SlideShare a Scribd company logo
1 of 1
Download to read offline
The Data Analysis of TIMSS dataset
using BIFIEsurvey package in R
Mihaela Štiglic
Educational Research Institute Ljubljana, Toulouse School of Economics
Introduction
The BIFIEsurvey package in R contains tools for survey statistics for data
sets with replication designs. In particular, its aim is to analyze data in
educational assessment, such as TIMSS, PISA or PIRLS. Poster presents
computation of descriptive statistics, linear regression and two-level hier-
archical regression. Moreover, it demonstrates how to represent data on
a map.
The Analysis of Data Set
1. Importing data from SPSS
We set our working directory, setwd(“C:/Users/MS/T11"), and then import data
to R by using library foreign. We use TIMSS 2011 database for eigth-
graders in Slovenia. We obtain data frame df.timss. It is recommended to
use use.value.label = F, to assure that variables are imported as numerical.
library(foreign)
df.timss <- read.spss(’mydata.sav’, to.data.frame=T, use.value.label=F)
2. BIFIE object
For the upcoming analysis we convert data frame df.timss to a BIFIE object
bf.data. There exist several ways how to do that. Since standard errors of
statistics at TIMSS are computed using jackknife method, we take this into
account when converting. We also need to specify vector pv_vars with names
of all variables having five plausible values.
library(BIFIEsurvey)
pv_vars <- c("BSMMAT", "BSSSCI")
bf.data <- BIFIE.data.jack(data = df.timss, pv_vars = pv_vars, jktype = "JK_TIMSS")
3. Working with BIFIE object
Descriptive statistics
BIFIE.univar computes means and standard deviations for a given variable.
It already takes into account sample weights. Statistics can be computed for
specific groups like regions, schools or classes. The example presents how to
compute the mean and standard deviation for mathematics achievement across
regions. The results are obtained by calling res1$stat_M and res1$stat_SD.
res1 <- BIFIE.univar(bf.data, vars = "BSMMAT", group = "REGION")
BIFIE.by computes statistics for user defined functions. If we define a func-
tion my.function, then BIFIE.by would compute statistics for this function. The
results are obtained by calling res2$stat. If my.function computes weighted
mean, then we get the same result by using either BIFIE.univar or BIFIE.by.
res2 <- BIFIE.by(bf.data, vars = "BSMMAT", userfct = moja.funkcija, group = "REGION")
Drawing Maps
Drawing a map in R requires first downloading a shapefile with geographical
data for Slovenia, available at www.gadm.org. Since we want to plot statistics
across regions, we select SVN_adm1. For plotting across communities we would
choose SVN_adm2.
library(rgdal)
geo <- readOGR("C:/Users/MS/T11/SVN_adm", "SVN_adm1", verbose=T, stringsAsFactors=F)
We build data frame res.df where the first column consists of mean mathe-
matics achievements across regions while the second one has the associated
region labels from geo@data. For instance, region Pomurska is labeled 1 in our
database whereas it is labeled 8 in geo@data. Hence we need to define a vector
IDnew which associates regions with their labels in geo@data.
IDnew <- c(8,7,3,9,11,10,2,6,0,4,1,5)
res.df <- data.frame(values = res2$stat$est, region = IDnew)
We also build data frame geo.df which consists of geographical coordinates of
the center points of regions accompanied by the their names. This data frame
will be used in order to display the names of the regions on the map.
geo.df <- data.frame(long = coordinates(geo)[, 1], lat = coordinates(geo)[, 2], region
= geo@data$NAME_1)
Using library ggplot2, geographical coordinates k from geo and data frames
res.df and geo.df, we plot a map. Each region is colored according to its
mean mathematics achievement. Arguments expand_limits and coord_map are
used for a good proportion between length and height of the map whereas
geom_text adds the names of the regions on the map.
library(ggplot2)
k <- map_data(geo)
map <- ggplot(res.df, aes(map_id=region)) + expand_limits(x=k$long, y=k$lat) +
geom_map(aes(fill=values), map=k, colour="black") + coord_map() +
geom_text(data=geo.df, aes(label=region, x=long, y=lat, group=region), size=3)
Figure 1: The average mathematics achievement for eighth-graders across regions
Linear Regression
BIFIE.linreg computes linear regression for a model defined in formula. The
example shows regression of mathematics achievement on home resources for
learning for boys and girls, respectively. The variable BSBGHER is continuous.
In case of a discrete variable we would use as.factor(BSDGHER).
mod.home <- BIFIE.linreg(bf.data, formula = BSMMAT ~ BSBGHER, group = "ITSEX")
Hierarchical Linear Model
The variables observed at TIMSS could be either related to student’s indi-
vidual characteristics or to the schools. Since our data set is nested (student
→ class → school), we can use hierarchical linear model in order to identify
which school variables have an impact on student’s achievement. Let us as-
sume a model where a socio-economic status Xij of a student i in school j
has an impact on its achievement Yij. Due to a school variable Wj, represent-
ing the number of computers at school j, the impact of Xij on Yij may differ
from one school to another.
Model 1: Yij = β0j + β1jXij + rij, rij ∼ N(0, σ2
)
Model 2: β0j = γ00 + γ01Wj + u0j, β1j = γ10 + u1j, u0j ∼ N(0, τ2
00), u1j ∼ N(0, τ2
11)
⇒ Yij = γ00 + γ01Wj + γ10Xij
fixed
+ u0j + u1jXij + rij
random
From the model we can identify fixed and random part. We take this into
account when implementing in R.
mod <- BIFIE.twolevelreg(BIFIEobj = bf.data, dep = "BSMMAT", formula.fixed = ~ W + X,
formula.random = ~ X, idcluster="IDSCHOOL", wgtlevel2 = "TOTWGT" )
If the coefficient at W is statistically significant, we can say that the number
of computers at school has an impact on student’s achievement. Moreover,
the variance of Yij can be decomposed to the variance between and within
groups, τ2 and σ2. Thus the proportion of the variance accounted by group
level is indicated by intraclass coefficient ρI, defined as ρI = τ2
τ2+σ2.
References
[1] BIFIE (2016). BIFIEsurvey: Tools for survey statistics in educational assessment. R pack-
age version 1.9.4-0.
[2] Raudenbush, S. W., Bryk, A. S. (2002). Hierarchical Linear Models: Applications and
Data Analysis Methods, SAGE Publications.

More Related Content

Viewers also liked

ComScore Situación de Internet en México agosto 2010
ComScore Situación de Internet en México agosto 2010ComScore Situación de Internet en México agosto 2010
ComScore Situación de Internet en México agosto 2010iLatam
 
Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...
Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...
Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...zelayacar
 
Pictures were shot in the Zoo of Budapest
Pictures were shot in the Zoo of BudapestPictures were shot in the Zoo of Budapest
Pictures were shot in the Zoo of BudapestIvan Szedo
 
La Mirada De Los Docentes
La Mirada De Los DocentesLa Mirada De Los Docentes
La Mirada De Los Docentesedit kremenezer
 
Pruebas Rendimiento MB Foxconn G31MXP-K
Pruebas Rendimiento MB Foxconn G31MXP-KPruebas Rendimiento MB Foxconn G31MXP-K
Pruebas Rendimiento MB Foxconn G31MXP-KRaGaZoMe
 
Sistema informacion gerenciales_no02
Sistema informacion gerenciales_no02Sistema informacion gerenciales_no02
Sistema informacion gerenciales_no02Carlos Escobar Garza
 
Tab period esteletronic_aula
Tab period esteletronic_aulaTab period esteletronic_aula
Tab period esteletronic_aulacasifufrgs
 
La materia: medida y propiedades
La materia: medida y propiedadesLa materia: medida y propiedades
La materia: medida y propiedadesjoseliramon
 
Travessia do Mar Vermelho
Travessia do Mar VermelhoTravessia do Mar Vermelho
Travessia do Mar VermelhoEspacoHefziba
 
Company profile IAG Consulting small size
Company profile IAG Consulting small sizeCompany profile IAG Consulting small size
Company profile IAG Consulting small sizeEdriano Rinaldi
 
ΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο Σχολείο
ΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο ΣχολείοΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο Σχολείο
ΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο ΣχολείοPanagiotes Anastasiades
 
κεφαλαιο 35 περικλης,
κεφαλαιο 35 περικλης, κεφαλαιο 35 περικλης,
κεφαλαιο 35 περικλης, Flora Kyprianou
 

Viewers also liked (20)

ComScore Situación de Internet en México agosto 2010
ComScore Situación de Internet en México agosto 2010ComScore Situación de Internet en México agosto 2010
ComScore Situación de Internet en México agosto 2010
 
Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...
Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...
Cambio climatico seguridad alimentaria y nutricionalsan resiliencia y vinculo...
 
Pictures were shot in the Zoo of Budapest
Pictures were shot in the Zoo of BudapestPictures were shot in the Zoo of Budapest
Pictures were shot in the Zoo of Budapest
 
La Mirada De Los Docentes
La Mirada De Los DocentesLa Mirada De Los Docentes
La Mirada De Los Docentes
 
Pruebas Rendimiento MB Foxconn G31MXP-K
Pruebas Rendimiento MB Foxconn G31MXP-KPruebas Rendimiento MB Foxconn G31MXP-K
Pruebas Rendimiento MB Foxconn G31MXP-K
 
Sistema informacion gerenciales_no02
Sistema informacion gerenciales_no02Sistema informacion gerenciales_no02
Sistema informacion gerenciales_no02
 
Iss ibet sp 29.10.2011
Iss ibet sp 29.10.2011Iss ibet sp 29.10.2011
Iss ibet sp 29.10.2011
 
Germaine
GermaineGermaine
Germaine
 
Iss ibet sp 29.10.2011
Iss ibet sp 29.10.2011Iss ibet sp 29.10.2011
Iss ibet sp 29.10.2011
 
Tab period esteletronic_aula
Tab period esteletronic_aulaTab period esteletronic_aula
Tab period esteletronic_aula
 
Proc.legis
Proc.legisProc.legis
Proc.legis
 
Aula neuraci martins
Aula neuraci martinsAula neuraci martins
Aula neuraci martins
 
karen cardozo
karen cardozokaren cardozo
karen cardozo
 
La materia: medida y propiedades
La materia: medida y propiedadesLa materia: medida y propiedades
La materia: medida y propiedades
 
Travessia do Mar Vermelho
Travessia do Mar VermelhoTravessia do Mar Vermelho
Travessia do Mar Vermelho
 
Company profile IAG Consulting small size
Company profile IAG Consulting small sizeCompany profile IAG Consulting small size
Company profile IAG Consulting small size
 
A Contribuição do CPTEC/INPE à Meteorologia do Brasil
A Contribuição do CPTEC/INPE à Meteorologia do BrasilA Contribuição do CPTEC/INPE à Meteorologia do Brasil
A Contribuição do CPTEC/INPE à Meteorologia do Brasil
 
ΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο Σχολείο
ΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο ΣχολείοΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο Σχολείο
ΤΠΕ και Συνεργατική Δημιουργικότητα στο Σύγχρονο Σχολείο
 
κεφαλαιο 35 περικλης,
κεφαλαιο 35 περικλης, κεφαλαιο 35 περικλης,
κεφαλαιο 35 περικλης,
 
Agradecimento
AgradecimentoAgradecimento
Agradecimento
 

Similar to StiglicM-poster-ang

Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...
Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...
Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...Vasileios Lampos
 
data frames.pptx
data frames.pptxdata frames.pptx
data frames.pptxRacksaviR
 
Principal Components Analysis, Calculation and Visualization
Principal Components Analysis, Calculation and VisualizationPrincipal Components Analysis, Calculation and Visualization
Principal Components Analysis, Calculation and VisualizationMarjan Sterjev
 
Drobics, m. 2001: datamining using synergiesbetween self-organising maps and...
Drobics, m. 2001:  datamining using synergiesbetween self-organising maps and...Drobics, m. 2001:  datamining using synergiesbetween self-organising maps and...
Drobics, m. 2001: datamining using synergiesbetween self-organising maps and...ArchiLab 7
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data FramesBroom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data FramesWork-Bench
 
Multi-class K-support Vector Nearest Neighbor for Mango Leaf Classification
Multi-class K-support Vector Nearest Neighbor for Mango Leaf ClassificationMulti-class K-support Vector Nearest Neighbor for Mango Leaf Classification
Multi-class K-support Vector Nearest Neighbor for Mango Leaf ClassificationTELKOMNIKA JOURNAL
 
SupportVectorRegression
SupportVectorRegressionSupportVectorRegression
SupportVectorRegressionDaniel K
 
Exploring Support Vector Regression - Signals and Systems Project
Exploring Support Vector Regression - Signals and Systems ProjectExploring Support Vector Regression - Signals and Systems Project
Exploring Support Vector Regression - Signals and Systems ProjectSurya Chandra
 
Maximum Likelihood Calibration of the Hercules Data Set
Maximum Likelihood Calibration of the Hercules Data SetMaximum Likelihood Calibration of the Hercules Data Set
Maximum Likelihood Calibration of the Hercules Data SetChristopher Garling
 
relationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdfrelationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdfBhanuCharan9
 
Automatic Classification Satellite images for weather Monitoring
Automatic Classification Satellite images for weather MonitoringAutomatic Classification Satellite images for weather Monitoring
Automatic Classification Satellite images for weather Monitoringguest7782414
 
maXbox starter68 machine learning VI
maXbox starter68 machine learning VImaXbox starter68 machine learning VI
maXbox starter68 machine learning VIMax Kleiner
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graphijtsrd
 
Math426_Project3-1
Math426_Project3-1Math426_Project3-1
Math426_Project3-1Yijun Zhou
 
relationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdfrelationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdfKayraTheressGubat
 

Similar to StiglicM-poster-ang (20)

Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...
Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...
Inferring the Socioeconomic Status of Social Media Users based on Behaviour a...
 
data frames.pptx
data frames.pptxdata frames.pptx
data frames.pptx
 
Principal Components Analysis, Calculation and Visualization
Principal Components Analysis, Calculation and VisualizationPrincipal Components Analysis, Calculation and Visualization
Principal Components Analysis, Calculation and Visualization
 
Drobics, m. 2001: datamining using synergiesbetween self-organising maps and...
Drobics, m. 2001:  datamining using synergiesbetween self-organising maps and...Drobics, m. 2001:  datamining using synergiesbetween self-organising maps and...
Drobics, m. 2001: datamining using synergiesbetween self-organising maps and...
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data FramesBroom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
 
Multi-class K-support Vector Nearest Neighbor for Mango Leaf Classification
Multi-class K-support Vector Nearest Neighbor for Mango Leaf ClassificationMulti-class K-support Vector Nearest Neighbor for Mango Leaf Classification
Multi-class K-support Vector Nearest Neighbor for Mango Leaf Classification
 
SupportVectorRegression
SupportVectorRegressionSupportVectorRegression
SupportVectorRegression
 
Exploring Support Vector Regression - Signals and Systems Project
Exploring Support Vector Regression - Signals and Systems ProjectExploring Support Vector Regression - Signals and Systems Project
Exploring Support Vector Regression - Signals and Systems Project
 
Lda
LdaLda
Lda
 
Maximum Likelihood Calibration of the Hercules Data Set
Maximum Likelihood Calibration of the Hercules Data SetMaximum Likelihood Calibration of the Hercules Data Set
Maximum Likelihood Calibration of the Hercules Data Set
 
Functions.pptx
Functions.pptxFunctions.pptx
Functions.pptx
 
relationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdfrelationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdf
 
Automatic Classification Satellite images for weather Monitoring
Automatic Classification Satellite images for weather MonitoringAutomatic Classification Satellite images for weather Monitoring
Automatic Classification Satellite images for weather Monitoring
 
maXbox starter68 machine learning VI
maXbox starter68 machine learning VImaXbox starter68 machine learning VI
maXbox starter68 machine learning VI
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graph
 
Math426_Project3-1
Math426_Project3-1Math426_Project3-1
Math426_Project3-1
 
Dycops2019
Dycops2019 Dycops2019
Dycops2019
 
relationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdfrelationsandfunctionslessonproper-160929053921.pdf
relationsandfunctionslessonproper-160929053921.pdf
 
E1802023741
E1802023741E1802023741
E1802023741
 
Iowa_Report_2
Iowa_Report_2Iowa_Report_2
Iowa_Report_2
 

StiglicM-poster-ang

  • 1. The Data Analysis of TIMSS dataset using BIFIEsurvey package in R Mihaela Štiglic Educational Research Institute Ljubljana, Toulouse School of Economics Introduction The BIFIEsurvey package in R contains tools for survey statistics for data sets with replication designs. In particular, its aim is to analyze data in educational assessment, such as TIMSS, PISA or PIRLS. Poster presents computation of descriptive statistics, linear regression and two-level hier- archical regression. Moreover, it demonstrates how to represent data on a map. The Analysis of Data Set 1. Importing data from SPSS We set our working directory, setwd(“C:/Users/MS/T11"), and then import data to R by using library foreign. We use TIMSS 2011 database for eigth- graders in Slovenia. We obtain data frame df.timss. It is recommended to use use.value.label = F, to assure that variables are imported as numerical. library(foreign) df.timss <- read.spss(’mydata.sav’, to.data.frame=T, use.value.label=F) 2. BIFIE object For the upcoming analysis we convert data frame df.timss to a BIFIE object bf.data. There exist several ways how to do that. Since standard errors of statistics at TIMSS are computed using jackknife method, we take this into account when converting. We also need to specify vector pv_vars with names of all variables having five plausible values. library(BIFIEsurvey) pv_vars <- c("BSMMAT", "BSSSCI") bf.data <- BIFIE.data.jack(data = df.timss, pv_vars = pv_vars, jktype = "JK_TIMSS") 3. Working with BIFIE object Descriptive statistics BIFIE.univar computes means and standard deviations for a given variable. It already takes into account sample weights. Statistics can be computed for specific groups like regions, schools or classes. The example presents how to compute the mean and standard deviation for mathematics achievement across regions. The results are obtained by calling res1$stat_M and res1$stat_SD. res1 <- BIFIE.univar(bf.data, vars = "BSMMAT", group = "REGION") BIFIE.by computes statistics for user defined functions. If we define a func- tion my.function, then BIFIE.by would compute statistics for this function. The results are obtained by calling res2$stat. If my.function computes weighted mean, then we get the same result by using either BIFIE.univar or BIFIE.by. res2 <- BIFIE.by(bf.data, vars = "BSMMAT", userfct = moja.funkcija, group = "REGION") Drawing Maps Drawing a map in R requires first downloading a shapefile with geographical data for Slovenia, available at www.gadm.org. Since we want to plot statistics across regions, we select SVN_adm1. For plotting across communities we would choose SVN_adm2. library(rgdal) geo <- readOGR("C:/Users/MS/T11/SVN_adm", "SVN_adm1", verbose=T, stringsAsFactors=F) We build data frame res.df where the first column consists of mean mathe- matics achievements across regions while the second one has the associated region labels from geo@data. For instance, region Pomurska is labeled 1 in our database whereas it is labeled 8 in geo@data. Hence we need to define a vector IDnew which associates regions with their labels in geo@data. IDnew <- c(8,7,3,9,11,10,2,6,0,4,1,5) res.df <- data.frame(values = res2$stat$est, region = IDnew) We also build data frame geo.df which consists of geographical coordinates of the center points of regions accompanied by the their names. This data frame will be used in order to display the names of the regions on the map. geo.df <- data.frame(long = coordinates(geo)[, 1], lat = coordinates(geo)[, 2], region = geo@data$NAME_1) Using library ggplot2, geographical coordinates k from geo and data frames res.df and geo.df, we plot a map. Each region is colored according to its mean mathematics achievement. Arguments expand_limits and coord_map are used for a good proportion between length and height of the map whereas geom_text adds the names of the regions on the map. library(ggplot2) k <- map_data(geo) map <- ggplot(res.df, aes(map_id=region)) + expand_limits(x=k$long, y=k$lat) + geom_map(aes(fill=values), map=k, colour="black") + coord_map() + geom_text(data=geo.df, aes(label=region, x=long, y=lat, group=region), size=3) Figure 1: The average mathematics achievement for eighth-graders across regions Linear Regression BIFIE.linreg computes linear regression for a model defined in formula. The example shows regression of mathematics achievement on home resources for learning for boys and girls, respectively. The variable BSBGHER is continuous. In case of a discrete variable we would use as.factor(BSDGHER). mod.home <- BIFIE.linreg(bf.data, formula = BSMMAT ~ BSBGHER, group = "ITSEX") Hierarchical Linear Model The variables observed at TIMSS could be either related to student’s indi- vidual characteristics or to the schools. Since our data set is nested (student → class → school), we can use hierarchical linear model in order to identify which school variables have an impact on student’s achievement. Let us as- sume a model where a socio-economic status Xij of a student i in school j has an impact on its achievement Yij. Due to a school variable Wj, represent- ing the number of computers at school j, the impact of Xij on Yij may differ from one school to another. Model 1: Yij = β0j + β1jXij + rij, rij ∼ N(0, σ2 ) Model 2: β0j = γ00 + γ01Wj + u0j, β1j = γ10 + u1j, u0j ∼ N(0, τ2 00), u1j ∼ N(0, τ2 11) ⇒ Yij = γ00 + γ01Wj + γ10Xij fixed + u0j + u1jXij + rij random From the model we can identify fixed and random part. We take this into account when implementing in R. mod <- BIFIE.twolevelreg(BIFIEobj = bf.data, dep = "BSMMAT", formula.fixed = ~ W + X, formula.random = ~ X, idcluster="IDSCHOOL", wgtlevel2 = "TOTWGT" ) If the coefficient at W is statistically significant, we can say that the number of computers at school has an impact on student’s achievement. Moreover, the variance of Yij can be decomposed to the variance between and within groups, τ2 and σ2. Thus the proportion of the variance accounted by group level is indicated by intraclass coefficient ρI, defined as ρI = τ2 τ2+σ2. References [1] BIFIE (2016). BIFIEsurvey: Tools for survey statistics in educational assessment. R pack- age version 1.9.4-0. [2] Raudenbush, S. W., Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods, SAGE Publications.