№ 2. – P. 935-942.
35. Cao, D. Catalytic behavior of Co3O4 in elec-
troreduction of H2O2 / D. Cao, J. Chao, L. Sun, G.
Wang // J. Pow. Sources. – 2008. – V. 179. – № 1. – P.
87-91.
36. Medeiros, M. G. Optimization of the magne-
sium-solution phase catholyte semi-fuel cell for long
duration testing / M. G. Medeiros, R. R. Bessette, C. M.
Deschenes, D. W. Atwater // J. Pow. Sources. – 2010.
– V. 96. – № 1. – P. 236-239.
37. Liu, H. Electrocatalytic reduction of O2 and
H2O2 by adsorbed cobalt tetramethoxyphenyl porphy-
rin and its application for fuel cell cathodes / H. Liu, L.
Zhang, J. Zhang, D. Ghosh, J. Jung, B. W. Downing, E.
Whittemore // J. Pow. Sources. – 2006. – V. 161. – №
2. – P.743-752.
38. Raman, R. K. Electro-reduction of hydrogen
peroxide on iron tetramethoxy phenyl porphyrin and
lead sulfate electrodes with application in direct boro-
hydride fuel cells / R. K. Raman, A. K. Shukla // J.
Appl. Electrochem. – 2015. – V. 35. – № 11. – P. 1157-
1161.
39. Новый высокоэффективный катализатор
для топливных элементов [Електронний ресурс]. –
Режим доступа: https://www.gazeta.ru/sci-
ence/2007/10/25_a_2263849.shtml, свободный. – За-
гол. с экрана.
40. Кобальт с графеном может вытеснить из
топливных элементов дорогую платину [Електрон-
ний ресурс]. – Режим доступа: http://ko.com.ua/ko-
balt_s_grafenom_mozhet_vytesnit_iz_toplivnyh_jele-
mentov_doroguyu_platinu_67429, свободный. – За-
гол. с экрана.
41. Tang, X. Cobalt and nitrogen-doped carbon
catalysts for enhanced oxygen reduction and power
production in microbial fuel cells. / X. Tang, H. Yong
Ng // Electrochim. Acta. – 2017. – № 120. – Режим
доступа:
http://dx.doi.org/doi:10.1016/j.electacta.2017.06.120.
42. Ghosh, A. Palladium-nitrogen coordinated co-
balt alloy towards hydrogen oxidation and oxygen re-
duction reactions with high catalytic activity in renew-
able energy generations of proton exchange membrane
10 Norwegian Journal of development of the International Science No 34/2019
fuel cell / A. Ghosh, P. Chandran, S. Ramaprabhu //
Appl. Energy. – 2017. – № 208. – P. 37-48.
43. Wang, J. Vacancy-assisted oxygen reduction
reaction on cobalt-based catalysts in direct borohydride
fuel cell revealed by in-situ XAFS and XRD / J. Wang,
L. Lin, Y. He, H. Qin, S. Yan, K. Yang, A. Li, J. Liu //
Electrochim. Acta. – 2017. – № 254. – P. 72-78.
44. Ma, J. Effect of cobalt precursors on Co3O4
anodic catalyst for a membrane-free direct borohydride
fuel cell / J. Ma, X. Gao, D. Wang, T. Xue, S. Yang //
J. Alloys and Compounds. – 2017. – № 724. – P. 474-
480.
45. Guo, F. Enhancement of direct urea-hydrogen
peroxide fuel cell performance by three-dimensional
porous nickel-cobalt anode / F. Guo, D. Cao, M. Du, K.
Ye, G. Wang // Appl. Surf. Scie. – 2017. – № 153. –
Режим доступа: https://doi.org/10.1016/j.ap-
susc.2017.12.153.
46. Garcia, E. M. The electrochemical behavior of
cobalt electrodeposits on 430 stainless steel as solid ox-
ide fuel cell interconnect / E. M. Garcia // Surf. Coat.
Technol. – 2013. – № 235. – P. 10-14.
47. Литий-ионные аккумуляторы [Електрон-
ний ресурс]. – Режим доступа:
http://keeppower.com.ua/li-ion-article, свободный. –
Загол. с экрана.
48. Литий-ионные (Li-ion) аккумуляторы
[Електронний ресурс]. – Режим доступа:
http://2a3a.ru/li-ion/, свободный. – Загол. с экрана.
49. Ko, H. S. Co/Ti co-substituted layered
LiNiO2 prepared using a concentration gradient method
as an effective cathode material for Li-ion batteries / H.
S. Ko, J. H. Kim, J. Wang, J. D. Lee // J. Power Sour. –
2017. – № 372. – P. 107–115.
50. Schmidt, S. Fe and Co methylene diphospho-
nates as conversion materials for Li-ion batteries / S.
Schmidt, S. Sallard, D. Sheptyakov, M. Nachtegaal, P.
Novak, C. Villevieille // J. Power Sour. – 2017. – №
342. – P. 879–885.
51. Han, X. Preparation of highly activated
Co/Mn-1,4,5,8-naphthalenetetra-carboxylate and its
combustion product as anodes for Li-ion batteries / X.
Han, H. Mao, H. Liu // J. Electroan. Chem. – 2017. –
№ 3487. – Режим доступа:
https://doi:10.1016/j.jelechem.2017.08.046.
52. Park, A. R. Si/Co-CoSi2/reduced graphene ox-
ide ternary nanocomposite anodes for Li-Ion batteries
with enhanced capacity and cycling stability. / A R.
Park, M. G. Nam, A. Y. Kim, K. S. Kim, M. S. A. S.
Shah, J. Y. Lee, W. J. Kim, J. K. Lee, P. J.Yoo // J.
Alloys Compounds. – 2017. – № 42535. – Режим
доступа: https://doi.org/10.1016/j.jall-
com.2017.07.119.
Norwegian Journal of development of the International Science No 34/2019 11
MEDICAL SCIENCES
OPTIMIZATION OF METHODS FOR DIAGNOSTIC AND TREATMENT OF PATIENTS WITH
HEPATIC ABCESSES
Ali-Zade S.
Candidate of medical sciences, Assistant of the Department of Surgical Diseases №1,
Avicenna Tajik State Medical University
ОПТИМИЗАЦИЯ МЕТОДОВ ДИАГНОСТИКИ И ЛЕЧЕНИЯ БОЛЬНЫХ С АБСЦЕССАМИ
ПЕЧЕНИ
Али-Заде С.Г.
кандидат медицинских наук, ассистент кафедры хирургических болезней №1,
ТГМУ имени Абуали ибни Сино
Abstract
The article presents the results of 24 clinical observations of patients with liver abscess. The possibilities of
the integrated and effective use of modern minimally invasive surgical technologies in the diagnosis and treatment
of patients with this pathology are shown.
Аннотация
В статье приведены результаты 24 клинических наблюдений больных с абсцессом печени. Показаны
возможности комплексного и эффективного использования современных малоиивазивных хирургических
технологий в диагностике и лечении больных с данной патологией.
Keywords: liver abscesses, ultrasound, CT scan.
Ключевые слова: абсцесс печени, ультразвуковое исследование, компьютерная томография.
Введение. Одним из наиболее грозных пора-
жений гепатобилиарной системы являются аб-
сцессы печени. Частота встречаемости данной па-
тологии в структуре гнойных хирургических забо-
леваний колеблется от 0,006 до 0,022% случаев [1,
с.81; 7, с.31]. За последние годы резко увеличилось
количество миниинвазивных и открытых операций
на печени и желчевыводящих системах, а также
транспеченочных дренажей, что, в свою очередь,
привело к увеличению частоты развития холангио-
генных абсцессов печени [2, с.43].
Особое внимание уделяется диагностике аб-
сцесса печени, которая на сегодняшний день не
представляет особых сложностей. Следует отме-
тить, что при диагностике данной патологии чув-
ствительность УЗИ достигает 87–96%, чувстви-
тельность метода компьютерной томографии со-
ставляет 90–97% [4, с.52; 5, с.87]. В современной
хирургии в качестве терапии широко применяется
чрескожная пункция абсцесса печени и его дрени-
рование [6, с.90]. Тем не менее, частота летальных
исходов при данном заболевании остаётся высокой
и составляет 11-36% [3, с.83].
Цель исследования – оптимизация результа-
тов диагностических мер и оперативного лечения
абсцесса печени с использованием мини–инвазив-
ных технологий.
Материалы и методы исследования. Под
нашим наблюдением находились 24 пациента с аб-
сцессами печени. Распределение больных по при-
чине заболевания приведено в таблице 1. Из них с
холангитом и последующим холангиогеным аб-
сцессом печени было 8 (33,3%) больных, в 4
(16,7%) случаях наблюдалась тупая травма живота
с посттравматическим абсцессом печени, абсцессы
после эхинококкэктомии из печени (остаточная по-
лость) наблюдались у 4 (16,7%) пациентов, у 2
(8,3%) больных причиной абсцесса печени явился
распад кисты альвеококкоза. В 2 (8,3%) случаях
причиной абсцесса печени явились опухоли: у од-
ного имела место опухоль нижней полой вены, у
другого – опухоль печени с распадом. У 2 (8,3%)
пациентов наблюдалось осложнение после тром-
боза воротной вены, ещё у 2 (8,3%) пациентов при-
чины абсцесса печени не были установлены, у этих
больных сопутствующим заболеванием был сахар-
ный диабет, а в анамнезе отсутствовали травмы жи-
вота.
Таблица 1
Распределение больных по причинам заболевания
Причины Абс. %
Холангит 8 33,3
Тупая травма живота 4 16,7
После эхинококкэктомии из печени (остаточная полость) 4 16,7
Альвеококкоз печени 2 8,3
Опухолевый генез 2 8,3
После тромбоза воротной вены 2 8,3
Причина абсцесса не выявлена 2 8,3
12 Norwegian Journal of development of the International Science No 34/2019
Возраст больных колебался от 23 до 82 лет,
средний возраст составил 50,1±3,4 лет. Женщины
составили 11 (45,8%) человек, а мужчины 13
(54,2%). Всем пациентам было выполнено ультра-
звуковое исследование на аппарате «SIEMENS»
фирмы Acuson – CV 70 (Германия), мультичастот-
ным конвексным датчиком 3,5 МГц, работая в ре-
альном масштабе времени с использованием три-
плексного сканирования. До пункции больным про-
водили обезболивание анальгин-50%-
2,0+димедрол-1%-1,0в/м или промедол-1%-1,0 в/м
с последующей местной анестезией новокаином
0,5%-20мл +лидокаин -2%-4мл с лимонной короч-
кой до брюшины. Разрез на коже зависел от диа-
метра дренажа (0,5-0,8см), проводили иглу полости
абсцесса, и по игле вводили проводник и устанав-
ливали дренаж фирмы «COOK» размерами 14-16 Fr
(French). Некоторым больным с холангиогеными
абсцессами размерами от 1-2 см проводилась одно-
моментная пункция абсцесса. После установки дре-
нажа содержимое абсцесса освобождали, полость
абсцесса промывали антисептическими раство-
рами, ежедневно проводили УЗИ. Эффективность
лечения определяли по размеру остаточной поло-
сти. Удаление дренажа проводили под контролем
УЗИ. Кроме того, больные получали дезинтоксика-
ционную и антибактериальную терапии.
Результаты исследования и их обсуждение.
Пациенты с абсцессами печени были госпитализи-
рованы в городскую клиническую больницу скорой
медицинской помощи г.Душанбе. При этом 2
(8,3%) больных поступили в удовлетворительном
состоянии, у 2 (8,3%) пациентов была легкая сте-
пень тяжести, в среднетяжелом и тяжелом состоя-
нии поступили 20 (83,3%) пациентов. У 4 больных
причиной холангиогеного абсцесса явилась лапаро-
скопическая холецистэктомия, у одного больного
имелось ятрогенное повреждение правого протока
печени, в 2 (8,3%) случаях отмечалось развитие за-
болевания после лапаротомии, холецистэктомии, и
дренирования холедоха, у 1 (4,2%) больного – по-
сле трансторакальной гастрэктомии. В 3-х (12,5%)
случаях развился посттравматический абсцесс по-
сле получения тупой травмы живота, а в 1 (4,2%)
случае отмечалось развитие заболевания после па-
дения с высоты. Абсцесс печени был диагностиро-
ван в период от 12 дней до 2 месяцев. Во всех слу-
чаях у пациентов наблюдалась стёртая клиника.
Симптоматическая картина характеризовалась
наличием гипертермии вплоть до лихорадки, об-
щей слабости, снижением аппетита. В 16 (66,7%)
случаях пациенты жаловались на наличие боли в
области подреберья справа. В крови отмечалось
увеличение числа лейкоцитов и снижение числа
эритроцитов и гемоглобина.
Ультразвуковая картина при абсцессе печени
характеризовалась наличием образования непра-
вильной формы, контуры которого не имеют чёт-
ких границ, со сниженной эхогенностью либо её от-
сутствием и др. Размеры абсцесса печени при УЗИ
диагностике составили от 2 до 18 см (рис. 1, 2).
Рисунок 1 Ультразвуковое исследование абсцесса правой доли печени в В–режиме
По количеству абсцессов печени выделили несколько групп больных: солитарные – наблюдались у
15 (62,5%) больных, множественные – у 5 (20,8%) и милиарные - у 4 (16,6%) пациентов. У 14 (58,3%)
больных абсцессы печени располагались в правой доле, у 4 (16,7%) больных - в левой доле и в 6 (25%)
случаях - в обеих долях печени.
Norwegian Journal of development of the International Science No 34/2019 13
Рисунок 2 Ультразвуковое исследование абсцесса левой доли печени в В–режим
Компьютерная томография выполнена у 4 больных. При этом наблюдались характерные изменения в
печени – образование жидкостной плотности, с четкими границами, неровными контурами, с пери-
фокальным отеком (рис. 3).
Рисунок 3 КТ изображение, абсцессы правой доли печени
Дренирование абсцесса печени выполнялось
под контролем УЗИ. Определение направления
пункционного канала проводилось с помощью дан-
ных УЗИ с выбором места пункции на коже. Выбор
доступа проводился таким образом, чтобы расстоя-
ние от места введения дренажа до его попадания в
полость абсцесса печени составляло свыше 3 см
здоровой печёночной ткани. Данное условие спо-
собствует предотвращению выхождения в брюш-
ную полость содержимого из полости абсцесса с
дальнейшим развитием гнойного перитонита. Та-
ким образом, доступ для дренирования абсцесса пе-
чени избирался в зависимости от его расположения.
Так, в 10 (41,7%) случаях процедура проводилась
трансабдоминальным доступом, в 6 (25,0%) слу-
чаях дренирование выполнялось боковым досту-
пом, ещё в 8 (33,3%) случаях для дренирования был
выбран межреберный доступ. Дренажная трубка на
УЗИ при проведении процедуры представлялась в
виде гиперэхогенной структуры (рис. 4).
Во всех случаях был достигнут желаемый ле-
чебный эффект – клиническое состояние больного
улучшилось, отмечалось снижение температуры
тела до нормальных величин, появление аппетита,
улучшение показателей крови. На УЗИ наблюда-
лось уменьшение и исчезновение полости абсцесса.
Дренаж удалялся на 14-25 сутки.
14 Norwegian Journal of development of the International Science No 34/2019
Рисунок 4 Ультразвуковое изображение дренажной трубки в полости абсцесса
Осложнения в виде кровотечения или желче-
истечения и перитонита не наблюдались. Болевой
синдром купировали с помощью обезболивающих
средств. У 2 больных на 14-15 сутки после пункции
абсцесса по поводу альвеококкоза была выполнена
обширная правосторонняя гемигепатэктомия. У од-
ного больного после ятрогенного повреждения пра-
вого протока была выполнена правосторонняя ге-
мигепатэктомия. Летальный исход наблюдался у 4
(16,6%) больных. Из них в 2-х случаях после об-
ширной правосторонней гемигепатэктомии, в 1
случае отмечался тромбоз воротной вены с после-
дующим развитием септического состояния и поли-
органной недостаточности, ещё у 1 больного име-
лась опухоль печени с распадом и последующим
метастазом в брюшную полость.
Заключение. Таким образом, при наличии аб-
сцесса печени и стертой клинической формы всем
больным необходимо проводить УЗИ или КТ. По-
сле установки диагноза, в зависимости от причины
абсцесса, проводится миниинвазивное хирургиче-
ское лечение. Свою значительную результатив-
ность показало чрескожное дренирование. Выпол-
нение данной манипуляции непосредственно под
контролем УЗИ позволяет добиться необходимого
результата и предупредить развитие грозных
осложнений на всех этапах проведения данной про-
цедуры: выбор оптимального расположения пунк-
ционного канала, проведение дренажа, контроль за
эвакуацией содержимого из полости абсцесса и
промыванием антисептическими растворами,
уменьшение размеров абсцесса печени при УЗИ
вплоть до исчезновения выделяемого содержимого.
Выраженная эффективность и отсутствие грозных
осложнений являются основанием для рекоменда-
ции к использованию чрескожного дренирования
под УЗ контролем при абсцессах печени.
СПИСОК ЛИТЕРАТУРЫ:
1. Ахмедов С.М. Место резекции в комплекс-
ном лечении абсцессов печени // Актуальные во-
просы гепатобилиарной хирургии: материалы XXI
Международного конгресса ассоциации гепатоби-
лиарных хирургов стран СНГ. – Пермь, 2014. – С.
81.
2. Бельков А.В. Правосторонняя гемиге-
патэктомия по поводу абсцесса печени, осложнен-
ная рецидивирующим профузным кровотечением /
А.В. Бельков [и др.] // Хирургия. – 2000. – №12. – С.
43-44.
3. Благитко Е.М. Абсцессы печени: динамика
причин и исходов / Благитко Е.М., Пащина С.Н.,
Беспалов А.А. // Актуальные вопросы гепатобили-
арной хирургии: материалы XXI Международного
Конгресса ассоциации гепатобилиарных хирургов
стран СНГ. – Пермь, 2014. – С. 83.
4. Вилсон Дж.И. Ультразвуковое исследова-
ние в диагностике посттравматических абсцессы
печени и контроле мини-ивазивных лечебных вме-
шательств // «Травма». - 2016. – Т. 17, №1. - С.51-
57.
5. Гаюров У.Х. Диагностика и тактика лече-
ния холангиогенных абсцессов печени / Гаюров
У.Х., Курбонов К.М. // Актуальные вопросы гепа-
тобилиарной хирургии: материалы XXI Междуна-
родного конгресса ассоциации гепатобилиарных
хирургов стран СНГ. – Пермь, 2014. – С. 87-88.
6. Заривчацкий М.Ф. Оптимизация диагно-
стики и лечения абсцессов печени // Актуальные
вопросы гепатобилиарной хирургии: материалы
XXI Международного конгресса ассоциации гепа-
тобилиарных хирургов стран СНГ. – Пермь, 2014. –
С.90-91.
7. Зубов А.Д. Посттравматические абсцессы
печени: ультразвуковая диагностика и мини-инва-
зивное эхоконтролируемое лечение / А.Д. Зубов,
Дж.И. Вилсон // «Травма» – 2014. –Том 15, – №3, –
С.31-37.
Norwegian Journal of development of the International Science No 34/2019 15
PSYCHOEDUCATIONAL MODULE AS A COMPONENT OF COMPLEX SYSTEM OF MEDICAL-
PSYCHOLOGICAL SUPPORT FOR FAMILIES, WHERE A PATIENT WITH ENDOGENOUS
MENTAL DISORDER LIVES
Kaminska A.
MD, PhD, Associated professor, Department of Medical Psychology and Psychiatry with the
Course of Postgraduate Education of National Pirogov Memorial University, Vinnytsya, Ukraine
Pshuk N.
MD, PhD, DSci, Professor, Head of Medical Psychology and Psychiatry Department with the
Course of Postgraduate Education, National Pirogov Memorial Medical University, Vinnytsya
Stukan L.
MD, PhD, Associated professor, Department of Medical Psychology and Psychiatry with the
Course of Postgraduate Education of National Pirogov Memorial University, Vinnytsya, Ukraine
Abstract
Family environment of patients with endogenous mental disorders should be considered as a powerful source
of socio-therapeutic resource for restoring patients’ personality potential and contributing to their social adapta-
tion. In this article psychoeducation is presented as one of the key approaches in multidimensional system of
psychosocial rehabilitation. The article focuses on psychoeducation as an integral part of complex system of med-
ical-psychological support for families, where a patient with endogenous mental disorder lives.
Keywords: psychosocial rehabilitation, psychoeducation, family caregivers, endogenous mental disorders,
medical-psychological support system, family burden.
Recently, psychosocial therapy and rehabilitation
of patients with endogenous mental disorders (EMD) as
a form of psychiatric care has been widely recognized
and used in Ukraine and in the world. In context of the
biopsychosocial model of development of EMD, fam-
ily environment of patients should be considered as a
powerful source of socio-therapeutic resource for re-
storing patient's personality potential, contributing to
social adaptation and achieving equal status in society
[5, p. 162. At the same time, data from current research
indicate numerous negative effects of living and inter-
acting with a mentally sick family member, in particu-
lar for family caregivers, who take responsibility for the
psychosocial support of a patient, associated with sig-
nificant psychosocial burden [11, p. 100]. Patients with
affective disorders and schizophrenia and their family
caregivers often face discrimination, misunderstanding
and stigmatization. At the onset of the disease, psycho-
pathological symptoms can be difficult to understand
and accept by family members, triggering a wide range
of psychological reactions, that are not always con-
structive and conducive to the psychosocial rehabilita-
tion and readaptation of the patient. Symptoms of af-
fective disorders and schizophrenia are challenging for
the family, where a patient with EMD lives [9, p. 508].
Some symptoms, such as hallucinations and delusional
ideas, are often confusing and frightening, whereas de-
pressive mood, suicidal thoughts and attempts, apathy,
cognitive deficits can dramatically alter patient's per-
sonality, affecting emotional, cognitive, and behavioral
reactions, in turn, it affects the entire family system and
ultimately the disease course [12, p. 7].
In this regard, development and implementation of
psycho-educational work into the complex system of
medical-psychological support for families, where pa-
tients with EMD live, is an urgent task of modern med-
ical psychology.
For domestic psychiatric practice, psycho-educa-
tional work with family caregivers of patients with
EMD is a fairly new type of psychosocial intervention.
Meanwhile, in foreign literature psychoeducation is
presented as one of the key approaches to the training
and psychosocial treatment of patients with mental dis-
orders and support for their family caregivers, and is
considered as a significant component of psychosocial
interventions in the multidimensional system of psy-
chosocial rehabilitation.
The aim of our study was to substantiate scientifi-
cally a complex system of medical-psychological sup-
port for families, where mentally sick patient lives,
from the standpoint of a systematic approach, based on
the study of clinical and psychological manifestations
and risk factors for the development of family function-
ing disorders in families, where patients with EMD
live.
In order to achieve the aim of the study, 243 family
caregivers (FC) of patients with paranoid schizophrenia
(main group 1 - 168 persons, G1) and affective disor-
ders (main group 2 - 75 persons, G2) were examined in
2015–2019 on the basis of informed consent with the
principles of medical bioethics and deontology, using
specially designed questionnaire and psychological
testing tools.
The criteria for inclusion of the respondents to the
study were: informed consent for clinical-
psychological examination and psychological testing,
no prior requests for help from a psychiatrist, no history
of traumatic brain injury. Control group (CG) included
55 mentally healthy persons (35 female and 20 male),
in whose families were was no mentally sick patient,
and who had never sought for the help of a psychiatrist.
The work was carried out in three stages: at first
stage we examined the respondents of G1 and G2 in
order to study in depth social-psychological,
individual-psychological, interpersonal-
communicative and behavioral predictors of family
disaptation. The second stage of work included
substantiation, development and implementation of an
16 Norwegian Journal of development of the International Science No 34/2019
appropriate system of medical-psychological support
for families, where patients with EMD live, based on
data obtained during the previous stage of work. At
third stage, the efficiency of implemented system was
evaluated.
On the basis of the analysis of the data, obtained
during the first stage, we developed a theoretical
substantiation and proposed an algorithm for a complex
system of medical and psychological support for FC of
patients with EMD. Targets of psychocorrectional
influence, aimed at the development of constructive
behavior and improving quality of interpersonal
communication of patients with EMD, were defined.
Integrative approaches were used including the
following methods:
- cognitive-behavioral psychotherapy;
- mindfullness-oriented cognitive therapy;
- psychotraining;
- art therapy.
Choice of the method of psycho-corrective inter-
vention and specific content of psycho-correction ses-
sions were determined by the actual goals of psycho-
correction.
The proposed system of measures was aimed at
forming an adequate attitude of family caregivers to-
wards the illness of a family member, improving com-
municative competence through formation of empathic
skills, effective communication and adaptive coping
behavior, creating favorable conditions for activating
communication resources and enhancing adaptive per-
sonality potential.
The objectives of the system were:
1) providing FC of patients with realistic ideas
about causes, mechanisms of development, peculiari-
ties and consequences of the disease, understanding
possibilities of its treatment, prognosis, as well as im-
portance of socio-therapeutic environment for social
adaptation of patients and prevention of stigmatization;
2) formation of the ability to predict consequences
of their behavior, to understand manifestations of ver-
bal and non-verbal communication, to be guided in the
overall picture of interpersonal interaction;
3) mastering skills of constructive coping behavior
under stress conditions;
5) creating conditions for expanding the range of
emotional response and development of reflection in
process of interpersonal interaction;
7) creating favourable conditions for forming ade-
quate interpersonal interaction in family;
8) creation of preconditions for development of
value-based attitudes aimed at preserving health and ac-
tivating personal adaptive capacity in FC.
In terms of content, proposed system of medical-
psychological support for FC of patients with EMD is a
three-component structure (Fig. 1):
1. psychoeducational module aimed at psychoedu-
cation of family caregivers of patients with EMD on the
causes, mechanisms of formation, approaches to treat-
ment and consequences of mental disease;
2. practically oriented module (psychotraining,
group and individual psychocorrection work in cogni-
tive-behavioral approach, mindfulness), aimed at en-
hancing awareness of feelings, deepening of self-un-
derstanding, activation of adaptive potential, involve-
ment of personality resource components, working out
intrapersonal and interpersonal conflicts related to the
illness of a family member, expression of negative
emotions;
3. developmental module, based on psychotrain-
ing as a special form of work with an individual and a
group, aimed at acquiring knowledge, skills, assimila-
tion of effective ways of communication, activation of
communicative resources through such methods as
group discussion, modelling of family situations, art-
therapeutic techniques.
Fig. 1 Algorithm of psycho-corrective measures for family caregivers of patients with EMD
Our system provides combination of group and individual forms of psycho-corrective work with the use of
appropriate means, techniques and methods of psycho-corrective influence (Table 1).
І
• І module – psychoeducational.
• Tasks: theoretical awareness-raising for family caregivers about mental
disease problem, building motivation for further psychocorrective work.
ІІ
• ІІ module – practice-oriented.
• Tasks: enhancing resilience, development of psychological self-
regulation skills, creating conditions for activating personality adaptation
potential, activating personality communicative resources,
communication competrence development.
ІІІ
• ІІІ module – developmental.
• Tasks: learning constructive coping-behavior skills.
Norwegian Journal of development of the International Science No 34/2019 17
Table 1
Targets and content of an integrative system of psycho-corrective measures for family caregivers of
patients with EMD
Target Aim Means
- dramatic or negative
attitude towards the patient
1. development of an adequate type of attitude
towards the patient;
2. elimination of dramatic and negative tendencies
towards the patient;
3. realistic, conscious and responsible attitude to the
disease, its treatment and its possible consequences;
4. raising the level of social adaptability of the family
as a whole.
Psychoeducation,
group
psychocorrection,
cognitive-behavioral
psychotherapy
- pathological psycho-
emotional state
1. reducing overall stress;
2. normalization of psycho-emotional state;
3. reducing the level of neuroticism;
4. actualization of personal resources of self-change;
Art therapy,
mindfulness-oriented
cognitive therapy
- decrease in communication
resource, negative
communication attitude,
insufficient development of
social intelligence
1. development of empathic and affiliation resources;
2. reduction of sensitivity to neglection;
3. formation of communicative competence
4. raising the level of social adaptability and restoring
satisfaction with social achievements
Group
psychocorrection,
communication
competence training,
mindfulness
- maladaptive behavioral
patterns
1. mastering coping skills;
2. enhancing stress resistance and psychological
resilience;
3. formation of productive coping;
4. activation of adaptive personal resources
Group
psychocorrection,
cognitive-behavioral
psychotherapy,
mindfulness
The tasks of the psychoeducational module were:
stimulation of formation of an active personal position
of family caregivers on overcoming and prevention of
consequences of mental disorder, development of re-
sponsibility for their social behavior and learning ade-
quate coping strategies to use according to the presence
of mental pathology in a close family member, restor-
ing social contacts and improving psycho-emotional
and social-communicative competence.
The main assets of the psychoeducational module
of medical-psychological support system for FC of pa-
tients with EMD are:
1. awareness-raising about mental illness that fa-
cilitates the timely recognition and management of cer-
tain painful manifestations and symptoms in a family
member;
2. receiving psychosocial support when group is a
constant source of support and, at the same time, a ther-
apeutic environment in which FC can develop adequate
communication skills and coping behaviors in shel-
tered, emotionally secure conditions;
3. meeting the psychological needs of communi-
cation, group acceptance, belonging;
4. creation of favorable basis for further medical-
psychological interventions.
Psychoeducation as a group method of work, be-
longs to the so-called educational type, in which ses-
sions are built on the principle of a thematic educational
seminar with elements of social and behavioral train-
ing. Psychoeducation is focused on providing infor-
mation, including a list of specific issues discussed in
the group.
Participants are provided with information on spe-
cific issues (for example, on the pathogenesis of the dis-
ease and features of drug therapy) with the simultane-
ous monitoring of the psycho-emotional state of FC.
Group sessions help support FC and patients at a stable
level of functioning; help FC and their "significant oth-
ers" better understand the nature and features of mental
illness and how it affects the patient and family mem-
bers; contribute to the recognition of life stressors that
can provoke exacerbations; help to properly change
family functioning during worsening of the patient's
condition.
Thus, on the basis of in-depth study of socio-psy-
chological features of family functioning as a socio-
therapeutic environment, we offered an integrative sys-
tem of psychoeducation and psychocorrection aimed at
normalization of psycho-emotional state, development
of adaptive behaviors of family caregivers, enhance-
ment of their empathy and affiliation resource, creation
of favorable conditions for activation of personal re-
sources and adaptive capacity of patients with EMD.
By structure, the system of medical-psychological
support for families of patients with EMD included
three main stages: a) psychodiagnostic; b) complex
psychocorrection; c) monitoring of psychological
changes. The targets of medical-psychological support
system were: dramatic or negative type of attitude to-
wards the patient, pathological psycho-emotional state
(psycho-emotional overload), maladaptive behavioral
patterns, individual psychological factors reducing the
communicative resource, insufficient development of
social intelligence.
83 FC of patients with EMD (two psychocorrec-
tion subgroups, SG1 – family caregivers of patients
with paranoid schizophrenia and SG2 - family caregiv-
ers of patients with affective disorders) were involved
in psycho-corrective measures. The control subgroups
included 80 PP patients with EMD (CSG1 and CSG2),
who did not participate in psychoeducational and psy-
chocorrective activities.
18 Norwegian Journal of development of the International Science No 34/2019
The period of determining the effectiveness of de-
veloped medical-psychological support system was 6
months from the beginning. Effectiveness criteria were
the dynamics of family burden on the scale of family
burden assessment and the dynamics of quality of life
indicators.
The effectiveness of proposed system of medical-
psychological support was evaluated by psychological
testing method (Caregiver Burden Inventory (CBI), 36-
item Short Form Survey (SF-36). Significant reduc-
tions in the burden on the family were found, including
a decrease in severity of indicators on the scale of "be-
havioral problems", "stigma", "problems with psychi-
atric institutions", "influence on family" "dependence"
with a simultaneous increase in indicators on the scales
"accumulation of positive personal experience" and
"positive aspects of relationships" in family caregivers
of patients with EMD, who participated in psychoedu-
cational and psychocorrective activities (P <0.001) (fig.
2).
Figure 2. Dynamics of family burden indicators in subgroups of family caregivers (CBI, scores)
In control subgroups of family caregivers of pa-
tients with EMD, positive dynamics wasn’t identified.
The study of quality of life in family caregivers of pa-
tients with EMD, who participated in psychoeduca-
tional and psychocorrective sessions, allowed to deter-
mine its increase in terms of physical and psychological
functioning compared to the control subgroups (P
<0.01).
Thus, a system of medical-psychological support
for family caregivers of patients with endogenous men-
tal disorders was developed, which included elements
of psychoeducation and psychocorrection by methods
of cognitive-behavioral psychotherapy; mindfulness-
oriented cognitive therapy; psychological training; art
therapy. This system needs further implementation and
study of its effectiveness in decreasing family disa-
daptation in families, where a patient with endogenous
mental disorder lives.
REFERENCES:
1. Абабков В. А. Адаптация к стрессу. Ос-
новы теории, диагностики, терапии / В. А. Абабков,
М. Перре. – СПб. : Речь, 2004. – 165 с.
2. Набиуллина Р. Р. Механизмы психологиче-
ской защиты и совладания со стрессом (определе-
ние, структура, функции, виды, психотерапевтиче-
ская коррекция. [Учебное пособие] / Р. Р. Набиул-
лина, И. В. Тухтарова. – Казань, 2003. – 98 c.
3. Райгородский Д. Я. Практическая психоди-
агностика. Методики и тесты / Д. Я. Райгородский.
– Самара: Издательский дом «БАХРАХ–М», 2008.
– 672 с.
4. Antonovsky A. Health, Stress and Coping / A.
Antonovsky. – San Francisco: Jossey – Bass, 1979. –
255 p.
5. Berk L., Berk M., Dodd S. et al. Evaluation of
the acceptability and usefulness of an information web-
site for caregivers of people with bipolar disorder. / L.
Behaviora
l
problems
Negative
symptom
s
Stigma
Problems
with
psychiatri
c
institutio
ns
Influence
on family
Supportin
g the
patient
Depende
nce
Lesion
Accumula
tion of
positive
personal
experienc
e
Positive
aspects of
relationsh
ips
SG1 20 18 13 20 17 17 10 16 17 11
CSG1 26 21 16 25 25 18 14 18 12 6
SG2 12 13 5 10 17 10 12 14 20 12
CSG2 18 14 8 11 18 14 16 22 12 9
20
18
13
20
17 17
10
16
17
11
26
21
16
25 25
18
14
18
12
6
12
13
5
10
17
10
12
14
20
12
18
14
8
11
18
14
16
22
12
9
0
5
10
15
20
25
30
SG1 CSG1 SG2 CSG2
Norwegian Journal of development of the International Science No 34/2019 19
Berk, M. Berk, S. Dodd et al. // BMC Medicine / – 2013.
– № 11. – №. 1. – P. 162.
6. Caplan G. Mastery of stress: psychosocial as-
pects / G. Caplan // Am. J. Psychiatry. – 1981. – Vol.
138, № 4. – P. 413 – 420.
7. Lazarus R. S. Coping theory and research: Past,
present and future / R. S. Lazarus // Psychosomatic
Medizine. – 1993. – V. 55. – P. 234 – 247.
8. Matarazzo J. Behavior health and behavioral
medicine: frontiers for a new health psychology. Amer-
ican Psychologist. 1980;35:807–17. [PubMed]
9. Miklowitz D.J. Family Treatment for Bipolar
Disorder and Substance Abuse in Late Adolescence. /
D.J. Miklowitz // Journal of Clinical Psychology. –
2012. – № 68 (5) – P. 502 – 513.
10. Nadkarni R.B., Fristad M.A. Stress and Sup-
port for Parents of Youth with Bipolar Disorder. /
R.B.Nadkarni, M.A. Fristad // The Israel Journal of
Psychiatry and Related Sciences. – 2012. – № 49 (2). –
Р. 104 – 110.
11. Narasipuram S., Kasimahanti S. Quality of
life and perception of burden among caregivers of per-
sons with mental illness / S. Narasipuram, S. Kasi-
mahanti // AP J Psychol Med Am J Nurs. – 2012. – №
13(2). – P. 99 – 103.
12. Pompili M., Harnic D., Gonda X., Forte A.,
Dominici G., Innamorati M., Girardi, P. Impact of liv-
ing with bipolar patients: Making sense of caregivers’
burden./ M. Pompilli, D. Harnic et al. // World Journal
of Psychiatry, № 4 (1) – 2014. – P. 1 – 12.
THE RELATIONSHIP BETWEEN PECULIARITIES OF THE IMMUNITY AND CLINICAL
SYMPTOMS IN EPISODIC PARANOID SCHIZOPHRENIA
Mikhailova I.
PhD, learding researcher
Moscow Research Institute of Psychiatry - Affiliated Office of National Medical Research Center of Psychi-
atry and Narcology, named V.P. Serbsky, The Ministry of health, Russia
Orlova V.
DMS, professor, chief researcher
Moscow Research Institute of Psychiatry - Affiliated Office of National Medical Research Center of Psychi-
atry and Narcology, named V.P. Serbsky, The Ministry of health, Russia
MinutkoV.
Doctor of Medical Sciences, Professor, Head of the Clinic
Mental Health Clinic, Russia, Moscow
Simonova A.
DMS, professor of General medical practice chair,
Moscow regional research institute (GBUZ MONICA) named M. F. Vladimirsky
Russia, Moscow
ВЗАИМОСВЯЗИ МЕЖДУ ОСОБЕННОСТЯМИ ИММУНИТЕТА И КЛИНИЧЕСКИМИ
ПАРАМЕТРАМИ ПРИСТУПООБРАЗНОЙ ПАРАНОИДНОЙ ШИЗОФРЕНИИ
Михайлова И.И.
канд.мед.н., ведущий научный сотрудник
«Московский институт психиатрии» - филиал
ФГБУ «Национальный Медицинский Исследовательский Центр Психиатрии и Наркологии»
Минздрава России им. В.П. Сербского, Россия, Москва
Орлова В.А.
д.мед.наук, профессор
«Московский институт психиатрии» - филиал
ФГБУ «Национальный Медицинский Исследовательский Центр Психиатрии и Наркологии»
Минздрава России им. В.П. Сербского, Россия, Москва
Минутко В.Л.
д.мед.наук, профессор, руководитель клиники
Клиника «Психическое здоровье», Россия, Москва
Симонова А.В.
д.мед.наук, профессор кафедры общей врачебной практики,
Московский областной научно- исследовательский институт (ГБУЗ МОНИКИ)
им. М.Ф.Владимирского, Россия, Москва.
Abstract
For the aim to investigate the systemic relationships between the tension of the different immunity compo-
nents (cellular, humoral and phagocytic ones) and clinical features of episodic paranoid schizophrenia 47 patients
(25 patients with F20.01-02 and 22 – with F20.03) were studied. For the symptoms assessment BPRS rating was
used. The 21 parameters of nonspecific immunity status and the specific one - the Ig M and nuclear Ig G to herpes
virus group (herpes simplex virus types 1 and 2, cytomegalovirus, Epstein-Barr virus) concentration in the blood
serum were investigated.
20 Norwegian Journal of development of the International Science No 34/2019
We determined the leukocyte content, the lymphocyte subpopulations and the leukocyte phagocytosis in
PHAGOTEST with fluorescein (FITC)-labeled opsonized bacteria and calculated the phagocytic index (PhI), the
circulating immune complexes (CIC) level by spectrophotometry. The antibodies against the herpesviruses (HSV-
1, HSV-2, CMV, EBV) were determined using the ELISA test. Total serum immunoglobulins, IgG, IgM, and IgA,
were determined by immunoturbidimetry. The correlation analysis was done by the program Statistica 6.0 for
Windows (StatSoft, USA).
The results of the study indicate etiopathogenetic link between schizophrenia and persistent herpes infection.
Desirability of developing specific criteria for the laboratory diagnosis of infections in schizophrenia and appro-
priateness participation in treatment of patients with schizophrenia infectiologists and immunologists were identi-
fied.
Аннотация
С целью выявления взаимосвязи между напряженностью различных звеньев иммунитета и клиниче-
скими особенностями течения параноидной шизофрении было обследовано 47 больных (25 человек с
F20.01-02 и 22 – с F20.03 по МКБ-10). Для психометрии использовалась шкала BPRS. В качестве иммуно-
логических показателей определялись уровни IgM и IgG к ВПГ1, ВПГ2, ЦМВ, ЭБВ в сыворотке крови
(методом ИФА); 21 показатель иммунного скрининга. Статистическая обработка данных проводилась в
программе Statistica 6.0 для Windows (StatSoft, США).
Полученные данные говорят в пользу этиопатогенетической связи шизофрении с хронической герпе-
свирусной инфекцией. Выявлена необходимость разработки особых критериев лабораторной диагностики
инфекций при шизофрении с учетом специфичного для нее состояния иммунной системы и целесообраз-
ность участия в лечении больных шизофренией инфекционистов-иммунологов.
Keywords: schizophrenia; immune system; lymphocytosis; herpesviruses; HSV-1; HSV-2; CMV; EBV.
Ключевые слова: параноидная шизофрения, иммунитет, лимфоцитоз, герпесвирусы, ВПГ1, ВПГ2,
ЦМВ, ЭБВ.
Введение
В настоящее время в рамках клинико-биологи-
ческого подхода активно исследуются взаимосвязи
между различными состояниями и особенностями
иммунитета, и клиническими характеристиками
шизофрении. Описанный при шизофрении воспа-
лительный процесс в ЦНС и церебральных сосудах
(8, 12, 16, 26, 18) рядом авторов связывается с врож-
денными и приобретенными аномалиями иммуни-
тета (7, 17, 36), нарушением регуляторной функции
мозга (3) и инфекцией (10, 12, 18, 23). В частности,
предположение о значимой роли вирусов в психо-
патологии впервые сделано Менинджером в 1922
году на материале больных гриппом. В 1954 году
М.А. Морозов обнаружил в крови больных шизо-
френией вирусоподобные тельца, а Г.Д. Кобрин-
ский (1972) - атипичные АГ и отсутствующие у здо-
ровых структуры в лейкоцитах. Тогда же И. В. До-
машнева отметила наличие пассируемого эффекта
при введении центрифугата ликвора больных ши-
зофренией в мозг мышей (цит. по 10). Приведенные
и многие другие данные говорили в пользу вирус-
ной гипотезы шизофрении, но окончательно она не
была доказана. В последние десятилетия, на совре-
менном этапе развития вирусологии, исследования
по теме вновь активизировались (2, 8, 20, 31, 33, 35-
37) и перешли на иной уровень. Новые данные о ме-
ханизмах вирусной персистенции в виде взаимо-
действия между собой и с организмом больного по-
пуляций полноценных и дефектных вирусов одного
вида (6) могут объяснить медленный характер про-
текания инфекции у больных шизофренией с ати-
пичными проявлениями, а данные эпигенетики о
встраивании вирусного генетического материала в
ДНК человека могут объяснить механизмы насле-
дования шизофрении в рамках вирусогенетической
гипотезы (9).
В описанном контексте представляет особый
интерес исследование роли в шизофреническом
процессе герпетических вирусов в связи с их троп-
ностью к лимфоцитам, нейронам, клеткам сосуди-
стого эндотелия и способностью встраиваться в
ДНК человека и передаваться по наследству (1,4).
В ряде исследований показана зависимость
между титрами сывороточных специфических ан-
тител к герпесвирусам и выраженностью некото-
рых психопатологических симптомов
(29,30,32,35,37). Выявлена резистентность к психо-
тропной терапии при шизофрении у пациентов с
цитомегаловирусной инфекцией (2).
Результаты сравнительных исследований
уровней противогерпетических антител у лиц с ши-
зофренией по сравнению со здоровыми противоре-
чивы. Так, Krause D. с соавторами (25) выявили бо-
лее высокие титры антител к нейротропным инфек-
ционным агентам, в частности, герпетическим
вирусам (ВПГ, ЦМВ и ЭБВ) у больных шизофре-
нией по сравнению с контролем. L. Witte с соавто-
рами (2015), напротив, не обнаружили достоверных
различий между уровнями IgG к ВПГ-1/ВПГ-2,
ВВЗ (Varicella Zoster), ЭБВ и ЦМВ в группах здо-
ровых лиц и больных шизофренией (36). По дан-
ным Gutiérrez-Fernández J, Luna del Castillo JD,
Mañanes-González S (2015) частота выявления ВПГ-
1 и ВГЧ-6 при шизофрении не превышает таковую
у здоровых лиц (23).
Torrey с соавторами (33) описали у больных
шизофренией с повышенным уровнем IgG к ЦМВ
нормализацию указанного показателя на фоне пси-
хотропной терапии, а также улучшение психиче-
ского состояния пациентов с повышенным уровнем
IgG к ЦМВ на «противогерпетической терапии».
Dickerson с соавт. (2003) выявили значимое улуч-
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1
Norwegian Journal of development of the International Science №34 part 1

More Related Content

Similar to Norwegian Journal of development of the International Science №34 part 1

FEOFILOV_ARTEM_74784_TexteTheseCR
FEOFILOV_ARTEM_74784_TexteTheseCRFEOFILOV_ARTEM_74784_TexteTheseCR
FEOFILOV_ARTEM_74784_TexteTheseCR
Artem Feofilov
 

Similar to Norwegian Journal of development of the International Science №34 part 1 (20)

Sciences of Europe No 120 (2023)
Sciences of Europe No 120 (2023)Sciences of Europe No 120 (2023)
Sciences of Europe No 120 (2023)
 
Norwegian Journal of development of the International Science №27 part 1
Norwegian Journal of development of the International Science №27 part 1Norwegian Journal of development of the International Science №27 part 1
Norwegian Journal of development of the International Science №27 part 1
 
VOL 2, No 60 (2020)
VOL 2, No 60 (2020)VOL 2, No 60 (2020)
VOL 2, No 60 (2020)
 
Vol 1-no-43-43-2020
Vol 1-no-43-43-2020Vol 1-no-43-43-2020
Vol 1-no-43-43-2020
 
POLISH-JOURNAL-OF-SCIENCE-№18-2019
POLISH-JOURNAL-OF-SCIENCE-№18-2019POLISH-JOURNAL-OF-SCIENCE-№18-2019
POLISH-JOURNAL-OF-SCIENCE-№18-2019
 
Norwegian Journal of development of the International Science №7 part 2
Norwegian Journal of development of the International Science №7 part 2Norwegian Journal of development of the International Science №7 part 2
Norwegian Journal of development of the International Science №7 part 2
 
Znanstvena misel journal №74 2023
Znanstvena misel journal №74 2023Znanstvena misel journal №74 2023
Znanstvena misel journal №74 2023
 
Norwegian Journal of development of the International Science №2
Norwegian Journal of development of the International Science №2Norwegian Journal of development of the International Science №2
Norwegian Journal of development of the International Science №2
 
Norwegian Journal of development of the International Science №5 part 1
Norwegian Journal of development of the International Science №5 part 1Norwegian Journal of development of the International Science №5 part 1
Norwegian Journal of development of the International Science №5 part 1
 
Norwegian Journal of development of the International Science №10 part 1
Norwegian Journal of development of the International Science №10 part 1Norwegian Journal of development of the International Science №10 part 1
Norwegian Journal of development of the International Science №10 part 1
 
POLISH JOURNAL OF SCIENCE №52 (2022)
POLISH JOURNAL OF SCIENCE №52 (2022)POLISH JOURNAL OF SCIENCE №52 (2022)
POLISH JOURNAL OF SCIENCE №52 (2022)
 
Norwegian Journal of development of the International Science №17 part 6
Norwegian Journal of development of the International Science №17 part 6Norwegian Journal of development of the International Science №17 part 6
Norwegian Journal of development of the International Science №17 part 6
 
VOL 2, No 55 (55) (2020)
VOL 2, No 55 (55) (2020)VOL 2, No 55 (55) (2020)
VOL 2, No 55 (55) (2020)
 
Sciences of Europe No 107 (2022)
Sciences of Europe No 107 (2022)Sciences of Europe No 107 (2022)
Sciences of Europe No 107 (2022)
 
Sciences of Europe No 78 (2021) Vol. 1
Sciences of Europe No 78 (2021) Vol. 1Sciences of Europe No 78 (2021) Vol. 1
Sciences of Europe No 78 (2021) Vol. 1
 
Vol 2-no-50-2020
Vol 2-no-50-2020Vol 2-no-50-2020
Vol 2-no-50-2020
 
The scientific heritage No 80 (80) (2021) Vol 1
The scientific heritage No 80 (80) (2021) Vol 1The scientific heritage No 80 (80) (2021) Vol 1
The scientific heritage No 80 (80) (2021) Vol 1
 
Vol 2-№-41-41-2019
Vol 2-№-41-41-2019Vol 2-№-41-41-2019
Vol 2-№-41-41-2019
 
VOL-2-No-11-11-2017
VOL-2-No-11-11-2017VOL-2-No-11-11-2017
VOL-2-No-11-11-2017
 
FEOFILOV_ARTEM_74784_TexteTheseCR
FEOFILOV_ARTEM_74784_TexteTheseCRFEOFILOV_ARTEM_74784_TexteTheseCR
FEOFILOV_ARTEM_74784_TexteTheseCR
 

More from Norwegian Journal of development of the International Science

More from Norwegian Journal of development of the International Science (20)

NJD_98.pdf
NJD_98.pdfNJD_98.pdf
NJD_98.pdf
 
NJD_84.pdf
NJD_84.pdfNJD_84.pdf
NJD_84.pdf
 
NJD_82.pdf
NJD_82.pdfNJD_82.pdf
NJD_82.pdf
 
NJD_94.pdf
NJD_94.pdfNJD_94.pdf
NJD_94.pdf
 
NJD_96.pdf
NJD_96.pdfNJD_96.pdf
NJD_96.pdf
 
NJD_92.pdf
NJD_92.pdfNJD_92.pdf
NJD_92.pdf
 
NJD_87.pdf
NJD_87.pdfNJD_87.pdf
NJD_87.pdf
 
NJD_76_2.pdf
NJD_76_2.pdfNJD_76_2.pdf
NJD_76_2.pdf
 
NJD_73_1.pdf
NJD_73_1.pdfNJD_73_1.pdf
NJD_73_1.pdf
 
NJD_80.pdf
NJD_80.pdfNJD_80.pdf
NJD_80.pdf
 
NJD_83.pdf
NJD_83.pdfNJD_83.pdf
NJD_83.pdf
 
NJD_78_1.pdf
NJD_78_1.pdfNJD_78_1.pdf
NJD_78_1.pdf
 
NJD_86.pdf
NJD_86.pdfNJD_86.pdf
NJD_86.pdf
 
NJD_76_1.pdf
NJD_76_1.pdfNJD_76_1.pdf
NJD_76_1.pdf
 
NJD_81.pdf
NJD_81.pdfNJD_81.pdf
NJD_81.pdf
 
NJD_85.pdf
NJD_85.pdfNJD_85.pdf
NJD_85.pdf
 
NJD_79_1.pdf
NJD_79_1.pdfNJD_79_1.pdf
NJD_79_1.pdf
 
NJD_73_2.pdf
NJD_73_2.pdfNJD_73_2.pdf
NJD_73_2.pdf
 
NJD_75_2.pdf
NJD_75_2.pdfNJD_75_2.pdf
NJD_75_2.pdf
 
NJD_77_3.pdf
NJD_77_3.pdfNJD_77_3.pdf
NJD_77_3.pdf
 

Norwegian Journal of development of the International Science №34 part 1

  • 1. №34/2019 Norwegian Journal of development of the International Science ISSN 3453-9875 VOL.1 It was established in November 2016 with support from the Norwegian Academy of Science. DESCRIPTION The Scientific journal “Norwegian Journal of development of the International Science” is issued 12 times a year and is a scientific publication on topical problems of science. Editor in chief – Karin Kristiansen (University of Oslo, Norway) The assistant of theeditor in chief – Olof Hansen  James Smith (University of Birmingham, UK)  Kristian Nilsen (University Centre in Svalbard, Norway)  Arne Jensen (Norwegian University of Science and Technology, Norway)  Sander Svein (University of Tromsø, Norway)  Lena Meyer (University of Gothenburg, Sweden)  Hans Rasmussen (University of Southern Denmark, Denmark)  Chantal Girard (ESC Rennes School of Business, France)  Ann Claes (University of Groningen, Netherlands)  Ingrid Karlsen (University of Oslo, Norway)  Terje Gruterson (Norwegian Institute of Public Health, Norway)  Sander Langfjord (University Hospital, Norway)  Fredrik Mardosas (Oslo and Akershus University College, Norway)  Emil Berger (Ministry of Agriculture and Food, Norway)  Sofie Olsen (BioFokus, Norway)  Rolf Ulrich Becker (University of Duisburg-Essen, Germany)  Lutz Jäncke (University of Zürich, Switzerland)  Elizabeth Davies (University of Glasgow, UK)  Chan Jiang(Peking University, China) and other independent experts 1000 copies Norwegian Journal of development of the International Science Iduns gate 4A, 0178, Oslo, Norway email: publish@njd-iscience.com site: http://www.njd-iscience.com
  • 2. CONTENT CHEMICAL SCIENCES Kontsevoy A., Kontsevoy S.,Fedenko Y. THE STATIC AND DYNAMICS MODELING OF ION EXCHANGE IN WATER SOLUTIONS..............................3 MEDICAL SCIENCES Ali-Zade S. OPTIMIZATION OF METHODS FOR DIAGNOSTIC AND TREATMENT OF PATIENTS WITH HEPATIC ABCESSES ..................................................................11 Kaminska A., Pshuk N., Stukan L. PSYCHOEDUCATIONAL MODULE AS A COMPONENT OF COMPLEX SYSTEM OF MEDICAL-PSYCHOLOGICAL SUPPORT FOR FAMILIES, WHERE A PATIENT WITH ENDOGENOUS MENTAL DISORDER LIVES.................15 Mikhailova I., Orlova V., MinutkoV.,Simonova A. THE RELATIONSHIP BETWEEN PECULIARITIES OF THE IMMUNITY AND CLINICAL SYMPTOMS IN EPISODIC PARANOID SCHIZOPHRENIA......................................19 Tabachnikov S., Osukhovskaya O., Vasylyeva G., Kharchenko E., Salden V.,Chepunna A. PSYCHOEMOTIONAL SYNERGY REGISTER OF NON- CHEMICAL ADDICTION AND TOBACCO SMOKING IN YOUTH .......................................................................28 Tymoshchuk O. PECULIARITIES OF PSYCHO-PHYSIOLOGICAL ADAPTATION OF MODERN PUPILS AND STUDENTS DURING THE CONDITIONS OF MODERN EDUCATION EDUCATION ...............................................................31 PHYSICAL SCIENCES Gladyshev G. ON THE STABILITY OF NUCLIDES AND CHEMICALS ...37 Mardasova E. ENERGY SAVING AT HOME........................................40 Naziyev J. CALCULATION OF CORRECTIONS ON THE VARIABILITY OF THERMOPHYSICAL CHARACTERISTICS OF LIQUIDS AND GASES IN THE INVESTIGATION IN THE REGULAR HEAT MODE OF THE FIRST KIND ...............................41 TECHNICAL SCIENCES Akimov S. HISTORY OF DEVELOPMENT OF THE METHOD OF MAP FLOWS OF CREATION OF VALUE ......................45 Ryapolova E. CALCULATION OF THE SECURITY LEVEL OF THE CONFIDENTIAL DOCUMENT TURNOVER SYSTEM BASED ON CRYPTOGRAPHIC MEANS OF PROTECTION .............................................................48 Khalikov A., Urakov O. DISTRIBUTION OF TELEPHONE LOAD IN THE NETWORKS OF OPERATIONAL AND TECHNOLOGICAL COMMUNICATION OF JSC "UZBEKISTAN RAILWAYS" ................................................................53
  • 3. Norwegian Journal of development of the International Science No 34/2019 3 CHEMICAL SCIENCES THE STATIC AND DYNAMICS MODELING OF ION EXCHANGE IN WATER SOLUTIONS Kontsevoy A. Ph.D., assoc. prof., The Department of Technology of Inorganic Substances, Water Purification and General Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute Kontsevoy S. Ph.D., assoc. prof., The Department of Technology of Inorganic Substances, Water Purification and General Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute Fedenko Y. Ph.D., assistant, The Department of Technology of Inorganic Substances, Water Purification and General Chemical Technology, Igor Sikorsky Kyiv Polytechnic Institute Abstract The mathematical models for the exchange of double-charged and singly charged ions in statics and dynamics conditions are designed and methods of their solution in Excel (static) and Mathcad (static and dynamics of ex- change) are proposed. The coefficients of the known equation for the distribution of ion's initial concentration along the water flow in a filter are calculated. The features of exchange between differently charged ions are studying based on computer experiments. The "method of a characteristic" was adapted for the wave propagation analysis of double-charged ion concentrations in a filter. Convex isotherms of ion exchange lead to "breakfront" of concentrations (their rapid decrease) clearly visible at 2D and 3D figures. The proposed model provides varying technological and design parameters as input data in order to estimate their effect on the exchange process quality. Keywords: ion exchange, exchange isotherm, ion charge, mathematical model, dynamics of the equilibrium exchange, the front of the concentrations. Introduction Ion exchange is one of the typical processes of wa- ter purification and one of perspective sorption meth- ods. It is carried out by usage of ion exchange materials. The problem of calculation of filter is conditionally di- vided on the task of describing static (equilibrium) and modeling of dynamic of ion exchange, including charges of ions, which is capable to exchange. Iso- therms of ion exchange determine movement of ions that are absorbed and are part of the mathematic model of ion exchange filters – the main technological equip- ment of heat and atomic electric stations. The stage of the work cycle of an ion exchange filter is carried out at convex isotherm. Ion exchange at convex isotherm allows increasing the concentration in ion exchanger in comparison with their concentration in solution. Re- generation is realized at concave isotherm. The dy- namic model must include the fact, that, at passing of solution through the filter, different concentration points will move with different rates. Depending on the kind of isotherm – convex or concave –«breakage» (the concentration of ion in solution is changed jump-like from с = с0 to с = 0) or «blurred» concentration front can be observed, respectively. Excel and Mathcad had been used in this work for analysis of a mathematic model for ion exchange filters. The goal was to design the mathematic model of static and dynamic of ion exchange for ions of different charge. For reaching this goal it was necessary to bring out the equation of isotherm of ion exchange, basing on mass action law, to adapt the mathematic apparatus and software solutions for single-charged ions and to give the solution of static and dynamic of ion exchange of ions of different charge. It is also necessary to justify the equation of the initial distribution of the relative concentration along the filter and find the correspond- ing coefficients. Discussion The classification and principles of working of fuel cells Fuel cells are an autonomous source of energy in- dependent of fossil fuels. In addition, the lack of com- bustion of fuel at high temperatures means the environ- mental purity of such devices. In addition to high productivity and efficiency, the process of producing electricity in a fuel cell is accompanied by a minimal impact on the environment, which is especially im- portant in view of the serious deterioration of the over- all environmental situation in the modern world. Other advantages of fuel cells can be attributed [5]: • these are noiseless energy sources (the fuel cell itself doesn’t have moving parts); • the possibility of using different types of fuel; • a wide range of capacities (from 1 to 10000 kW); • rapid response to load variables; • high reliability and safety of low-temperature de- vices; • modular design, which allows relatively easy to increase the capacity of already existing power plants with FC. Most often, FC is classified by the type of electro- lyte as a medium for the internal transport of ions. The nature of the electrolyte determines the operating tem- perature of the FC, from which, in turn, the choice of catalyst and auxiliary materials depends. There are five main types of FC [6], which are discussed below. In solid-polymeric fuel cells (SPFC) electrolyte is a proton exchange polymer membrane. Currently, there
  • 4. 4 Norwegian Journal of development of the International Science No 34/2019 are several different types of polymer membranes – flu- orine-containing polymer based on sulfonic acids; membranes based on aromatic polymers (polyether ke- tones, polysulfones, polyether sulfones); membranes based on polyimides, polyvinyl alcohols. Nafion per- fluorinated electrolyte membranes (Du Pont company) became the most widely used. An important property of such membranes is high proton conductivity in an oiled state, and therefore, for the effective operation of FC, it is necessary to select and adhere to the regime of opti- mal distribution of moisture (water management). The operating temperature is not higher than 100 °С, fuel is hydrogen, without CO contamination, to prevent poi- soning of Pt catalyst. A solid fuel cell electrolyte is much easier to use than a liquid analogue. A thin plati- num catalyst chemically activates the reaction on the electrodes. In the past, these devices were very expen- sive through platinum, but new technologies signifi- cantly reduced the thickness of the platinum layer, which allowed, accordingly, to reduce the price. In alkaline fuel cells (AFC), a concentrated KOH solution immobilized in an asbestos matrix used as an electrolyte. Depending on the alkali content, such FC can operate in the temperature range from 65 °C (35– 50 % by weight KOH) to 250 °C. (~85 % by weight KOH). The catalyst can be noble metals, Ni, complex oxides. Alkaline FC must be protected from the influ- ence of CO and CO2; the first, as in the previous case, is a catalytic poison, and the second interacts with the electrolyte, changing its composition. Algal fuel cells are widely used in spacecraft. They were developed by NASA for use in the Gemini project and further used on Space Shuttle. AFCs are very effective, release only pure water after the reaction. However, these devices require the purest of hydrogen and oxygen and an elec- trolyte with KOH, which is very expensive. In phosphoric acid fuel cells (PAFC), the transfer of protons from the anode to the cathode is carried out in a concentrated solution of phosphoric acid (85-100 % v / v), fixed on a carrier with SiC. The operating tem- perature of 150–220 °C provides high conductivity of the electrolyte. The catalyst is platinum. This kind of FC is commercially available, since 1992, PAFC has the potential for use in small, stationary power genera- tion systems. They are known for their reliability, per- fect work and high efficiency. They can work on con- taminated water spills. The world's largest 11 MW phosphorus works in Tokyo. In carbonate-fusible fuel cells (CFFC), the elec- trolyte is a melt of a mixture of alkali metal carbonates in a ceramic matrix with LiAlO2. At a temperature of about 600–700 °C, this melt is a good conductor of CO3 2- ions. A fairly high working temperature allows the use of fuel in the CFFC directly without any addi- tional preparation, and nickel - as a catalyst. Since CFFCs operate at a temperature of 650 ºС, it is more expedient to use them on large stationary installations. They are especially useful in hospitals or in such build- ings where there is a constant need for electric and ther- mal energy (heating or cooling). In solid oxide fuel cells (SOFC) electrolyte is a dense ceramic membrane with ZrO2. For the appear- ance of sufficient oxygen-ion conductivity in this phase, it is necessary to heat up to temperatures of 600– 1000 °C. Oxidation of fuel (H2, CO, CH4) occurs at the anode, which is a metal-ceramic composite Ni / ZrO2 or Co / ZrO2; as a cathode, complex oxides are used, which have an electron (La1-xSrxMnO3-δ) or a mixed (La1-xSrxCoO3-δ) conductivity. These fuel cells are most suitable for large stationary electric generators that can supply a factory or city with electricity. The main performance characteristics of FC of dif- ferent types are summarized in Table 1. The greatest successes have been achieved in the field of membrane fuel cells (MFC). Currently, one of the most promising fuel cells for wide application are solid-polymer (SPFC), which have a high density of power and have reached the highest technological read- iness. The main obstacle to their widespread use is still high cost compared to traditional energy-generating de- vices. Table 1. The main performance characteristics of FC of different types [7] FC type SPFC L PAFC CFFC SOFC Temperature, о С 80-100 65-250 150-220 600-1000 600-1000 Material of anode Pt/C, Pt-Ru/C Pt/C, Pt-Co/C Pt/C, Pt-Ru/C Ni-Al, Ni-Cr Ni, NiO Material of cathode Pt/C Pd/C Ni (Pt) Pt/C, Pt-WO3/C NiO, LiFeO2 LaSrMnO3 Electrolyte Polymer mem- brane (ionomer) KOH/ NаOH on the career H3PO4 on the career LiKCO3, LiN- aCO3 on the ca- reer ZrO2, CeO2, Y2O3 The range of optimal capacities, kW 0,01÷100 kW ~ 100 kW ~100 kW ≥ 1 MW ≥ 1 MW Resource, h until 2⋅104 until 104 until 5⋅104 until 2⋅104 until 6⋅104 The main components of the fuel cell are anode, cathode and electrolyte. Anod provides fuel in the form of combustible gas (hydrogen, hydrocarbon com- pounds, CO etc.), where the catalyst dissociates fuel molecules into cations. At the same time, an oxidizing gas (oxygen, air) is fed to the cathode. At the cathode is the reaction of oxygen recovery, while it is ionized. Anions of oxygen pass through a dense ceramic elec- trolyte to the anode. At an anode there is a reaction of oxidation of fuel, which involves cations of fuel and oxygen anions. As a result of the reaction, electrons and heat energy are released. Also, the reaction products are water vapor (using pure hydrogen) or water vapor and carbon dioxide (with hydrocarbon fuels) [8].
  • 5. Norwegian Journal of development of the International Science No 34/2019 5 Figure 1. The principle of work on the example of a ceramic fuel cell [8]. The catalytic layer is one of the main components of fuel cells. It is a thin (5–20 microns) gas-permeable layer containing a fine-dispersed catalyst with a devel- oped surface. On the one hand, the catalytic layer ad- joins the proton conductive membrane, and on the other hand – to the gas diffusion layer. Platinum and metals of platinum group (MPGs) are commonly used to catalyze the oxidation of hydro- gen, as well as the recovery of oxygen occurring in fuel cells. The high cost and scarcity of metals make, how- ever, the use of pure metal catalysts unprofitable and require a reduction in their number with the maximum effectiveness of their use. This is achieved by the use and development of new catalysts on carriers. The car- rier should be cheap, have electrical conductivity and sufficient chemical and electrochemical stability. In ad- dition, the catalytic bed should have good gas permea- bility and provide good contact with the proton ex- change membrane. The specified requirements are sat- isfied with carbon materials. Generators of hydrogen based on sodium borohy- dride. The usage of hydrogen generators allows you to obtain H2 directly at the site of its use, eliminating the problems of its storage, storage and transportation. Physical methods of hydrogen storage in the form of cryogenic liquid or compressed gas in most cases are ineffective (low volume density, high energy consump- tion, the ability to evaporate), and also insufficiently comfortable and safe (explosive gas under high pres- sure), therefore storage of hydrogen in the state of chemical compounds (hydrocarbons, water, hydrides) is an interesting and promising alternative [9]. At creation of such sources of hydrogen for mobile power installations on the basis of fuel elements in re- cent times special attention is paid to binary and com- plex hydrides as a compact form of storage of hydrogen [10,11]. The reasons for the use of hydrides as a hydrogen source are the high-volume density of hydrogen in hy- drides and the relative ease of its production from these compounds. Among hydrides, sodium borohydride (NaBH4) has a special place due to the high content of H2 (10.8 % by weight), an acceptable price and stability of its alkaline solutions. The process of catalytic hy- drolysis of sodium borohydride is a promising way of obtaining high-purity hydrogen, with half of hydrogen released from water [12,13]: NaBH4 + 2H2O kat → NaBO2 + 4H2. (1.4) The usage of catalysts ensures hydrogen produc- tion in the temperature range from – 40 °С to + 85 °С, accelerates the process of generation of H2, prevents the formation of by-products, and also makes it easy to control the process of hydrogen generation, stop it and start it at the consumer's request. At present, an important task is to create new cat- alytically active materials for use in portable hydrogen generators based on sodium borohydride. In the pro- posed generators, expensive catalysts based on plati- num group metals are used [14-17]. For this reason, the most relevant are studies aimed at reducing their con- tent in catalysts or replacements for transition metals. According to the literature, the most promising are catalysts based on amorphous cobalt borides [18,19]. However, because of the applied nature of most works, the results obtained are not systematized, the reasons for most of the revealed patterns remain unpublished. The results obtained by different authors are incorrectly compared because of the difference in the conditions of experiments. Therefore, there is an active search for catalysts of the hydrolysis process of sodium borohydride. The cat- alytic activity of acids [20], noble [21,22] and transition metals [22,23] is shown. Hydrogen peroxide as the oxidizer for FC Fuel cells designed for use in non-atmospheric air, for example in space or at the bottom of reservoirs, re- quire liquid or compressed O2 as a cathode oxidizer. The O2 transport tank significantly reduces oxy- gen density and safety standards for fuel cell systems. As these indicators are critical for fuel cells used as space or underwater energy sources, alternative oxi- dants other than O2, such as H2O2, have been investi- gated. Several types of fuel cells using H2O2 as an oxi- dizer have been developed in recent years, including methanol fuel cells with hydrogen peroxide [24-26], hydrogen peroxide borohydride fuel elements [27-29] and fuel cells with transition metals and hydrogen per- oxide [30-35].
  • 6. 6 Norwegian Journal of development of the International Science No 34/2019 The productivity of the cathode essentially de- pends on the nature of the cathode catalysts. Several types of catalysts for the H2O2 electrical conducting re- action, including noble metals (Pt, Pd, Ir, Au, Ag and a combination of these metals) [27-31,36], macrocyclic complexes of transition metals (complexes of porphy- rin Fe and Co, complexes of Cu triazine) [37] and other types such as PbSO4 and Co3O4 [35,38]. Among these types of electrical catalysts are the most active and sta- ble catalysts of noble metals. However, precious met- als, other than expensive, also catalyze the chemical de- composition of H2O2 to O2. Therefore, it is necessary to look for electrical catalysts with low cost and greater resistance to the decomposition of H2O2. A preliminary literature review [35] shows that Co3O4 nanoparticles have good activity and resistance to electro-catalytic reduction of H2O2 in alkaline solu- tion. Electrical catalytic activity of cobalt-containing catalysts. Texas specialists suggest the use of platinum alloy with cobalt and copper. The new catalyst is an al- loy of particles, the metal content of which varies from surface to nucleus: the surface of particles is enriched with platinum, and the core consists predominantly of copper and cobalt. The first tests of this catalyst showed an efficiency that exceeds a similar indicator of modern catalysts for fuel cells in 4-5 times. In addition, the nano-catalyst was significantly cheaper [39]. For the production of a catalyst, deposited on a graphite electrode, metal particles were placed in an acid solution and subjected to cyclic effects of alternat- ing voltage. Less noble metals, especially copper, dis- solved from the surface, leaving it enriched with plati- num. The core had the same composition as the original alloy. Moreover, formed as a result of electrochemical etching of copper and cobalt, voids on the surface of the particles resulted not only in the enrichment of the sur- face with platinum, but also in a significant increase in the surface area of the catalyst. However, the increase of the catalyst's efficiency by 4-5 times compared to pure platinum catalyst, according to Strasseur, cannot be explained solely by an increase in surface area. Computer calculations have shown that the dis- tance between the platinum atoms in the enriched shell is shorter compared with the same distance in pure plat- inum. Such "compressed" state is fixed with the help of enriched cobalt and copper core. The shortened intera- tomic distance platinum platinum promotes a more readily adsorption of oxygen. This, apparently, changes the electronic structure of the shell so that the process of transferring an electron to the formation of a nega- tively charged molecule of oxygen becomes much sim- plified [39]. A new material based on graphene has been devel- oped at Brown University (Rhode Island), which is ca- pable of serving as an almost effective catalyst of the oxygen-reducing reaction, as well as platinum, but at the same time it is more stable. This material is a gra- phene sheet coated with cobalt nanoparticles and its ox- ide [40]. A number of scientists have succeeded in reducing the content of platinum in catalysts, but at the very least to abandon its use has still not succeeded. The cobalt catalyst described in the article for the online edition of Angewandte Chemie was the first al- ternative solution that does not contain precious metals. Cobalt is a fairly widespread metal and costs many times cheaper than platinum. Laboratory tests have shown that the new catalyst is slightly inferior to platinum at the initiation rate of the reaction, but during its course it restores oxygen at a faster pace than platinum. Graphene-cobalt material has also shown better resistance to degradation. After 17 hours of operation, it retained 70 % of initial effi- ciency, compared with 60 % for platinum over the same period of time. Scientists have used the self-assembly method to produce material, which provides the best control of the size, shape and location of nanoparticles. To do this, they prepared two separate solutions for cobalt and gra- phene nanoparticles, and then carefully mixed them with the use of sound waves. Graphene material with uniform cobalt inlaid was deposited from a solution in a centrifuge and dried. In the open atmosphere, the outer layers of atomic cobalt oxidized, forming on each nanoparticle a shell protecting the cobalt core (see Fig. 2) [40]. Figure 2. Graphene with inlaid metal cobalt [40]. The thickness of the shell was controlled by vary- ing the residence time of the material in a state heated to 70 °C. Experimentally it was found that in the best way the catalytic properties of the material are detected with a shell thickness of 1 nm [40].
  • 7. Norwegian Journal of development of the International Science No 34/2019 7 The catalyst that was created in this way brought out fuel cells from the laboratory phase in their wide- spread commercial distribution. Usage of cobalt as electrical catalyst of FC. Cath- odes containing cobalt and used in solid oxide fuel cells (SOFCs) are known for their ability to operate at high temperatures. The Cathode Oxygen Reaction (ORR) is im- portant for a Microbial Fuel Cell (MFC). A carbon- based catalyst, doped with nitrogen and cobalt (CoNC), was synthesized to initiate ORR in MFC. CoNC, pre- pared at 900 °C (CoNC-900), demonstrated high cata- lytic activity and excellent resistance (5.5 % reduction after 10000 cycles). Long-term performance tests have shown that the CoNC-900 MFC is very stable [41]. A platinum-free catalyst for Oxygen Reaction (ORR) and hydrogen oxidation reactions (HOR) was developed for a fuel cell with a proton exchange mem- brane (PEMFC). The synthesized catalyst is two-func- tional and consists of cobalt with palladium and nitro- gen. Palladium-cobalt nanoparticles of bimetallic alloy are scattered over graphite carbon nitride (Pd-Co / gCN), and they serve as an effective anode and cathode catalyst in a fuel cell with a proton-exchange mem- brane. The inclusion of cobalt with palladium in the material changes the bond strength of the palladium- hydrogen (Pd-H) complex and promotes the initiation of HOR, which leads to a significant improvement in the super-potential at the anode, while cobalt, coordi- nated with nitrogen, mainly increases the activity of the ORR on the cathode in an acidic medium [42]. Another type of catalyst – a catalyst for cobalt hy- droxide oxide (CoOOH-PPy-BP), modified polypyr- role – was obtained by chemical impregnation and used as a cathode catalyst in hydrocarbon fuel cells. CoOH surface oxygen vacancies provide favorable sites for O2 uptake, accelerating the activation of O2. And elec- tronic holes created due to vacancies of oxygen on CoOOH capture electrons from the anode, forming ex- cited cationic states [Co3+ + e- ] [43]. The efficiency of the fuel element with borohy- dride (DBFC) depends both on the activity of the anode catalyst and on the hydrolysis of borohydride. Anode Co3O4 catalysts from different sources of cobalt were investigated and it was shown that the catalytic activity of Co3O4 was related to its microstructure, which was based on the precursor. The maximum power was 40, 62 and 28 mW·cm-2 DBFC with an anode of CoCl2 and a Co3O4 catalyst (denoted DBFC-A), Co (NO3)2 (de- noted DBFC-B) and Co(CH3COO)2 (denoted DBFC- C), respectively. DBFC-A showed good voltage stabil- ity with a specific capacity of 720 mA / g and the high- est amount of electron transfer [44]. A new three-dimensional (3D) porous nickel-co- balt film (Ni-Co) is successfully applied to nickel foam and is further used as an effective anode for a fuel cell containing urea and hydrogen peroxide (DUHPFC). Schematic principle of this fuel cell is shown in Fig. 3. By changing the ratio of moles of cobalt / nickel, an anode of polypropylene Ni-Co / Ni was obtained with a ratio of 80 % in terms of the best efficiency [45]. Figure 3. Schematic representation of the fuel cell [45]. Electrodeposition of cobalt on ferrite stainless steel plays an important role in reducing chromium poi- soning on the cathode side of solid oxide fuel cells (SOFCs). The electrochemical activity between La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) and stainless steel with cobalt coating in the atmosphere at 700 °C was investi- gated. Thus, the formed Co3O4 layer blocks the chro- mium migration [46]. Investigation of Co as anode for Li-ion batteries. The main cathode material of lithium ion batteries is lithium cobalt oxide (or lithium cobaltate), lithium manganese oxide (also known as spinel or lithium man- ganate), lithium phosphate lithium, and lithium nickel manganese-cobalt (NMC) and lithium-nickel cobalt alumina (NCA) [47]. Various materials, including sili- con-based alloys, are also used as anode. Nano-struc- tured lithium titanate, as an anode additive, shows a promising life cycle, excellent low temperature charac- teristics and excellent safety [47]. In order for the battery voltage to be sufficiently large, Japanese researchers used as active material a positive electrode of cobalt oxides. Cobalt oxide has a potential of about 4 V relative to the lithium electrode, so the operating voltage of the Li-ion battery has a char- acteristic value of 3 V and above [48]. Lithium-ion battery design with high energy stor- age and high efficiency is a subject of enhanced re- search interest, which is of key importance for large- scale applications and further commercialization. Conventional lithium-ion batteries are expensive and have stability problems that restrict their practical
  • 8. 8 Norwegian Journal of development of the International Science No 34/2019 use. In search of cheaper and more secure Li-ion bat- teries, the concentration gradient method is used to ob- tain LiNi0.9Co0.1-xTixO2 (0,02 ≤ x ≤ 0,05) cathode mate- rials enriched on the surface of Co and Ti, which demonstrate a decrease in oxygen loss and improve- ment of structural stability. The material with the best characteristics (x = 0.04) shows a discharge capacity of 214 mAh / h in the range of charge voltage / discharge 3.0–4.3 V (versus Li / Li+ ), and perfectly stores up to 98.7 % capacities after 50 cycles [49]. Organic-inorganic hybrids increase the choice of materials for Li-ion batteries due to the versatility of organic ligands. As an alternative to carboxylate-based ligands, Fe and Co methylenediphosphonate was suc- cessfully synthesized and tested as negative electrodes based on diphosphonates for Li-ion batteries [50]. Highly active Co / Mn-1,4,5,8-naphthalene tetra- carboxylate (Co-NTC or Mn-NTC) was synthesized us- ing a simple rheological phase method with NTCDA. This complex of Co-NTC or Mn-NTC can be sponta- neously burned in ambient air to produce nanosized metal oxide. The cyclic leveling of the charge showed that the Co-NTC or Mn-NTC combustion product (used as anode for lithium ion batteries) provides high discharge and charge output power and provides excel- lent battery stability [51]. A promising anode material for high-performance lithium-ion batteries (LIBs) may also be silicon (Si), but it is rapidly erased due to strong volumetric expan- sion during the introduction / removal of Li. To miti- gate structural deterioration Si was doped with various metal sources, but the resulting materials showed low electrical conductivity. To solve this contradictory problem a new nanocomposite of graphene oxide (rGO) Si / Co-CoSi2 / rGO has been developed by me- chanical mixing of Si nanoparticles, Co3O4 microparti- cles and rGO nanowires with subsequent carbon-form- ing restoration. The proposed nanocomposites demon- strated a high specific capacity of 952 mAh / h with a preservation of 79.3 % of the capacity after 80 cycles of charge / discharge at a current density of 100 mA / g [52]. The analysis of literary sources shows that pro- gress in the development of electrochemical energy is largely determined by the successes in the development of active and stable nanomaterials for cathodes and an- odes of fuel cells. However, the high cost and scarcity of metals make the use of pure metal catalysts unprof- itable and require a reduction in their number with the maximum effectiveness of their use. This is achieved by the use and development of new catalysts on carri- ers. Consequently, the necessity to create inexpensive, stable and efficient electrocatalysts is an urgent task of today, the solution of which will be of considerable in- terest in the theoretical and practical aspects. REFERENCES: 1. Коровин Н. В. Топливные элементы и элек- трохимические энергоустановки [Текст] / Н. В. Ко- ровин. – М.: Издательство МЭИ, 2005. – 278 с. 2. Замена платины в топливных элементах [Електронний ресурс]. – Режим доступа: https://ria.ru/science/20170116/1485749611.html, сво- бодный. – Загол. с экрана. 3. Фильштих В. Топливные элементы [Текст] / В. Фильштих. – М.: Издательство «МИР», 1968. – 420 с. 4. Ямчук А. И. Топливные элементы и разра- ботка эффективных катализаторов для их оптими- зации [Текст] / А. И. Ямчук, В. Г. Систер, М. Р. Та- расевич // Электрохимическая энергетика: сб.науч.тр./ ДонНТУ. – Донецк, 2009. – С. 114-117. 5. Архангельский И. В. Низкотемпературные топливные элементы с протонопроводящей поли- мерной мембраной: теоретические основы, матери- алы и конструкции [Текст]: науч.пос. / И. В. Архан- гельский, Ю. А. Добровольский, Т. Н. Смирнова. – М.: Московский Государственный Университет имени М. В. Ломоносова, 2000. – 84 с. 6. Пахомов Н. А. Научные основы приготов- ления катализаторов: введение в теорию и практику [Текст]: науч. изд. / Н. А. Пахомов; за общ. Ред В. А. Садыкова. – Н.: СО РАН, 2011. – 262 с. 7. Електрохімічні генератори. Паливні комірки [Електронний ресурс]. – Режим доступа: https://msd.in.ua/elektroximichni-generatori-palivni- elementi-komirki/, свободный. – Загол. с экрана. 8. Керамічна паливна комірка [Електронний ресурс]. – Режим доступа: http://sofc-edu.com/, сво- бодный. – Загол. с экрана. 9. Тарасов Б. П. Проблемы и перспективы со- здания материалов для хранения водорода в связан- ном состоянии [Текст] / Б. П. Тарасов // Альтерна- тивная энергетика и экология. – 2006. – № 2. – С. 11-17. 10. Orimo, S. I. Complex hydrides for hydrogen storage / S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Zut- tel, C. M. Jensen // Chem. Rev. – 2007. – V. 107. – № 10. – P. 4111-4132. 11. Тарасов Б. П. Методы хранения водорода и возможности использования металлогидридов [Текст] / Б. П. Тарасов, В. В. Бурнашева, М. В. Ло- тоцкий, В. А. Яртысь // Альтернативная энергетика и экология. – 2005. – № 12. – С. 14-37. 12. Schlesinger, H. I. Sodium borohydride, its hy- drolysis and its use as a reduction agent and in the gen- eration of hydrogen / H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, R. K. Hyde // J. Am. Chem. Soc. – 2003. – V. 75. – P. 215- 219. 13. Galli, S. Development of a compact hydrogen generator from sodium borohydride / S. Galli, M. Fran- cesco, G. Monteleone, R. Oronzio, A. Pozio // Int. J. Hydrogen Energy. – 2010. – V. 35. – № 14. – P. 7344- 7349. 14. Gervasio, D. Room temperature micro-hydro- gen-generator / D. Gervasio, S. Tasic, F. Zenhausern // J. Power Sources. – 2005. – V. 149. – P. 15-21. 15. Kojima, Y. Development of 10 kW-scale hy- drogen generator using chemical hydride / Y. Kojima, K. Suzuki, K. Fukumoto, Y. Kawai, M. Kimbara, P. Nakanishi, S. Matsumoto // J. Power Sources. – 2004. – V. 125. – № 1. – P. 22-26.
  • 9. Norwegian Journal of development of the International Science No 34/2019 9 16. Hirscher, M. New materials for future energy storage / M. Hirscher // Handbook of hydrogen storage. – 2010. – Р. 126-128. 17. Demirci, U. B. Cobalt in NaBH4 hydrolysis / U. B. Demirci, P. Miele // Phys. Chem. Chem. Phys. – 2010. – V. 12. – № 44. – P. 14651-14665. 18. Muir, S. S. Progress in sodium borohydride as a hydrogen storage material: Development of hydroly- sis catalysts and reaction systems / S.S. Muir, X.D. Yao // Int. J. Hydrogen Energy. – 2011. – № 10. – P. 5983- 5997. 19. Chandra, M. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system / M. Chandra, Q. Xu // J. Power Sources. – 2006. – V. 159. – № 2. – P. 855-860. 20. Xu, Q. Room temperature hydrogen genera- tion from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. / Q. Xu, M. Chandra // J. Power Sources. – 2007. – V. 168. – № 1. – P. 135-142. 21. Umegaki, T. Boron-and nitrogen-based chem- ical hydrogen storage materials / T. Umegaki, J. M. Yan, X. B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu // Int. J. Hydrogen Energy. – 2009. – V. 34. – № 5. – P. 2303-2311. 22. Patel, N. Nanoparticle-assembled Co-B thin film for the hydrolysis of ammonia borane: A highly active catalyst for hydrogen production / N. Patel, R. Fernandes, G. Guella, A. Miotello // Appl. Catal. – 2010. – V. 95. – № 1 – P. 137-143. 23. Tong, D. G. Magnetically recyclable hollow Co-B nanospindles as catalysts for hydrogen generation from ammonia borane / D. G. Tong, X. L. Zeng, W. Chu, D. Wang, P. Wu // J. Mater. Sci. – 2010. – V. 45. – № 11. – P. 862-867. 24. Prater, D. N. Energy density of a methanol/hy- drogen-peroxide fuel cell / D. N. Prater, J. J. Rusek // Appl. Energy. – 2003. – V. 74. – № 1-2. – P. 135-140. 25. Bewer, T. Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution / T. Bewer, T. Beck- mann, H. Dohle, J. Mergel, D. Stolten // J. Pow. Sources. – 2004. – V. 125. – № 1. – P. 1-9. 26. Sung, W. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution / W. Sung, J.W. Choi // J. Pow. Sources. – 2007. – V. 172. – № 1. – P. 198-208. 27. Gu, L. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell / L. Gu, N. Luo, G. H. Miley // J. Pow. Sources. – 2007. – V. 173. – № 1. – P. 77-85. 28. Miley, G. H. Direct NaBH4/H2O2 fuel cells / G. H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, D. J. Carroll // J. Pow. Sources. – 2007. – V. 165. – № 2. – P. 509-516. 29. Raman, R. K. A. High Output Voltage Direct Borohydride Fuel Cell / R. K. Raman, N. A. Choudhury, A. K. Shukla // Electrochem. Sol. Lett. – 2004. – V. 7. – № 12. – P. 488-491. 30. Yang, W. Nanostructured palladium-silver coated nickel foam cathode for magnesium–hydrogen peroxide fuel cells / W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin // Electrochim. Acta. – 2006. – V. 52. – № 1. – P. 9-14. 31. Yang, W. Nanostructured silver catalyzed nickel foam cathode for an aluminum–hydrogen perox- ide fuel cell / W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin // Electrochim. Acta. – 2006. – V. 160. – № 2. – P. 1420-1424. 32. Medeiros, M. G. Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles / M. G. Medeiros, R. R. Bessette, C. M. Deschenes, C. J. Pa- trissi, L. G. Carreiro, S. P. Tucker, D. W. Atwater // J. Pow. Sources. – 2004. – V. 136. – № 2. – P. 226-231. 33. Brodrecht, D. J. Aluminum–hydrogen perox- ide fuel-cell studies / D. J. Brodrecht, J. J. Rusek // Appl. Energy. – 2003. – V. 74. – № 1-2. – P. 113-124. 34. Hasvold, O. Power sources for autonomous underwater vehicles / О. Hasvold, N. J. Stоrkersen, S. Forseth, T. Lian // J. Pow. Sources. – 2006. – V. 162. – № 2. – P. 935-942. 35. Cao, D. Catalytic behavior of Co3O4 in elec- troreduction of H2O2 / D. Cao, J. Chao, L. Sun, G. Wang // J. Pow. Sources. – 2008. – V. 179. – № 1. – P. 87-91. 36. Medeiros, M. G. Optimization of the magne- sium-solution phase catholyte semi-fuel cell for long duration testing / M. G. Medeiros, R. R. Bessette, C. M. Deschenes, D. W. Atwater // J. Pow. Sources. – 2010. – V. 96. – № 1. – P. 236-239. 37. Liu, H. Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphy- rin and its application for fuel cell cathodes / H. Liu, L. Zhang, J. Zhang, D. Ghosh, J. Jung, B. W. Downing, E. Whittemore // J. Pow. Sources. – 2006. – V. 161. – № 2. – P.743-752. 38. Raman, R. K. Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct boro- hydride fuel cells / R. K. Raman, A. K. Shukla // J. Appl. Electrochem. – 2015. – V. 35. – № 11. – P. 1157- 1161. 39. Новый высокоэффективный катализатор для топливных элементов [Електронний ресурс]. – Режим доступа: https://www.gazeta.ru/sci- ence/2007/10/25_a_2263849.shtml, свободный. – За- гол. с экрана. 40. Кобальт с графеном может вытеснить из топливных элементов дорогую платину [Електрон- ний ресурс]. – Режим доступа: http://ko.com.ua/ko- balt_s_grafenom_mozhet_vytesnit_iz_toplivnyh_jele- mentov_doroguyu_platinu_67429, свободный. – За- гол. с экрана. 41. Tang, X. Cobalt and nitrogen-doped carbon catalysts for enhanced oxygen reduction and power production in microbial fuel cells. / X. Tang, H. Yong Ng // Electrochim. Acta. – 2017. – № 120. – Режим доступа: http://dx.doi.org/doi:10.1016/j.electacta.2017.06.120. 42. Ghosh, A. Palladium-nitrogen coordinated co- balt alloy towards hydrogen oxidation and oxygen re- duction reactions with high catalytic activity in renew- able energy generations of proton exchange membrane
  • 10. 10 Norwegian Journal of development of the International Science No 34/2019 fuel cell / A. Ghosh, P. Chandran, S. Ramaprabhu // Appl. Energy. – 2017. – № 208. – P. 37-48. 43. Wang, J. Vacancy-assisted oxygen reduction reaction on cobalt-based catalysts in direct borohydride fuel cell revealed by in-situ XAFS and XRD / J. Wang, L. Lin, Y. He, H. Qin, S. Yan, K. Yang, A. Li, J. Liu // Electrochim. Acta. – 2017. – № 254. – P. 72-78. 44. Ma, J. Effect of cobalt precursors on Co3O4 anodic catalyst for a membrane-free direct borohydride fuel cell / J. Ma, X. Gao, D. Wang, T. Xue, S. Yang // J. Alloys and Compounds. – 2017. – № 724. – P. 474- 480. 45. Guo, F. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode / F. Guo, D. Cao, M. Du, K. Ye, G. Wang // Appl. Surf. Scie. – 2017. – № 153. – Режим доступа: https://doi.org/10.1016/j.ap- susc.2017.12.153. 46. Garcia, E. M. The electrochemical behavior of cobalt electrodeposits on 430 stainless steel as solid ox- ide fuel cell interconnect / E. M. Garcia // Surf. Coat. Technol. – 2013. – № 235. – P. 10-14. 47. Литий-ионные аккумуляторы [Електрон- ний ресурс]. – Режим доступа: http://keeppower.com.ua/li-ion-article, свободный. – Загол. с экрана. 48. Литий-ионные (Li-ion) аккумуляторы [Електронний ресурс]. – Режим доступа: http://2a3a.ru/li-ion/, свободный. – Загол. с экрана. 49. Ko, H. S. Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries / H. S. Ko, J. H. Kim, J. Wang, J. D. Lee // J. Power Sour. – 2017. – № 372. – P. 107–115. 50. Schmidt, S. Fe and Co methylene diphospho- nates as conversion materials for Li-ion batteries / S. Schmidt, S. Sallard, D. Sheptyakov, M. Nachtegaal, P. Novak, C. Villevieille // J. Power Sour. – 2017. – № 342. – P. 879–885. 51. Han, X. Preparation of highly activated Co/Mn-1,4,5,8-naphthalenetetra-carboxylate and its combustion product as anodes for Li-ion batteries / X. Han, H. Mao, H. Liu // J. Electroan. Chem. – 2017. – № 3487. – Режим доступа: https://doi:10.1016/j.jelechem.2017.08.046. 52. Park, A. R. Si/Co-CoSi2/reduced graphene ox- ide ternary nanocomposite anodes for Li-Ion batteries with enhanced capacity and cycling stability. / A R. Park, M. G. Nam, A. Y. Kim, K. S. Kim, M. S. A. S. Shah, J. Y. Lee, W. J. Kim, J. K. Lee, P. J.Yoo // J. Alloys Compounds. – 2017. – № 42535. – Режим доступа: https://doi.org/10.1016/j.jall- com.2017.07.119.
  • 11. Norwegian Journal of development of the International Science No 34/2019 11 MEDICAL SCIENCES OPTIMIZATION OF METHODS FOR DIAGNOSTIC AND TREATMENT OF PATIENTS WITH HEPATIC ABCESSES Ali-Zade S. Candidate of medical sciences, Assistant of the Department of Surgical Diseases №1, Avicenna Tajik State Medical University ОПТИМИЗАЦИЯ МЕТОДОВ ДИАГНОСТИКИ И ЛЕЧЕНИЯ БОЛЬНЫХ С АБСЦЕССАМИ ПЕЧЕНИ Али-Заде С.Г. кандидат медицинских наук, ассистент кафедры хирургических болезней №1, ТГМУ имени Абуали ибни Сино Abstract The article presents the results of 24 clinical observations of patients with liver abscess. The possibilities of the integrated and effective use of modern minimally invasive surgical technologies in the diagnosis and treatment of patients with this pathology are shown. Аннотация В статье приведены результаты 24 клинических наблюдений больных с абсцессом печени. Показаны возможности комплексного и эффективного использования современных малоиивазивных хирургических технологий в диагностике и лечении больных с данной патологией. Keywords: liver abscesses, ultrasound, CT scan. Ключевые слова: абсцесс печени, ультразвуковое исследование, компьютерная томография. Введение. Одним из наиболее грозных пора- жений гепатобилиарной системы являются аб- сцессы печени. Частота встречаемости данной па- тологии в структуре гнойных хирургических забо- леваний колеблется от 0,006 до 0,022% случаев [1, с.81; 7, с.31]. За последние годы резко увеличилось количество миниинвазивных и открытых операций на печени и желчевыводящих системах, а также транспеченочных дренажей, что, в свою очередь, привело к увеличению частоты развития холангио- генных абсцессов печени [2, с.43]. Особое внимание уделяется диагностике аб- сцесса печени, которая на сегодняшний день не представляет особых сложностей. Следует отме- тить, что при диагностике данной патологии чув- ствительность УЗИ достигает 87–96%, чувстви- тельность метода компьютерной томографии со- ставляет 90–97% [4, с.52; 5, с.87]. В современной хирургии в качестве терапии широко применяется чрескожная пункция абсцесса печени и его дрени- рование [6, с.90]. Тем не менее, частота летальных исходов при данном заболевании остаётся высокой и составляет 11-36% [3, с.83]. Цель исследования – оптимизация результа- тов диагностических мер и оперативного лечения абсцесса печени с использованием мини–инвазив- ных технологий. Материалы и методы исследования. Под нашим наблюдением находились 24 пациента с аб- сцессами печени. Распределение больных по при- чине заболевания приведено в таблице 1. Из них с холангитом и последующим холангиогеным аб- сцессом печени было 8 (33,3%) больных, в 4 (16,7%) случаях наблюдалась тупая травма живота с посттравматическим абсцессом печени, абсцессы после эхинококкэктомии из печени (остаточная по- лость) наблюдались у 4 (16,7%) пациентов, у 2 (8,3%) больных причиной абсцесса печени явился распад кисты альвеококкоза. В 2 (8,3%) случаях причиной абсцесса печени явились опухоли: у од- ного имела место опухоль нижней полой вены, у другого – опухоль печени с распадом. У 2 (8,3%) пациентов наблюдалось осложнение после тром- боза воротной вены, ещё у 2 (8,3%) пациентов при- чины абсцесса печени не были установлены, у этих больных сопутствующим заболеванием был сахар- ный диабет, а в анамнезе отсутствовали травмы жи- вота. Таблица 1 Распределение больных по причинам заболевания Причины Абс. % Холангит 8 33,3 Тупая травма живота 4 16,7 После эхинококкэктомии из печени (остаточная полость) 4 16,7 Альвеококкоз печени 2 8,3 Опухолевый генез 2 8,3 После тромбоза воротной вены 2 8,3 Причина абсцесса не выявлена 2 8,3
  • 12. 12 Norwegian Journal of development of the International Science No 34/2019 Возраст больных колебался от 23 до 82 лет, средний возраст составил 50,1±3,4 лет. Женщины составили 11 (45,8%) человек, а мужчины 13 (54,2%). Всем пациентам было выполнено ультра- звуковое исследование на аппарате «SIEMENS» фирмы Acuson – CV 70 (Германия), мультичастот- ным конвексным датчиком 3,5 МГц, работая в ре- альном масштабе времени с использованием три- плексного сканирования. До пункции больным про- водили обезболивание анальгин-50%- 2,0+димедрол-1%-1,0в/м или промедол-1%-1,0 в/м с последующей местной анестезией новокаином 0,5%-20мл +лидокаин -2%-4мл с лимонной короч- кой до брюшины. Разрез на коже зависел от диа- метра дренажа (0,5-0,8см), проводили иглу полости абсцесса, и по игле вводили проводник и устанав- ливали дренаж фирмы «COOK» размерами 14-16 Fr (French). Некоторым больным с холангиогеными абсцессами размерами от 1-2 см проводилась одно- моментная пункция абсцесса. После установки дре- нажа содержимое абсцесса освобождали, полость абсцесса промывали антисептическими раство- рами, ежедневно проводили УЗИ. Эффективность лечения определяли по размеру остаточной поло- сти. Удаление дренажа проводили под контролем УЗИ. Кроме того, больные получали дезинтоксика- ционную и антибактериальную терапии. Результаты исследования и их обсуждение. Пациенты с абсцессами печени были госпитализи- рованы в городскую клиническую больницу скорой медицинской помощи г.Душанбе. При этом 2 (8,3%) больных поступили в удовлетворительном состоянии, у 2 (8,3%) пациентов была легкая сте- пень тяжести, в среднетяжелом и тяжелом состоя- нии поступили 20 (83,3%) пациентов. У 4 больных причиной холангиогеного абсцесса явилась лапаро- скопическая холецистэктомия, у одного больного имелось ятрогенное повреждение правого протока печени, в 2 (8,3%) случаях отмечалось развитие за- болевания после лапаротомии, холецистэктомии, и дренирования холедоха, у 1 (4,2%) больного – по- сле трансторакальной гастрэктомии. В 3-х (12,5%) случаях развился посттравматический абсцесс по- сле получения тупой травмы живота, а в 1 (4,2%) случае отмечалось развитие заболевания после па- дения с высоты. Абсцесс печени был диагностиро- ван в период от 12 дней до 2 месяцев. Во всех слу- чаях у пациентов наблюдалась стёртая клиника. Симптоматическая картина характеризовалась наличием гипертермии вплоть до лихорадки, об- щей слабости, снижением аппетита. В 16 (66,7%) случаях пациенты жаловались на наличие боли в области подреберья справа. В крови отмечалось увеличение числа лейкоцитов и снижение числа эритроцитов и гемоглобина. Ультразвуковая картина при абсцессе печени характеризовалась наличием образования непра- вильной формы, контуры которого не имеют чёт- ких границ, со сниженной эхогенностью либо её от- сутствием и др. Размеры абсцесса печени при УЗИ диагностике составили от 2 до 18 см (рис. 1, 2). Рисунок 1 Ультразвуковое исследование абсцесса правой доли печени в В–режиме По количеству абсцессов печени выделили несколько групп больных: солитарные – наблюдались у 15 (62,5%) больных, множественные – у 5 (20,8%) и милиарные - у 4 (16,6%) пациентов. У 14 (58,3%) больных абсцессы печени располагались в правой доле, у 4 (16,7%) больных - в левой доле и в 6 (25%) случаях - в обеих долях печени.
  • 13. Norwegian Journal of development of the International Science No 34/2019 13 Рисунок 2 Ультразвуковое исследование абсцесса левой доли печени в В–режим Компьютерная томография выполнена у 4 больных. При этом наблюдались характерные изменения в печени – образование жидкостной плотности, с четкими границами, неровными контурами, с пери- фокальным отеком (рис. 3). Рисунок 3 КТ изображение, абсцессы правой доли печени Дренирование абсцесса печени выполнялось под контролем УЗИ. Определение направления пункционного канала проводилось с помощью дан- ных УЗИ с выбором места пункции на коже. Выбор доступа проводился таким образом, чтобы расстоя- ние от места введения дренажа до его попадания в полость абсцесса печени составляло свыше 3 см здоровой печёночной ткани. Данное условие спо- собствует предотвращению выхождения в брюш- ную полость содержимого из полости абсцесса с дальнейшим развитием гнойного перитонита. Та- ким образом, доступ для дренирования абсцесса пе- чени избирался в зависимости от его расположения. Так, в 10 (41,7%) случаях процедура проводилась трансабдоминальным доступом, в 6 (25,0%) слу- чаях дренирование выполнялось боковым досту- пом, ещё в 8 (33,3%) случаях для дренирования был выбран межреберный доступ. Дренажная трубка на УЗИ при проведении процедуры представлялась в виде гиперэхогенной структуры (рис. 4). Во всех случаях был достигнут желаемый ле- чебный эффект – клиническое состояние больного улучшилось, отмечалось снижение температуры тела до нормальных величин, появление аппетита, улучшение показателей крови. На УЗИ наблюда- лось уменьшение и исчезновение полости абсцесса. Дренаж удалялся на 14-25 сутки.
  • 14. 14 Norwegian Journal of development of the International Science No 34/2019 Рисунок 4 Ультразвуковое изображение дренажной трубки в полости абсцесса Осложнения в виде кровотечения или желче- истечения и перитонита не наблюдались. Болевой синдром купировали с помощью обезболивающих средств. У 2 больных на 14-15 сутки после пункции абсцесса по поводу альвеококкоза была выполнена обширная правосторонняя гемигепатэктомия. У од- ного больного после ятрогенного повреждения пра- вого протока была выполнена правосторонняя ге- мигепатэктомия. Летальный исход наблюдался у 4 (16,6%) больных. Из них в 2-х случаях после об- ширной правосторонней гемигепатэктомии, в 1 случае отмечался тромбоз воротной вены с после- дующим развитием септического состояния и поли- органной недостаточности, ещё у 1 больного име- лась опухоль печени с распадом и последующим метастазом в брюшную полость. Заключение. Таким образом, при наличии аб- сцесса печени и стертой клинической формы всем больным необходимо проводить УЗИ или КТ. По- сле установки диагноза, в зависимости от причины абсцесса, проводится миниинвазивное хирургиче- ское лечение. Свою значительную результатив- ность показало чрескожное дренирование. Выпол- нение данной манипуляции непосредственно под контролем УЗИ позволяет добиться необходимого результата и предупредить развитие грозных осложнений на всех этапах проведения данной про- цедуры: выбор оптимального расположения пунк- ционного канала, проведение дренажа, контроль за эвакуацией содержимого из полости абсцесса и промыванием антисептическими растворами, уменьшение размеров абсцесса печени при УЗИ вплоть до исчезновения выделяемого содержимого. Выраженная эффективность и отсутствие грозных осложнений являются основанием для рекоменда- ции к использованию чрескожного дренирования под УЗ контролем при абсцессах печени. СПИСОК ЛИТЕРАТУРЫ: 1. Ахмедов С.М. Место резекции в комплекс- ном лечении абсцессов печени // Актуальные во- просы гепатобилиарной хирургии: материалы XXI Международного конгресса ассоциации гепатоби- лиарных хирургов стран СНГ. – Пермь, 2014. – С. 81. 2. Бельков А.В. Правосторонняя гемиге- патэктомия по поводу абсцесса печени, осложнен- ная рецидивирующим профузным кровотечением / А.В. Бельков [и др.] // Хирургия. – 2000. – №12. – С. 43-44. 3. Благитко Е.М. Абсцессы печени: динамика причин и исходов / Благитко Е.М., Пащина С.Н., Беспалов А.А. // Актуальные вопросы гепатобили- арной хирургии: материалы XXI Международного Конгресса ассоциации гепатобилиарных хирургов стран СНГ. – Пермь, 2014. – С. 83. 4. Вилсон Дж.И. Ультразвуковое исследова- ние в диагностике посттравматических абсцессы печени и контроле мини-ивазивных лечебных вме- шательств // «Травма». - 2016. – Т. 17, №1. - С.51- 57. 5. Гаюров У.Х. Диагностика и тактика лече- ния холангиогенных абсцессов печени / Гаюров У.Х., Курбонов К.М. // Актуальные вопросы гепа- тобилиарной хирургии: материалы XXI Междуна- родного конгресса ассоциации гепатобилиарных хирургов стран СНГ. – Пермь, 2014. – С. 87-88. 6. Заривчацкий М.Ф. Оптимизация диагно- стики и лечения абсцессов печени // Актуальные вопросы гепатобилиарной хирургии: материалы XXI Международного конгресса ассоциации гепа- тобилиарных хирургов стран СНГ. – Пермь, 2014. – С.90-91. 7. Зубов А.Д. Посттравматические абсцессы печени: ультразвуковая диагностика и мини-инва- зивное эхоконтролируемое лечение / А.Д. Зубов, Дж.И. Вилсон // «Травма» – 2014. –Том 15, – №3, – С.31-37.
  • 15. Norwegian Journal of development of the International Science No 34/2019 15 PSYCHOEDUCATIONAL MODULE AS A COMPONENT OF COMPLEX SYSTEM OF MEDICAL- PSYCHOLOGICAL SUPPORT FOR FAMILIES, WHERE A PATIENT WITH ENDOGENOUS MENTAL DISORDER LIVES Kaminska A. MD, PhD, Associated professor, Department of Medical Psychology and Psychiatry with the Course of Postgraduate Education of National Pirogov Memorial University, Vinnytsya, Ukraine Pshuk N. MD, PhD, DSci, Professor, Head of Medical Psychology and Psychiatry Department with the Course of Postgraduate Education, National Pirogov Memorial Medical University, Vinnytsya Stukan L. MD, PhD, Associated professor, Department of Medical Psychology and Psychiatry with the Course of Postgraduate Education of National Pirogov Memorial University, Vinnytsya, Ukraine Abstract Family environment of patients with endogenous mental disorders should be considered as a powerful source of socio-therapeutic resource for restoring patients’ personality potential and contributing to their social adapta- tion. In this article psychoeducation is presented as one of the key approaches in multidimensional system of psychosocial rehabilitation. The article focuses on psychoeducation as an integral part of complex system of med- ical-psychological support for families, where a patient with endogenous mental disorder lives. Keywords: psychosocial rehabilitation, psychoeducation, family caregivers, endogenous mental disorders, medical-psychological support system, family burden. Recently, psychosocial therapy and rehabilitation of patients with endogenous mental disorders (EMD) as a form of psychiatric care has been widely recognized and used in Ukraine and in the world. In context of the biopsychosocial model of development of EMD, fam- ily environment of patients should be considered as a powerful source of socio-therapeutic resource for re- storing patient's personality potential, contributing to social adaptation and achieving equal status in society [5, p. 162. At the same time, data from current research indicate numerous negative effects of living and inter- acting with a mentally sick family member, in particu- lar for family caregivers, who take responsibility for the psychosocial support of a patient, associated with sig- nificant psychosocial burden [11, p. 100]. Patients with affective disorders and schizophrenia and their family caregivers often face discrimination, misunderstanding and stigmatization. At the onset of the disease, psycho- pathological symptoms can be difficult to understand and accept by family members, triggering a wide range of psychological reactions, that are not always con- structive and conducive to the psychosocial rehabilita- tion and readaptation of the patient. Symptoms of af- fective disorders and schizophrenia are challenging for the family, where a patient with EMD lives [9, p. 508]. Some symptoms, such as hallucinations and delusional ideas, are often confusing and frightening, whereas de- pressive mood, suicidal thoughts and attempts, apathy, cognitive deficits can dramatically alter patient's per- sonality, affecting emotional, cognitive, and behavioral reactions, in turn, it affects the entire family system and ultimately the disease course [12, p. 7]. In this regard, development and implementation of psycho-educational work into the complex system of medical-psychological support for families, where pa- tients with EMD live, is an urgent task of modern med- ical psychology. For domestic psychiatric practice, psycho-educa- tional work with family caregivers of patients with EMD is a fairly new type of psychosocial intervention. Meanwhile, in foreign literature psychoeducation is presented as one of the key approaches to the training and psychosocial treatment of patients with mental dis- orders and support for their family caregivers, and is considered as a significant component of psychosocial interventions in the multidimensional system of psy- chosocial rehabilitation. The aim of our study was to substantiate scientifi- cally a complex system of medical-psychological sup- port for families, where mentally sick patient lives, from the standpoint of a systematic approach, based on the study of clinical and psychological manifestations and risk factors for the development of family function- ing disorders in families, where patients with EMD live. In order to achieve the aim of the study, 243 family caregivers (FC) of patients with paranoid schizophrenia (main group 1 - 168 persons, G1) and affective disor- ders (main group 2 - 75 persons, G2) were examined in 2015–2019 on the basis of informed consent with the principles of medical bioethics and deontology, using specially designed questionnaire and psychological testing tools. The criteria for inclusion of the respondents to the study were: informed consent for clinical- psychological examination and psychological testing, no prior requests for help from a psychiatrist, no history of traumatic brain injury. Control group (CG) included 55 mentally healthy persons (35 female and 20 male), in whose families were was no mentally sick patient, and who had never sought for the help of a psychiatrist. The work was carried out in three stages: at first stage we examined the respondents of G1 and G2 in order to study in depth social-psychological, individual-psychological, interpersonal- communicative and behavioral predictors of family disaptation. The second stage of work included substantiation, development and implementation of an
  • 16. 16 Norwegian Journal of development of the International Science No 34/2019 appropriate system of medical-psychological support for families, where patients with EMD live, based on data obtained during the previous stage of work. At third stage, the efficiency of implemented system was evaluated. On the basis of the analysis of the data, obtained during the first stage, we developed a theoretical substantiation and proposed an algorithm for a complex system of medical and psychological support for FC of patients with EMD. Targets of psychocorrectional influence, aimed at the development of constructive behavior and improving quality of interpersonal communication of patients with EMD, were defined. Integrative approaches were used including the following methods: - cognitive-behavioral psychotherapy; - mindfullness-oriented cognitive therapy; - psychotraining; - art therapy. Choice of the method of psycho-corrective inter- vention and specific content of psycho-correction ses- sions were determined by the actual goals of psycho- correction. The proposed system of measures was aimed at forming an adequate attitude of family caregivers to- wards the illness of a family member, improving com- municative competence through formation of empathic skills, effective communication and adaptive coping behavior, creating favorable conditions for activating communication resources and enhancing adaptive per- sonality potential. The objectives of the system were: 1) providing FC of patients with realistic ideas about causes, mechanisms of development, peculiari- ties and consequences of the disease, understanding possibilities of its treatment, prognosis, as well as im- portance of socio-therapeutic environment for social adaptation of patients and prevention of stigmatization; 2) formation of the ability to predict consequences of their behavior, to understand manifestations of ver- bal and non-verbal communication, to be guided in the overall picture of interpersonal interaction; 3) mastering skills of constructive coping behavior under stress conditions; 5) creating conditions for expanding the range of emotional response and development of reflection in process of interpersonal interaction; 7) creating favourable conditions for forming ade- quate interpersonal interaction in family; 8) creation of preconditions for development of value-based attitudes aimed at preserving health and ac- tivating personal adaptive capacity in FC. In terms of content, proposed system of medical- psychological support for FC of patients with EMD is a three-component structure (Fig. 1): 1. psychoeducational module aimed at psychoedu- cation of family caregivers of patients with EMD on the causes, mechanisms of formation, approaches to treat- ment and consequences of mental disease; 2. practically oriented module (psychotraining, group and individual psychocorrection work in cogni- tive-behavioral approach, mindfulness), aimed at en- hancing awareness of feelings, deepening of self-un- derstanding, activation of adaptive potential, involve- ment of personality resource components, working out intrapersonal and interpersonal conflicts related to the illness of a family member, expression of negative emotions; 3. developmental module, based on psychotrain- ing as a special form of work with an individual and a group, aimed at acquiring knowledge, skills, assimila- tion of effective ways of communication, activation of communicative resources through such methods as group discussion, modelling of family situations, art- therapeutic techniques. Fig. 1 Algorithm of psycho-corrective measures for family caregivers of patients with EMD Our system provides combination of group and individual forms of psycho-corrective work with the use of appropriate means, techniques and methods of psycho-corrective influence (Table 1). І • І module – psychoeducational. • Tasks: theoretical awareness-raising for family caregivers about mental disease problem, building motivation for further psychocorrective work. ІІ • ІІ module – practice-oriented. • Tasks: enhancing resilience, development of psychological self- regulation skills, creating conditions for activating personality adaptation potential, activating personality communicative resources, communication competrence development. ІІІ • ІІІ module – developmental. • Tasks: learning constructive coping-behavior skills.
  • 17. Norwegian Journal of development of the International Science No 34/2019 17 Table 1 Targets and content of an integrative system of psycho-corrective measures for family caregivers of patients with EMD Target Aim Means - dramatic or negative attitude towards the patient 1. development of an adequate type of attitude towards the patient; 2. elimination of dramatic and negative tendencies towards the patient; 3. realistic, conscious and responsible attitude to the disease, its treatment and its possible consequences; 4. raising the level of social adaptability of the family as a whole. Psychoeducation, group psychocorrection, cognitive-behavioral psychotherapy - pathological psycho- emotional state 1. reducing overall stress; 2. normalization of psycho-emotional state; 3. reducing the level of neuroticism; 4. actualization of personal resources of self-change; Art therapy, mindfulness-oriented cognitive therapy - decrease in communication resource, negative communication attitude, insufficient development of social intelligence 1. development of empathic and affiliation resources; 2. reduction of sensitivity to neglection; 3. formation of communicative competence 4. raising the level of social adaptability and restoring satisfaction with social achievements Group psychocorrection, communication competence training, mindfulness - maladaptive behavioral patterns 1. mastering coping skills; 2. enhancing stress resistance and psychological resilience; 3. formation of productive coping; 4. activation of adaptive personal resources Group psychocorrection, cognitive-behavioral psychotherapy, mindfulness The tasks of the psychoeducational module were: stimulation of formation of an active personal position of family caregivers on overcoming and prevention of consequences of mental disorder, development of re- sponsibility for their social behavior and learning ade- quate coping strategies to use according to the presence of mental pathology in a close family member, restor- ing social contacts and improving psycho-emotional and social-communicative competence. The main assets of the psychoeducational module of medical-psychological support system for FC of pa- tients with EMD are: 1. awareness-raising about mental illness that fa- cilitates the timely recognition and management of cer- tain painful manifestations and symptoms in a family member; 2. receiving psychosocial support when group is a constant source of support and, at the same time, a ther- apeutic environment in which FC can develop adequate communication skills and coping behaviors in shel- tered, emotionally secure conditions; 3. meeting the psychological needs of communi- cation, group acceptance, belonging; 4. creation of favorable basis for further medical- psychological interventions. Psychoeducation as a group method of work, be- longs to the so-called educational type, in which ses- sions are built on the principle of a thematic educational seminar with elements of social and behavioral train- ing. Psychoeducation is focused on providing infor- mation, including a list of specific issues discussed in the group. Participants are provided with information on spe- cific issues (for example, on the pathogenesis of the dis- ease and features of drug therapy) with the simultane- ous monitoring of the psycho-emotional state of FC. Group sessions help support FC and patients at a stable level of functioning; help FC and their "significant oth- ers" better understand the nature and features of mental illness and how it affects the patient and family mem- bers; contribute to the recognition of life stressors that can provoke exacerbations; help to properly change family functioning during worsening of the patient's condition. Thus, on the basis of in-depth study of socio-psy- chological features of family functioning as a socio- therapeutic environment, we offered an integrative sys- tem of psychoeducation and psychocorrection aimed at normalization of psycho-emotional state, development of adaptive behaviors of family caregivers, enhance- ment of their empathy and affiliation resource, creation of favorable conditions for activation of personal re- sources and adaptive capacity of patients with EMD. By structure, the system of medical-psychological support for families of patients with EMD included three main stages: a) psychodiagnostic; b) complex psychocorrection; c) monitoring of psychological changes. The targets of medical-psychological support system were: dramatic or negative type of attitude to- wards the patient, pathological psycho-emotional state (psycho-emotional overload), maladaptive behavioral patterns, individual psychological factors reducing the communicative resource, insufficient development of social intelligence. 83 FC of patients with EMD (two psychocorrec- tion subgroups, SG1 – family caregivers of patients with paranoid schizophrenia and SG2 - family caregiv- ers of patients with affective disorders) were involved in psycho-corrective measures. The control subgroups included 80 PP patients with EMD (CSG1 and CSG2), who did not participate in psychoeducational and psy- chocorrective activities.
  • 18. 18 Norwegian Journal of development of the International Science No 34/2019 The period of determining the effectiveness of de- veloped medical-psychological support system was 6 months from the beginning. Effectiveness criteria were the dynamics of family burden on the scale of family burden assessment and the dynamics of quality of life indicators. The effectiveness of proposed system of medical- psychological support was evaluated by psychological testing method (Caregiver Burden Inventory (CBI), 36- item Short Form Survey (SF-36). Significant reduc- tions in the burden on the family were found, including a decrease in severity of indicators on the scale of "be- havioral problems", "stigma", "problems with psychi- atric institutions", "influence on family" "dependence" with a simultaneous increase in indicators on the scales "accumulation of positive personal experience" and "positive aspects of relationships" in family caregivers of patients with EMD, who participated in psychoedu- cational and psychocorrective activities (P <0.001) (fig. 2). Figure 2. Dynamics of family burden indicators in subgroups of family caregivers (CBI, scores) In control subgroups of family caregivers of pa- tients with EMD, positive dynamics wasn’t identified. The study of quality of life in family caregivers of pa- tients with EMD, who participated in psychoeduca- tional and psychocorrective sessions, allowed to deter- mine its increase in terms of physical and psychological functioning compared to the control subgroups (P <0.01). Thus, a system of medical-psychological support for family caregivers of patients with endogenous men- tal disorders was developed, which included elements of psychoeducation and psychocorrection by methods of cognitive-behavioral psychotherapy; mindfulness- oriented cognitive therapy; psychological training; art therapy. This system needs further implementation and study of its effectiveness in decreasing family disa- daptation in families, where a patient with endogenous mental disorder lives. REFERENCES: 1. Абабков В. А. Адаптация к стрессу. Ос- новы теории, диагностики, терапии / В. А. Абабков, М. Перре. – СПб. : Речь, 2004. – 165 с. 2. Набиуллина Р. Р. Механизмы психологиче- ской защиты и совладания со стрессом (определе- ние, структура, функции, виды, психотерапевтиче- ская коррекция. [Учебное пособие] / Р. Р. Набиул- лина, И. В. Тухтарова. – Казань, 2003. – 98 c. 3. Райгородский Д. Я. Практическая психоди- агностика. Методики и тесты / Д. Я. Райгородский. – Самара: Издательский дом «БАХРАХ–М», 2008. – 672 с. 4. Antonovsky A. Health, Stress and Coping / A. Antonovsky. – San Francisco: Jossey – Bass, 1979. – 255 p. 5. Berk L., Berk M., Dodd S. et al. Evaluation of the acceptability and usefulness of an information web- site for caregivers of people with bipolar disorder. / L. Behaviora l problems Negative symptom s Stigma Problems with psychiatri c institutio ns Influence on family Supportin g the patient Depende nce Lesion Accumula tion of positive personal experienc e Positive aspects of relationsh ips SG1 20 18 13 20 17 17 10 16 17 11 CSG1 26 21 16 25 25 18 14 18 12 6 SG2 12 13 5 10 17 10 12 14 20 12 CSG2 18 14 8 11 18 14 16 22 12 9 20 18 13 20 17 17 10 16 17 11 26 21 16 25 25 18 14 18 12 6 12 13 5 10 17 10 12 14 20 12 18 14 8 11 18 14 16 22 12 9 0 5 10 15 20 25 30 SG1 CSG1 SG2 CSG2
  • 19. Norwegian Journal of development of the International Science No 34/2019 19 Berk, M. Berk, S. Dodd et al. // BMC Medicine / – 2013. – № 11. – №. 1. – P. 162. 6. Caplan G. Mastery of stress: psychosocial as- pects / G. Caplan // Am. J. Psychiatry. – 1981. – Vol. 138, № 4. – P. 413 – 420. 7. Lazarus R. S. Coping theory and research: Past, present and future / R. S. Lazarus // Psychosomatic Medizine. – 1993. – V. 55. – P. 234 – 247. 8. Matarazzo J. Behavior health and behavioral medicine: frontiers for a new health psychology. Amer- ican Psychologist. 1980;35:807–17. [PubMed] 9. Miklowitz D.J. Family Treatment for Bipolar Disorder and Substance Abuse in Late Adolescence. / D.J. Miklowitz // Journal of Clinical Psychology. – 2012. – № 68 (5) – P. 502 – 513. 10. Nadkarni R.B., Fristad M.A. Stress and Sup- port for Parents of Youth with Bipolar Disorder. / R.B.Nadkarni, M.A. Fristad // The Israel Journal of Psychiatry and Related Sciences. – 2012. – № 49 (2). – Р. 104 – 110. 11. Narasipuram S., Kasimahanti S. Quality of life and perception of burden among caregivers of per- sons with mental illness / S. Narasipuram, S. Kasi- mahanti // AP J Psychol Med Am J Nurs. – 2012. – № 13(2). – P. 99 – 103. 12. Pompili M., Harnic D., Gonda X., Forte A., Dominici G., Innamorati M., Girardi, P. Impact of liv- ing with bipolar patients: Making sense of caregivers’ burden./ M. Pompilli, D. Harnic et al. // World Journal of Psychiatry, № 4 (1) – 2014. – P. 1 – 12. THE RELATIONSHIP BETWEEN PECULIARITIES OF THE IMMUNITY AND CLINICAL SYMPTOMS IN EPISODIC PARANOID SCHIZOPHRENIA Mikhailova I. PhD, learding researcher Moscow Research Institute of Psychiatry - Affiliated Office of National Medical Research Center of Psychi- atry and Narcology, named V.P. Serbsky, The Ministry of health, Russia Orlova V. DMS, professor, chief researcher Moscow Research Institute of Psychiatry - Affiliated Office of National Medical Research Center of Psychi- atry and Narcology, named V.P. Serbsky, The Ministry of health, Russia MinutkoV. Doctor of Medical Sciences, Professor, Head of the Clinic Mental Health Clinic, Russia, Moscow Simonova A. DMS, professor of General medical practice chair, Moscow regional research institute (GBUZ MONICA) named M. F. Vladimirsky Russia, Moscow ВЗАИМОСВЯЗИ МЕЖДУ ОСОБЕННОСТЯМИ ИММУНИТЕТА И КЛИНИЧЕСКИМИ ПАРАМЕТРАМИ ПРИСТУПООБРАЗНОЙ ПАРАНОИДНОЙ ШИЗОФРЕНИИ Михайлова И.И. канд.мед.н., ведущий научный сотрудник «Московский институт психиатрии» - филиал ФГБУ «Национальный Медицинский Исследовательский Центр Психиатрии и Наркологии» Минздрава России им. В.П. Сербского, Россия, Москва Орлова В.А. д.мед.наук, профессор «Московский институт психиатрии» - филиал ФГБУ «Национальный Медицинский Исследовательский Центр Психиатрии и Наркологии» Минздрава России им. В.П. Сербского, Россия, Москва Минутко В.Л. д.мед.наук, профессор, руководитель клиники Клиника «Психическое здоровье», Россия, Москва Симонова А.В. д.мед.наук, профессор кафедры общей врачебной практики, Московский областной научно- исследовательский институт (ГБУЗ МОНИКИ) им. М.Ф.Владимирского, Россия, Москва. Abstract For the aim to investigate the systemic relationships between the tension of the different immunity compo- nents (cellular, humoral and phagocytic ones) and clinical features of episodic paranoid schizophrenia 47 patients (25 patients with F20.01-02 and 22 – with F20.03) were studied. For the symptoms assessment BPRS rating was used. The 21 parameters of nonspecific immunity status and the specific one - the Ig M and nuclear Ig G to herpes virus group (herpes simplex virus types 1 and 2, cytomegalovirus, Epstein-Barr virus) concentration in the blood serum were investigated.
  • 20. 20 Norwegian Journal of development of the International Science No 34/2019 We determined the leukocyte content, the lymphocyte subpopulations and the leukocyte phagocytosis in PHAGOTEST with fluorescein (FITC)-labeled opsonized bacteria and calculated the phagocytic index (PhI), the circulating immune complexes (CIC) level by spectrophotometry. The antibodies against the herpesviruses (HSV- 1, HSV-2, CMV, EBV) were determined using the ELISA test. Total serum immunoglobulins, IgG, IgM, and IgA, were determined by immunoturbidimetry. The correlation analysis was done by the program Statistica 6.0 for Windows (StatSoft, USA). The results of the study indicate etiopathogenetic link between schizophrenia and persistent herpes infection. Desirability of developing specific criteria for the laboratory diagnosis of infections in schizophrenia and appro- priateness participation in treatment of patients with schizophrenia infectiologists and immunologists were identi- fied. Аннотация С целью выявления взаимосвязи между напряженностью различных звеньев иммунитета и клиниче- скими особенностями течения параноидной шизофрении было обследовано 47 больных (25 человек с F20.01-02 и 22 – с F20.03 по МКБ-10). Для психометрии использовалась шкала BPRS. В качестве иммуно- логических показателей определялись уровни IgM и IgG к ВПГ1, ВПГ2, ЦМВ, ЭБВ в сыворотке крови (методом ИФА); 21 показатель иммунного скрининга. Статистическая обработка данных проводилась в программе Statistica 6.0 для Windows (StatSoft, США). Полученные данные говорят в пользу этиопатогенетической связи шизофрении с хронической герпе- свирусной инфекцией. Выявлена необходимость разработки особых критериев лабораторной диагностики инфекций при шизофрении с учетом специфичного для нее состояния иммунной системы и целесообраз- ность участия в лечении больных шизофренией инфекционистов-иммунологов. Keywords: schizophrenia; immune system; lymphocytosis; herpesviruses; HSV-1; HSV-2; CMV; EBV. Ключевые слова: параноидная шизофрения, иммунитет, лимфоцитоз, герпесвирусы, ВПГ1, ВПГ2, ЦМВ, ЭБВ. Введение В настоящее время в рамках клинико-биологи- ческого подхода активно исследуются взаимосвязи между различными состояниями и особенностями иммунитета, и клиническими характеристиками шизофрении. Описанный при шизофрении воспа- лительный процесс в ЦНС и церебральных сосудах (8, 12, 16, 26, 18) рядом авторов связывается с врож- денными и приобретенными аномалиями иммуни- тета (7, 17, 36), нарушением регуляторной функции мозга (3) и инфекцией (10, 12, 18, 23). В частности, предположение о значимой роли вирусов в психо- патологии впервые сделано Менинджером в 1922 году на материале больных гриппом. В 1954 году М.А. Морозов обнаружил в крови больных шизо- френией вирусоподобные тельца, а Г.Д. Кобрин- ский (1972) - атипичные АГ и отсутствующие у здо- ровых структуры в лейкоцитах. Тогда же И. В. До- машнева отметила наличие пассируемого эффекта при введении центрифугата ликвора больных ши- зофренией в мозг мышей (цит. по 10). Приведенные и многие другие данные говорили в пользу вирус- ной гипотезы шизофрении, но окончательно она не была доказана. В последние десятилетия, на совре- менном этапе развития вирусологии, исследования по теме вновь активизировались (2, 8, 20, 31, 33, 35- 37) и перешли на иной уровень. Новые данные о ме- ханизмах вирусной персистенции в виде взаимо- действия между собой и с организмом больного по- пуляций полноценных и дефектных вирусов одного вида (6) могут объяснить медленный характер про- текания инфекции у больных шизофренией с ати- пичными проявлениями, а данные эпигенетики о встраивании вирусного генетического материала в ДНК человека могут объяснить механизмы насле- дования шизофрении в рамках вирусогенетической гипотезы (9). В описанном контексте представляет особый интерес исследование роли в шизофреническом процессе герпетических вирусов в связи с их троп- ностью к лимфоцитам, нейронам, клеткам сосуди- стого эндотелия и способностью встраиваться в ДНК человека и передаваться по наследству (1,4). В ряде исследований показана зависимость между титрами сывороточных специфических ан- тител к герпесвирусам и выраженностью некото- рых психопатологических симптомов (29,30,32,35,37). Выявлена резистентность к психо- тропной терапии при шизофрении у пациентов с цитомегаловирусной инфекцией (2). Результаты сравнительных исследований уровней противогерпетических антител у лиц с ши- зофренией по сравнению со здоровыми противоре- чивы. Так, Krause D. с соавторами (25) выявили бо- лее высокие титры антител к нейротропным инфек- ционным агентам, в частности, герпетическим вирусам (ВПГ, ЦМВ и ЭБВ) у больных шизофре- нией по сравнению с контролем. L. Witte с соавто- рами (2015), напротив, не обнаружили достоверных различий между уровнями IgG к ВПГ-1/ВПГ-2, ВВЗ (Varicella Zoster), ЭБВ и ЦМВ в группах здо- ровых лиц и больных шизофренией (36). По дан- ным Gutiérrez-Fernández J, Luna del Castillo JD, Mañanes-González S (2015) частота выявления ВПГ- 1 и ВГЧ-6 при шизофрении не превышает таковую у здоровых лиц (23). Torrey с соавторами (33) описали у больных шизофренией с повышенным уровнем IgG к ЦМВ нормализацию указанного показателя на фоне пси- хотропной терапии, а также улучшение психиче- ского состояния пациентов с повышенным уровнем IgG к ЦМВ на «противогерпетической терапии». Dickerson с соавт. (2003) выявили значимое улуч-