SlideShare a Scribd company logo
1 of 39
Download to read offline
Supervisor:       Dr. Munazza Zulfiqar Ali
Co‐Supervisor:       Dr. Muhammad Sabieh Anwar
Presented By: Hafiz Muhammad Ahmed Masood
Roll No: P06‐10
B S (H ) Ph iB.Sc (Honors) Physics
Session (2006‐2010)
11،‫فروری‬11 1
Outlines
Part I
Polarization of light
J  C l l
Part II
Birefringence
Schematic of ExperimentJones Calculus
Magneto Optics
Differential detection
Schematic of Experiment
Results
References
Schematic of the experiment
Results
11،‫فروری‬11 2
Polarization of lightPolarization of light
Linear Polarization
• Electric field vector oscillates
along a fixed direction
Unpolarized light
along a fixed direction.
• Plane of oscillation contains E and k vectors.
• Electromagnetic wave with
 fi ld  ill i   ll l E field oscillating parallel to
y axis. 
Linearly polarized
11،‫فروری‬11 3
Linear polarization (cont )
Horizontally polarized light propagating in z‐direction
Linear polarization (cont…)
)cos(),(
^
wtkzEitzE xx  
)( tE ),( tzEx
Vertically Polarized light propagating along 
z‐direction at phase difference ε
)cos(),( 0
^
 wtkzEjtzE xx
11،‫فروری‬11 4
Linear polarization (cont )Linear polarization (cont…)
S iti   f th  t  •Superposition of the two waves
)cos()cos(),( 0
^
0
^
 wtkzEjwtkzEitzE yx
11،‫فروری‬11 5
l l
• Two orthogonal components
Circular polarization
Two orthogonal components
of electric field are equal, i.e. 
•Phase difference of 
•Electric field is time varying and magnitude remains constant

90
yx EE  
•Electric field is time varying and magnitude remains constant
a) Right Circular Polarization
•Phase difference of
•Rotating clock wise
 m22/ 
)]sin()cos([
^^
wtkzjwtkziEE  )]sin()cos([ wtkzjwtkziEE 
11،‫فروری‬11 6
Ci l   l i ti  ( t )Circular polarization (cont…)
Right circular
b) Left Circularly Polarized light
•Phase shift of   m22/ 
Right circular
•Rotates anticlockwise
)]sin()cos([ tkzjtkziEE o  

11،‫فروری‬11 7
Ci l   l i ti  ( t )Circular polarization (cont…)
Linearly polarized light is the sum of left circularly polarized
d  i h   i l l   l i d li h
left circular
and right circularly polarized light.
)cos(2),( tkziEtzE o 

11،‫فروری‬11 8
Elli ti l P l i ti
•Two orthogonal components are not equal
Elliptical Polarization
in amplitude
•General case of linear and circularly polarized light
•Resultant field vector rotates as well as changesResultant field vector rotates as well as changes
the magnitude
The endpoint of electric field vector sweeps
    lli    i       dout an ellipse as it rotates once around.
11،‫فروری‬11 9
Jones Calculus
 R. Clark Jones in 1941
Jones Calculus
J 94
 For perfectly polarized light

)cos()cos(),(   tkzEjtkzEitzE oyox



 oxE y
 F  li l   l i d li ht






 i
oy
ox
eE
tzE ),(
y
 For linearly polarized light





cos
)( tzE
 x



 sin
),( tzE
11،‫فروری‬11 10
Jones Calculus (cont )Jones Calculus (cont…)
 Incident Jones vector     is related to transmitted jones
vector     through matrix, M
iE
tE
it MEE 
 For beam passing through a series of optical elements
int EMMMME 123...
11،‫فروری‬11 11
Magneto Optics
I i   f li h   d  i•Interaction of light and magnetism
Historyy
•1813  Morrichini
•1814  Faraday
•1826  S. H. Christie
•1834 Faraday
•1844  Faraday44 y
•Faraday Effect
•Kerr Effect
11،‫فروری‬11 12
Kerr Effect
Faraday Effect
Faraday rotation
•Magnetically induced birefringence
•Pl   f  l i ti   f li ht i   t t d  h    •Plane of polarization of light is rotated when passes 
through an optically inactive medium placed in magnetic field
•Non reciprocal
11،‫فروری‬11 13
•For uniform magnetic field
Faraday Effect (cont…)
g
VBd
•For non uniform magnetic field•For non‐uniform magnetic field

d
dzzBV
0
)(
0
•V=Verdet constant
•B=Magnetic field
•d  length of the medium•d= length of the medium
•V is function of wavelength and temperature
•Very small, of the order of micro radians per gauss
11،‫فروری‬11 14
Schematic of the experimentSchematic of the experiment
•Light Source
•Polarization rotation elements
11،‫فروری‬11 15
•Polarization rotation elements
•Detecting mechanism
Schematic of the experiment (cont…)Schematic of the experiment (cont…)
Light Source
•Laser
The gain medium is placed inside
a Febry‐Perot resonator
The basic three level 
scheme for lasers
AlGaN diode laser
11،‫فروری‬11 16
S h ti   f th   i t ( t )
Linear polarizer
Schematic of the experiment (cont…)
p
Mauls' law
Un polarized light is polarized by 
means of a linear polarizer
11،‫فروری‬11 17
Schematic of the experiment (cont )
Source of magnetic field
DC S
Schematic of the experiment (cont…)
•DC Source
Large ,bulky, expensive magnets required
•AC Source
Helmholtz coil, Solenoid  
to replace DC magnetic source 
H l h lt  C ilHelmholtz Coil
Two identical coils with separation equal
to their common radius. 
...)1( 6
6
4
4  xcxcBB o
In superposition
N4
i
a
N
B o23
)
5
4
(
11،‫فروری‬11 18
Schematic of the experiment (cont )Schematic of the experiment (cont…)
Helmholtz Coil
11،‫فروری‬11 19
Schematic of the experiment (cont…)
 Parameters of coil
8      i d  
Schematic of the experiment (cont…)
• 18 gauge copper wire, d=1.2 mm
• N=324  ,  l=2.7 cm  ,         R=1.5Ω
• D1=6.5 cm,                     D2=10.2 cm ,    a=4.8 cm5 , , 4
• L=7 mH
Connected a capacitor of Connected a capacitor of 
0.97µF to resonate the coil 
at 1.22 kHz to maximize 
LCf
2
1

the current and hence B
2
11،‫فروری‬11 20
S h i   f  h   i  ( )Schematic of the experiment (cont…)
11،‫فروری‬11 21
Working Principle
One sided detection Differential detection
11،‫فروری‬11 22
Working Principle (cont…)
B   li•Beam splitter
11،‫فروری‬11 23
Working Principle (cont…)
Jones vector of a linearly polarized Jones vector of a linearly polarized 
After passing through the sample
)(
0
1
),( wtkzi
eAtzE 






 
After passing through the sample
)(
sin
cos
),( wtkzi
eAtzE 






 


After the beam splitter
)(
sincoscossin
sinsincoscos
),( wtkzeAtzE i








 



Beam splitter is at 
)(sincos1
)( wtkzi
AtE 



  

45
11،‫فروری‬11 24
)(
sincos2
),( wtkzi
eAtzE 


 
 

Working Principle (cont…)
Intensity after the beam splitter 



 



 
212
AIA
Intensity after the beam splitter 
*
.EEI 



 



 212IB
)cos(,, tVVI AacAdcA 
V
Adc
Aac
V
V
,
,
2

Using differential detection Using differential detection 
)cos(2 2
tAII BA  
acac VV

11،‫فروری‬11 25
BdcAdc VV ,, 44

ResultsResults
11،‫فروری‬11 26
Single ended
ResultsResults
11،‫فروری‬11 27
Differential detection
ResultsResults
Sample Method Verdet Constant
TGG Single ended detection 3.80  0.02  10‐4 rad/G‐
cm
TGG Differential detection 3.892  0.024  10‐4 
rad/G‐cm
11،‫فروری‬11 28
Birefringence
•Anisotropic crystal 
•Different refractive indices in•Different refractive indices in
different directions Mechanical model depicting a 
negatively charged shell bound
to a positive nucleus by pairs of 
spring having different stiffness
Wave Plates
•Objects made from birefringent crystals used
to introduce predetermined phase shift in to introduce predetermined phase shift in 
incident light beams.
•The emerging beams has a phase difference of
|)(|
2
ennd  



11،‫فروری‬11 29
Quarter Wave Plate
•Introduces phase shift of 
90•Introduces phase shift of
•Converts linearly polarized light into
circular or elliptical polarized light     
90

90
A quarter wave plate converts linearly 
polarized light into circular polarized light
11،‫فروری‬11 30
Schematic of the experimentSchematic of the experiment
11،‫فروری‬11 31
Working Principle
•A system consisting of a polarizer, a quarter wave plate
d    l  i   d b  
Working Principle
and an analyzer is represented by 
123 TTTH 
where
Th   t i    b   l d  d  d d tThe matrix can be solved and reduced to
11،‫فروری‬11 32
Working Principle(cont )Working Principle(cont…)
Transmitted intensity of the system is 
 )22sin(2sin2222 
By solving and manipulating
 cos
2
)22sin(2sin
)(sinsin)(cos[cos 2222 
II
1 
 2sin4sin
2
sin2cos)2sincos2(cos1[
2
1
),( 222 
I
By substituting  IyIyx  ,,2cos

 
4sin)
2
(sin)
2
()2sincos2(cos4)
2
(4 242222 

y
yx
y
yx
At 
 45
)2coscos1(
2
1
  II
11،‫فروری‬11 33
Working Principle(cont )
nmxy 
Working Principle(cont…)
Equation of a straight line
 cos
2
1
Im
In
1
In
2

11،‫فروری‬11 34
Results

 10

 0 
 20

 30

 45
 40
11،‫فروری‬11 35
Results (cont )Results (cont…)

 10 
 20
 0

 30 
 40

 45
11،‫فروری‬11 36
ReferencesReferences
1. Aloke Jain, Jayant Kumar, Fumin Zhou and Lian Li, “ A 
simple experiment for determining Verdet constant usingsimple experiment for determining Verdet constant using
alternating magnetic fields” Am. J. Phys. 67, 714‐717 (1999) .
   E  H t h d A  R  G  “O ti "   th  diti  2.   Eugene Hetch and A. R. Ganesan, “Optics", 4th edition, 
Pearson Education,  Inc, India, 2008.
3.   Frank L. Pedrotti and Peter Bandettini, “Faraday rotation 
in the undergraduate advanced laboratory", 
Am. J. Phys. 58, 542‐544 (1990).Am. J. Phys. 58, 542 544 (1990).
4.   Frank J. Loeffier, “A Faraday rotation experiment for the 
Undergraduate ph sics laborator "  Am  J  Ph s  
2/11/2011 37
Undergraduate physics laboratory , Am. J. Phys. 
51, 661‐663 (1983).
R f
5   “Birefringence of cellophane tape: Jones representation 
References
5.   Birefringence of cellophane tape: Jones representation 
and experimental analysis”, A. Belendez, E. Fernandez, 
J. Frances, C. Neipp, European Journal of Physics 31, 551 (2010).
6. V K Valev, J Wouters and T Verbiest, “Differential detection 
for measurements of Faraday rotation by means of ac magnetic 
fields”, European Journal of Physics. 29, 1099‐1104(2008).
7 http://www enzim hu/~siza/cddemo/edemo0 htm7. http://www.enzim.hu/ siza/cddemo/edemo0.htm
11،‫فروری‬11 38
11،‫فروری‬11 39

More Related Content

What's hot

NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)Rene Kotze
 
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...Valentin Besse
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsClaudio Attaccalite
 
Ct31415419
Ct31415419Ct31415419
Ct31415419IJMER
 
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response  of solids within the GW plus Bethe-Salpeter approximationNonlinear response  of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response of solids within the GW plus Bethe-Salpeter approximationClaudio Attaccalite
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materialskrishslide
 
Fast Factorized Backprojection Algorithm for UWB Bistatic.pdf
Fast Factorized Backprojection Algorithm for UWB Bistatic.pdfFast Factorized Backprojection Algorithm for UWB Bistatic.pdf
Fast Factorized Backprojection Algorithm for UWB Bistatic.pdfgrssieee
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2KSon Cao
 

What's hot (9)

Blaha krakow 2004
Blaha krakow 2004Blaha krakow 2004
Blaha krakow 2004
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
 
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
ICTON 2014 - Third-and Fifth-order Optical Nonlinearities Characterization Us...
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
Ct31415419
Ct31415419Ct31415419
Ct31415419
 
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response  of solids within the GW plus Bethe-Salpeter approximationNonlinear response  of solids within the GW plus Bethe-Salpeter approximation
Nonlinear response of solids within the GW plus Bethe-Salpeter approximation
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
 
Fast Factorized Backprojection Algorithm for UWB Bistatic.pdf
Fast Factorized Backprojection Algorithm for UWB Bistatic.pdfFast Factorized Backprojection Algorithm for UWB Bistatic.pdf
Fast Factorized Backprojection Algorithm for UWB Bistatic.pdf
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2K
 

Similar to PresentationhafizthesisXRF-v6

Intro to EPR spectroscopy
Intro to EPR spectroscopyIntro to EPR spectroscopy
Intro to EPR spectroscopyRagavG4
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fieldsthinfilmsworkshop
 
Impact of nonthermal tails and nonthermal distributions on solar flare plasma...
Impact of nonthermal tails and nonthermal distributions on solar flare plasma...Impact of nonthermal tails and nonthermal distributions on solar flare plasma...
Impact of nonthermal tails and nonthermal distributions on solar flare plasma...AstroAtom
 
A circular cylindrical dipole antenna
A circular cylindrical dipole antennaA circular cylindrical dipole antenna
A circular cylindrical dipole antennaYong Heui Cho
 
Non-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developmentsNon-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developmentsClaudio Attaccalite
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solidsClaudio Attaccalite
 
A Technique To Model A Frequency Mixer
A Technique To Model A Frequency MixerA Technique To Model A Frequency Mixer
A Technique To Model A Frequency Mixeroseassen
 
Phy3_Chap4 Magnetism.pdf
Phy3_Chap4 Magnetism.pdfPhy3_Chap4 Magnetism.pdf
Phy3_Chap4 Magnetism.pdfSotaBnh
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)mycbseguide
 
Lecture 10 - Antennas.ppt
Lecture 10 - Antennas.pptLecture 10 - Antennas.ppt
Lecture 10 - Antennas.pptnaveen858031
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)oriolespinal
 

Similar to PresentationhafizthesisXRF-v6 (20)

Intro to EPR spectroscopy
Intro to EPR spectroscopyIntro to EPR spectroscopy
Intro to EPR spectroscopy
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
 
Xrd lecture 1
Xrd lecture 1Xrd lecture 1
Xrd lecture 1
 
PhysRevB.94.205204
PhysRevB.94.205204PhysRevB.94.205204
PhysRevB.94.205204
 
nothing
nothingnothing
nothing
 
Impact of nonthermal tails and nonthermal distributions on solar flare plasma...
Impact of nonthermal tails and nonthermal distributions on solar flare plasma...Impact of nonthermal tails and nonthermal distributions on solar flare plasma...
Impact of nonthermal tails and nonthermal distributions on solar flare plasma...
 
A circular cylindrical dipole antenna
A circular cylindrical dipole antennaA circular cylindrical dipole antenna
A circular cylindrical dipole antenna
 
Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...
Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...
Wavelength Conversion of a Laser Beam Using a Continuous- Wave Optical Parame...
 
SNBoseTalk06
SNBoseTalk06SNBoseTalk06
SNBoseTalk06
 
Non-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developmentsNon-linear response of solids: recent results and new developments
Non-linear response of solids: recent results and new developments
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Scanning Electron Microscope
Scanning Electron MicroscopeScanning Electron Microscope
Scanning Electron Microscope
 
talk15
talk15talk15
talk15
 
A Technique To Model A Frequency Mixer
A Technique To Model A Frequency MixerA Technique To Model A Frequency Mixer
A Technique To Model A Frequency Mixer
 
Phy3_Chap4 Magnetism.pdf
Phy3_Chap4 Magnetism.pdfPhy3_Chap4 Magnetism.pdf
Phy3_Chap4 Magnetism.pdf
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)
 
Lecture 10 - Antennas.ppt
Lecture 10 - Antennas.pptLecture 10 - Antennas.ppt
Lecture 10 - Antennas.ppt
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
IITJEE - Physics 2011-i
IITJEE - Physics   2011-iIITJEE - Physics   2011-i
IITJEE - Physics 2011-i
 
call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...
 

PresentationhafizthesisXRF-v6