SlideShare a Scribd company logo
1 of 128
Download to read offline
UNIVERSITATEA TEHNICĂ DE CONSTRUCŢII
                                                 BUCUREŞTI
                                     Bd. Lacul Tei 124, Sector 2, RO-020396, Bucureşti 38



                                        CENTRUL DE INGINERIE GEOTEHNICĂ
                                           Tel: 021-2429350, Fax: 021-2420866
                                                   E-mail: cig@utcb.ro




                                   Normativ
                                    pentru
    proiectarea structurilor de fundare directă

                           Redactarea finală

Contract Nr. 147 / 2002
Beneficiar M.T.C.T.


Rector,
Prof.univ. dr. ing. Dan Stematiu


                                    Şef de proiect,
                                    Prof.univ. dr. ing. Nicoleta Rădulescu

                                    Colectiv de elaborare:
                                    Prof.univ. dr. ing. Nicoleta Rădulescu
                                    Prof. univ. dr. ing. Iacint Manoliu
                                    Prof. univ. dr. ing. Marius Gabor
                                    Prof. univ. dr. ing. Alexandrina Pretorian
                                    Conf. univ. dr. ing. Rodica Vierescu
                                    Şef lucrări univ. ing. Andrei Olteanu
                                    Şef lucrări univ. ing. Manole Şerbulea



                               - Bucureşti 2004 -
UNIVERSITATEA TEHNICĂ DE CONSTRUCŢII
             BUCUREŞTI
 Bd. Lacul Tei 124, Sector 2, RO-020396, Bucureşti 38
Cuprins
Lista notaţiilor şi simbolurilor ..............................................................................................................4
1. Prevederi generale ............................................................................................................................7
2. Principii generale ale conformării de rezistenţă a infrastructurilor ..................................................7
   2.1. Definirea sistemului structural şi a subsistemelor componente ale construcţiei .......................7
   2.2. Cerinţe privind proiectarea fundaţiilor ......................................................................................7
   2.3. Cerinţe privind proiectarea substructurilor................................................................................8
3. Alegerea tipului de fundaţie .............................................................................................................9
   3.1. Factori de care depinde alegerea tipului de fundaţie .................................................................9
   3.1.1. Sistemul structural al construcţiei ..........................................................................................9
   3.1.2. Condiţiile de teren ..................................................................................................................9
   3.1.3. Condiţiile de exploatare ale construcţiei ................................................................................9
   3.1.4. Condiţiile de execuţie ale infrastructurii ................................................................................9
   3.2. Criterii pentru alegerea adâncimii minime de fundare............................................................10
4. Materiale utilizate la fundaţii .........................................................................................................11
5. Solicitări transmise infrastructurilor...............................................................................................11
   5.1. Prevederi generale ...................................................................................................................11
   5.2. Solicitări transmise infrastructurilor în grupările fundamentale de încărcări..........................12
   5.3. Solicitări transmise infrastructurilor în grupările speciale de încărcări ..................................12
6. Stabilirea dimensiunilor bazei fundaţiei.........................................................................................13
   6.1. Condiţii generale .....................................................................................................................13
   6.2. Calculul terenului de fundare pe baza presiunilor convenţionale ...........................................14
   6.3. Calculul terenului de fundare la starea limită de deformaţii ...................................................16
   6.4. Calculul terenului de fundare la starea limită de capacitate portantă......................................17
7. Proiectarea fundaţiilor izolate ........................................................................................................18
   7.1. Fundaţii pentru stâlpi de beton armat monolit.........................................................................19
   7.1.1. Fundaţii tip talpă de beton armat ..........................................................................................19
   7.1.2.     Fundaţii tip bloc şi cuzinet .............................................................................................22
   7.2. Fundaţii pentru stâlpi de beton armat prefabricaţi...................................................................24
   7.2.1. Dimensiunile secţiunilor de beton ........................................................................................25
   7.2.2. Monolitizarea paharului .......................................................................................................28
   7.2.3. Armarea paharului................................................................................................................28
   7.2.4. Verificarea tălpii fundaţiei pahar..........................................................................................28
   7.3. Fundaţii pentru stâlpi metalici.................................................................................................29
8. Proiectarea fundaţiilor continue de beton armat sub stâlpi ............................................................31
   8.1. Domeniul de aplicare...............................................................................................................31
   8.2. Alcătuirea fundaţiilor ..............................................................................................................32
   8.2.1. Secţiunea de beton................................................................................................................32
   8.2.2. Armarea fundaţiilor ..............................................................................................................33
   8.3. Calculul grinzilor continue......................................................................................................34
   8.3.1. Calculul cu metode simplificate ...........................................................................................34
   8.3.2. Calculul cu metode care iau în considerare conlucrarea între fundaţie şi teren ...................35
9. Proiectarea fundaţiilor construcţiilor cu pereţi structurali de zidărie .............................................39
   9.1. Prevederi generale de alcătuire................................................................................................39
   9.2. Fundaţii la clădiri amplasate pe teren bun de fundare în zone cu seismicitate redusă ............39
   9.2.1. Fundaţii la clădiri fără subsol ...............................................................................................39
   9.2.2. Fundaţii la clădiri cu subsol..................................................................................................44
   9.2.3. Dimensionarea fundaţiilor ....................................................................................................44
   9.3. Fundaţii la clădiri amplasate pe teren bun de fundare în zone cu seismicitate ridicată ..........47
   9.4. Soluţii de fundare la pereţi nestructurali .................................................................................47
   9.5. Racordarea în trepte a fundaţiilor având cote de fundare diferite ...........................................49
                                                                                                                                                 1
9.6. Fundaţii la rosturi de tasare .....................................................................................................51
  9.7. Fundaţii la clădiri amplasate pe terenuri dificile .....................................................................51
  9.7.1. Fundaţii pe pământuri foarte compresibile şi pământuri sensibile la umezire .....................51
  9.7.2. Fundaţii pe pământuri cu umflări şi contracţii mari .............................................................55
10. Proiectarea fundaţiilor construcţiilor cu pereţi structurali de beton armat ...................................57
  10.1. Principii generale de proiectare .............................................................................................57
  10.2. Încărcări transmise infrastructurilor de pereţii structurali de beton armat ............................57
  10.3. Dimensionarea tălpii fundaţiilor............................................................................................57
  10.4. Alcătuirea fundaţiilor pentru pereţii structurali de beton armat ............................................60
11. Proiectarea radierelor de beton armat...........................................................................................62
  11.1. Alcătuire generală şi domenii de aplicare .............................................................................62
  11.2. Elemente constructive şi de proiectare..................................................................................63
  11.3. Calculul radierelor .................................................................................................................67
  11.3.1. Metode simplificate pentru calculul radierelor rigide ........................................................68
  11.3.2. Calculul radierelor pe mediu Winkler ................................................................................69
  11.3.3. Calculul radierelor pe mediu Boussinesq ...........................................................................69
  11.3.4. Calculul radierelor pe mediu Winkler - Boussinesq ..........................................................70
12. Infrastructuri.................................................................................................................................70
  12.1. Prevederi generale .................................................................................................................70
  12.1.1. Clasificarea infrastructurilor după modul de comportare la acţiuni seismice ....................70
  12.1.2. Clasificarea infrastructurilor după modul de solicitare a terenului de fundare ..................70
  12.2. Schematizarea încărcărilor pentru calculul infrastructurii ....................................................71
  12.3. Calculul eforturilor în elementele infrastructurii...................................................................71
  12.3.1. Schematizarea pentru calcul a infrastructurii .....................................................................71
  12.3.2. Schematizarea pentru calcul a pereţilor cu goluri ai infrastructurilor ................................72
  12.3.3. Schematizarea terenului de fundare pentru calcul infrastructurilor ...................................72
  12.4. Dimensionarea elementelor infrastructurii ............................................................................73
  12.4.1. Verificarea planşeelor.........................................................................................................74
  12.4.2. Verificarea pereţilor ...........................................................................................................74
  12.4.3. Verificarea pereţilor în zonele de discontinuitate...............................................................74
  12.4.4. Verificarea fundaţiilor ........................................................................................................76
  12.5. Transmiterea eforturilor la infrastructură prin intermediul planşeelor - “efectul de
  menghină” ......................................................................................................................................76
  12.5.1. Prevederi generale ..............................................................................................................76
  12.5.2. Elemente de calcul, dimensionare şi verificare ..................................................................78
13. Reglementări tehnice de referinta.................................................................................................80




                                                                                                                                                   2
ANEXA A
  A1. PRESIUNI CONVENŢIONALE
  A2. DEPLASĂRI SAU DEFORMAŢII ADMISE. VALORI ORIENTATIVE
  A3. CALCULUL TERENULUI DE FUNDARE LA STAREA LIMITĂ DE DEFORMAŢII
  A4. CALCULUL TERENULUI DE FUNDARE LA STAREA LIMITĂ DE CAPACITATE
  PORTANTĂ

ANEXA B
CALCULUL GRINZILOR CONTINUE PE MEDIU WINKLER
  B1. METODA DE CALCUL BAZATĂ PE SOLUŢII EXACTE
  B2. METODE NUMERICE DE CALCUL

ANEXA C
CALCULUL GRINZILOR PE MEDIU BOUSSINESQ

ANEXA D
CALCULUL RADIERELOR PE MEDIU WINKLER

ANEXA E
CALCULUL RADIERELOR PE MEDIU WINKLER – BOUSSINESQ

ANEXA F
CALCULUL PRESIUNILOR PE TEREN ALE FUNDAŢIILOR IZOLATE DE FORMĂ
DREPTUNGHIULARĂ




                                                                     3
Lista notaţiilor şi simbolurilor

 Notaţia sau
                UM         Semnificaţia
 simbolul
 A              [m2]       Aria secţiunii transversale a sistemului de fundare
 Aas            [mm2]      Aria de armătură de suspendare
 Aav            [mm2]      Aria armăturii verticale
 AP             [mm2]      Aria minimă a plăcii
 AS             [mm2]      Aria laterală a stâlpului pe înălţimea paharului
                           Suprafaţa secţiunii de forfecare (lunecare) dintre elementul vertical
 Awf            [m2]
                           şi planşeu (placă)
                           Dimensiunea cea mai mică a tălpii fundaţiei având forma
 B              [m]        dreptunghiulară în plan; Lăţimea sistemului de fundare pentru
                           fundaţii de secţiune dreptunghiulară în plan
 Ba             [m]        Lăţimea activă a fundaţiei
                           Lăţimea sau diametrul plăcii utilizate pentru determinarea
 Bp             [m]
                           caracteristicilor de compresibilitate prin incercarea pe teren
 D              [kNm]      Rigiditatea cilindrică a radierului
 E              [kPa]      Modulul de elasticitate
 Es             [kPa]      Modulul de deformaţie liniară al terenului de fundare
 Es *           [kPa]      Modulul dinamic de deformaţie liniară al terenului de fundare
 E' I C         [kPa]      Rigiditatea aproximativă a construcţiei
 E' I F         [kPa]      Rigiditatea fundaţiei
 F              [kN]       Forţa tăietoare transmisă între pereţii cu planuri mediane intersectate
 G              [kPa]      Modulul transversal (de forfecare)
 H              [m]        Înălţimea fundaţiei
 H’             [m]        Înălţimea la marginea fundaţiei tip obelisc
 H1, H2         [m]        Înălţimile treptelor blocului din beton simplu
 HC             [m]        Înălţimea secţiunii fundaţiei continue
 Hf             [m]        Grosimea fundului paharului
 Hî             [m]        Adâncimea de îngheţ
 Hmin           [m]        Înălţimea minimă a fundaţiei
 HP             [m]        Înălţimea paharului
                           Momentul de inerţie al secţiunii transversale a sistemului de fundare
 I              [m4]
                           în lungul axei longitudinale
 IC             [-]        Indicele de consistenţă
                           Momentul de inerţie al unei fâşii de radier definită între mijloacele a
 If             [-]
                           două deschideri succesive
 IP             [%]        Indicele de plasticitate
                           Coeficient care depinde de forma în plan a fundaţiei, rigiditatea
 K              [-]
                           fundaţiei, cota z a punctului pentru care se calculează tasarea
 K0             [-]        Coeficientul presiunii laterale a pământului în stare de repaos
 KG             [-]        Indice de rigiditate pentru radiere generale de formă dreptunghiulară
 KR             [-]        Rigiditatea relativă
                           Dimensiunea cea mai mare a tălpii fundaţiei având forma
 L              [m]        dreptunghiulară în plan; Lungimea sistemului de fundare pentru
                           fundaţii de secţiune dreptunghiulară în plan
 L0             [m]        Distanţa dintre doi stâlpi vecini
 L1             [m]        Lungimea treptei blocului din beton simplu

                                                                                                     4
La, Lb       [m]     Valoarea maximă a dimensiunilor plăcii de bază
Ls           [kN]    Valoarea de calcul a forţei de lunecare transmisă planşeului superior
                     Momentul încovoietor rezultant în centrul de greutate al secţiunii
M            [kNm]
                     fundaţiei
M            [kPa]   Modulul edometric
                     Coeficient de corelaţie între valoarea modului edometric în
M0           [-]
                     intervalul de presiuni 200÷300 kPa şi modulul de deformaţie liniară
                     Momentul încovoietor transmis paharului prin presiuni pe peretele
M1           [kNm]
                     frontal
                     Modulul edometric determinat pentru intervalul de presiuni
M2-3         [kPa]
                     200÷300 kPa
Mi           [kNm]   Momentul încovoietor în stâlpul i
                     Momentele încovoietoare rezultate în plan orizontal aplicate părţii
M r, M c     [kNm]
                     superioare a peretelui frontal
MST,cap      [kNm]   Momentul capabil al stâlpului în secţiunea de la faţa paharului
Mx           [kNm]   Momentul încovoietor faţă de secţiunea x-x
My           [kNm]   Momentul încovoietor faţă de secţiunea y-y
                     Forţa axială; Rezultanta încărcărilor axiale în centrul de greutate al
N            [kN]
                     secţiunii fundaţiei
                     Numărul de lovituri necesare penetrării instalaţiei SPT pe o adân-
N            [-]
                     cime de 30 cm pentru un diametru al tijei de penetrare de 50 mm
N1cap        [kN]    Forţa axială transmisă la pahar prin betonul de monolitizare
Ni           [kN]    Forţa axială în stâlpul i
NP           [kN]    Forţa de întindere în pereţii longitudinali
                     Forţa axială maximă în stâlp în faza de montaj a structurii
NST.montaj   [kN]
                     prefabricate
P            [kN]    Rezultanta presiunilor pe peretele frontal
Q            [kN]    Forţa tăietoare
                     Forţa tăietoare în elementul vertical al suprastructurii asociată
Qas          [kN]
                     mecanismului de plastificare la acţiuni seismice
Qinf         [kN]    Forţa tăietoare care se dezvoltă în elementul vertical sub planşeu
Ra           [kPa]   Rezistenţa de calcul a armăturii de suspendare
Rc*          [N/mm2] Rezistenţa de calcul de bază la compresiune a betonului
Ri           [kN]    Reacţiunea în reazemul i
                   2
Rt           [N/mm ] Rezistenţa de calcul la întindere a betonului din stâlp
U            [m]     Perimetrul secţiunii de forfecare
                     Modulul de rezistenţă al tălpii fundaţiei având forma
                 3
W            [m ]    dreptunghiulară în plan; Modulul de rezistenţă al secţiunii
                     transversale a sistemului de fundare
                        Lăţimea unei fâşii de radier definită între mijloacele a două
bf           [m]
                        deschideri succesive
                        Rezistenţa la compresiune monoaxială a pământului (coeziunea
cU           [kPa]
                        nedrenată)
di           [m]        Distanţa din centrul de greutate al tălpii fundaţiei la axul stâlpului i
e            [-]        Indicele porilor
h            [mm]       Înălţimea secţiunii transversale a grinzii
h            [m]        Grosimea radierului
                        Înălţimea cuzinetului; Înălţimea secţiunii transversale a grinzii în
hc           [mm]
                        câmp
hd           [m]        Înălţimea diafragmelor
                                                                                                   5
hr               [mm]        Înălţimea secţiunii transversale a grinzii în reazem
                         3   Coeficientul de pat obţinut prin încercarea de probă cu placa de
k’s              [kN/m ]
                             latură sau diametru Bp
k1               [kN/m3]     Coeficientul de pat obţinut din încercarea cu placa de 1m2
ks               [kN/m3]     Coeficientul de pat al mediului deformabil
lancorare        [mm]        Lungimea de ancorare
lc               [mm]        Lungimea cuzinetului
le               [mm]        Lungimea elastică
ls, bs           [mm]        Dimensiunile secţiunii transversale a stâlpului
                             Coeficient de corecţie care depinde de raportul între grosimea z0 a
m                [-]
                             stratului deformabil şi lăţimea B a sistemului de fundare
mbt              [-]         Coeficientul condiţiilor de lucru
p                [kPa]       Presiunea de contact fundaţie-teren
qc               [kPa]       Rezistenţa pe vârf (CPT)
td               [m]         Grosimea diafragmelor
vp               [cm/sec]    Viteza de propagarea a undelor longitudinale (principale) prin teren
vs               [cm/sec]    Viteza de propagarea a undelor trasversale (secundare) prin teren
z                [m]         Deplasarea tălpii fundaţiei pe direcţie verticală
z0               [m]         Grosimea stratului deformabil

∑ E' I      ca   (kPa)       Rigiditatea cadrelor din componenţa construcţiei
α                [-]         Factorul de transformare de la valoarea k’s la valoarea ks
α                [º]         Unghiul blocului din beton simplu
β                [º]         Unghiul cuzinetului
ε                [%]         Deformaţia longitudinală specifică
φ                [mm]        Diametrul barei de armătură
                             Coeficient de flexibilitate pentru radiere sub stâlpi uniform
λ                [m-1]
                             distribuiţi pe suprafaţa acestora
μ                [-]         Coeficient de frecare
                             Coeficient de deformaţie transversală (Poisson) al terenului de
νs               [-]
                             fundare
                             Coeficient dinamic de deformaţie transversală (Poisson) al terenului
νs *             [-]
                             de fundare
ρ                [g/cm3]     Densitatea
σ                [kPa]       Efortul unitar normal
σz               [kPa]       Efortul unitar normal vertical
τmed             [kPa]       Efortul unitar tangenţial mediu pe suprafaţa de lunecare




                                                                                                    6
1. Prevederi generale

1.1. Prezentul normativ se aplică la proiectarea structurilor de fundare directă pentru clădirile de
locuit şi social – culturale, construcţiile industriale şi agrozootehnice.
La proiectarea structurilor de fundare directă se va avea în vedere respectarea cerinţelor prevăzute la
punctul 2.2 şi în reglementările tehnice conexe.
La proiectarea structurilor de fundare directă în condiţii speciale de teren (pământuri sensibile la
umezire, pământuri contractile, pământuri lichefiabile) se au în vedere şi măsurile suplimentare din
reglementările tehnice în vigoare specifice acestor cazuri.

1.2. Normativul se referă la următoarele tipuri de fundaţii directe:
a) fundaţii izolate
b) fundaţii continue
c) fundaţii radier

1.3. Reglementările tehnice de referinţă sunt enumerate în capitolul 13.


2. Principii generale ale conformării de rezistenţă a infrastructurilor

2.1. Definirea sistemului structural şi a subsistemelor componente ale construcţiei

2.1.1. Sistemul structural reprezintă ansamblul elementelor care asigură rezistenţa şi stabilitatea
unei construcţii sub acţiunea încărcărilor statice şi dinamice, inclusiv cele seismice.
Elementele structurale pot fi grupate în patru subsisteme: suprastructura (S); substructura (B);
fundaţiile (F); terenul de fundare (T) (fig. 2.1).

2.1.2. Suprastructura     reprezintă    ansamblul    elementelor    de    rezistenţă   situate   deasupra
infrastructurii (I).

2.1.3. Infrastructura este alcătuită din substructură şi fundaţii. La construcţiile care nu au
substructură, infrastructura este alcătuită din fundaţii.

2.1.4. Substructura este zona poziţionată între suprastructură şi fundaţii. În raport cu suprastructura,
aceasta prezintă diferenţe de alcătuire şi conformare, care conduc la capacităţi de rigiditate şi
rezistenţă majorate.

2.1.5. Fundaţiile reprezintă ansamblul elementelor structurale care transmit încărcările la terenul de
fundare.

2.1.6. Terenul de fundare constituie suportul construcţiei şi reprezintă volumul de rocă sau de
pământ care resimte influenţa construcţiei respective sau în care pot avea loc fenomene care să
influenţeze construcţia.

2.2. Cerinţe privind proiectarea fundaţiilor

2.2.1. Fundaţiile trebuie proiectate astfel încât să transmită la teren încărcările construcţiei, inclusiv
cele din acţiuni seismice, asigurând îndeplinirea condiţiilor privind verificarea terenului de fundare
la stări limită.



                                                                                                        7
S
                                  S
                                  F                                        F
                T T T T                            T   T       T       T
                      a                                            b

                                                                                           S
                                                           S
                              S
                                       0.00                                    0.00
                              B                                                            B
                          F                                B
                                                       F                                    F
                 T                             T                                      T
                          c                                d               e



                           Fig. 2.1 Componentele sistemului structural
   Suprastructura (S); Substructura (B); Fundaţiile (F); Terenul de fundare (T); Ιnfrastructura (Ι)


2.2.2. Fundaţiile ca elemente structurale se vor proiecta astfel încât să fie îndeplinite condiţiile de
verificare la stările limită ultime şi ale exploatării normale.

2.3. Cerinţe privind proiectarea substructurilor

2.3.1. Substructura are rolul de a prelua încărcările provenite de la suprastructură şi de a le transmite
fundaţiilor.

2.3.2. Substructura este alcătuită, de regulă, din elemente structurale verticale (pereţi, stâlpi) şi
elemente orizontale sau înclinate (plăci, grinzi etc.).

2.3.3. Proiectarea substructurii trebuie să ţină cont de conlucrarea cu fundaţiile şi suprastructura.

2.3.4. La proiectarea substructurilor se vor lua în considerare încărcările proprii, încărcările
transmise de suprastructură şi de teren conform prevederilor de la cap. 5.

2.3.5. Eforturile din acţiuni seismice transmise substructurii se vor asocia mecanismului de
plastificare al suprastructurii (fig. 2.2).
Această condiţie nu este obligatorie în zonele seismice de calcul E şi F definite în reglementarea
tehnică de referinţă NP100-92.

2.3.6. La proiectarea elementelor structurale ale substructurii vor fi îndeplinite condiţiile de
verificare la stările limită ultime şi ale exploatării normale. Infrastructura se va proiecta astfel încât
să fie solicitată, de regulă, în domeniul elastic de comportare. Se admite proiectarea mecanismului
de plastificare a structurii la acţiuni seismice severe cu dezvoltarea de articulaţii plastice şi în
substructură. In aceste situaţii se vor lua măsuri care să asigure o comportare ductilă a substructurii
şi accesul pentru intervenţii post seismice.



                                                                                                        8
Perete
            Stâlp                      Articulaţii plastice
            Grindă
                                       S
                                                                                     S


                                                                                     F
                                       B Ι
                                       F                                   T
                           T

             Fig. 2.2 Sisteme structurale cu mecanisme de plastificare în suprastructură


3. Alegerea tipului de fundaţie

3.1. Factori de care depinde alegerea tipului de fundaţie

3.1.1. Sistemul structural al construcţiei
- tipul de suprastructură (în cadre, cu pereţi etc.);
- dimensiuni (deschideri, travei, înălţimi – suprateran şi subteran);
- alcătuirea substructurii;
- materiale (beton, metal, zidărie etc.);
- eforturile transmise fundaţiilor în grupările fundamentale şi speciale de încărcări;
- mecanismul de disipare a energiei induse de acţiunea seismică (poziţia zonelor potenţial plastice,
eforturile transmise fundaţiilor etc.);
- sensibilitatea la tasări a sistemului structural.

3.1.2. Condiţiile de teren
- natura şi stratificaţia terenului de fundare, caracteristicile fizico-mecanice ale straturilor de pământ
sau de rocă şi evoluţia acestora în timp;
- condiţiile de stabilitate generală a terenului (terenuri în pantă cu structuri geologice susceptibile de
alunecări de teren etc.);
- condiţiile hidrogeologice (nivelul şi variaţia sezonieră a apelor subterane, agresivitatea apelor
subterane, circulaţia apei prin pământ etc.);
- condiţiile hidrologice (nivelul apelor de suprafaţă, posibilităţi de producere a inundaţiilor, a
fenomenului de afuiere etc.).

3.1.3. Condiţiile de exploatare ale construcţiei
- eforturile transmise la fundaţii (din sarcini statice şi dinamice – vibraţii produse de utilaje etc.);
- posibilitatea pierderilor de apă sau substanţe chimice din instalaţiile sanitare sau industriale;
- încălzirea terenului în cazul construcţiilor cu degajări mari de căldură (cuptoare, furnale etc.);
- degajări de gaze agresive care poluează apele meteorice şi accentuează agresivitatea chimică a
apelor subterane;
- influenţa deformaţiilor terenului de fundare asupra exploatării normale a construcţiei;
- limitarea tasărilor în funcţie de cerinţele tehnologice specifice.

3.1.4. Condiţiile de execuţie ale infrastructurii
- adâncimea săpăturii pentru realizarea fundaţiilor construcţiei şi modul de asigurare a stabilităţii
săpăturii;

                                                                                                        9
- existenţa unor construcţii în vecinătate care pot fi afectate de lucrările de execuţie a infrastructurii
(instabilitatea taluzului, afuierea terenului la realizarea epuismentelor etc.);
- sistemul de epuismente;
- prezenţa reţelelor de apă-canal, de gaze, de energie electrică etc.

3.2. Criterii pentru alegerea adâncimii minime de fundare

3.2.1. Adâncimea de fundare este distanţa măsurată de la nivelul terenului (natural sau sistematizat)
până la talpa fundaţiei.

3.2.2. Adâncimea minimă de fundare se stabileşte în funcţie de:
- adâncimea de îngheţ;
- nivelul apei subterane;
- natura terenului de fundare;
- înălţimea minimă constructivă a fundaţiei;
- condiţiile tehnologice.

3.2.3. Adâncimea de îngheţ are valorile indicate în reglementarea tehnică de referinţă STAS
6054/77.

3.2.4. Adâncimea minimă de fundare se stabileşte conform tabelului 3.1 în funcţie de natura
terenului de fundare, adâncimea de îngheţ şi nivelul apei subterane.
                                                                                      Tabelul 3.1
                                Hî                   H              Adâncimea minimă de fundare
                           adâncimea de       adâncimea apei                    (cm)
                              îngheţ         subterane faţă de
    Terenul de fundare                                                Terenuri
                                               cota terenului                      Terenuri ferite
                                                                   supuse acţiunii
                                                  natural                            de îngheţ*)
                                                                     îngheţului
                               (cm)                 (m)
      Roci stâncoase          oricare             oricare              30÷40             20
     Pietrişuri curate,                           H≥2.00                 Hî              40
      nisipuri mari şi        oricare
                                                  H<2.00               Hî+10             40
      mijlocii curate
                                                  H≥2.00                 80              50
                              Hî≤70
     Pietriş sau nisip                            H<2.00                 90              50
   argilos, argilă grasă                          H≥2.00               Hî+10             50
                              Hî>70
                                                  H<2.00               Hî+20             50
                                                  H≥2.50                 80              50
   Nisip fin prăfos, praf     Hî≤70
                                                  H<2.50                 90              50
       argilos, argilă
   prăfoasă şi nisipoasă                          H≥2.50               Hî+10             50
                              Hî>70
                                                  H<2.50               Hî+20             50
*)
  Observaţie – Valorile indicate pentru cazul terenurilor ferite de îngheţ se măsoară de la
cota inferioară a pardoselii.

3.2.5. Talpa fundaţiei va pătrunde cel puţin 20 cm în stratul natural bun de fundare sau în stratul de
fundare îmbunătăţit.

3.2.6. Pentru construcţiile fundate pe terenuri dificile (pământuri sensibile la umezire, pământuri
contractile, pământuri lichefiabile etc.), adâncimea de fundare este indicată în reglementările
tehnice de referinţă specifice acestor cazuri.


                                                                                                       10
4. Materiale utilizate la fundaţii

4.1. Fundaţiile se alcătuiesc în mod obişnuit din:
- beton armat;
- beton simplu;
- zidărie de piatră.

4.2. Caracteristicile betoanelor utilizate la executarea fundaţiilor se stabilesc de proiectant în funcţie
de destinaţie, solicitări, condiţiile mediului de fundare şi influenţa acestora asupra durabilităţii
betonului din fundaţii; acestea sunt definite în reglementarea tehnică de referinţă NE 012-99.

4.3. Clasele minime de beton se stabilesc astfel:
a) Beton simplu
C4/5– pentru umpluturi, egalizări şi bloc (la fundaţiile tip bloc şi cuzinet).

b) Beton armat
C8/10 pentru fundaţii izolate sau continue, fundaţii monolite tip pahar, cuzineţi, radiere şi reţele de
grinzi neexpuse la acţiuni agresive, cu procente optime de armare;
C12/15 pentru fundaţii prefabricate tip pahar, fundaţii supuse la solicitări importante şi fundaţii
supuse la acţiuni dinamice.
În condiţii de agresivitate caracteristicile betoanelor se stabilesc ca în reglementarea tehnică de
referinţă NE 012-99 respectiv C215-88.

4.4. Tipul de ciment ce se utilizează la prepararea betonului pentru fundaţii se stabileşte în funcţie
de influenţa condiţiilor mediului de fundare ca în reglementarea tehnică de referinţă NE 012-99.

4.5. Oţelul beton trebuie să îndeplinească condiţiile definite în reglementarea tehnică de referinţă
STAS 438/1-89 respectiv STAS 438/2-91.
Pentru armătura rezultată din criterii constructive se utilizează, de regulă, oţel OB37 iar pentru
armătura de rezistenţă rezultată din calcul se utilizează oţel OB37, PC sau plase sudate din STNB.

4.6. Pentru fundaţiile din zidărie de piatră se aplică prevederile definite în reglementarea tehnică de
referinţă STAS 2917-79.
Mortarul întrebuinţat este din var şi ciment de marcă minim M10 indicat în reglementarea tehnică de
referinţă STAS 1030-85.

4.7. Pentru fundaţiile continue ale construcţiilor cu cel mult un nivel amplasate în mediul rural se
pot aplica şi soluţii constructive bazate pe folosirea materialelor locale. Fundaţiile se pot realiza din
zidărie de piatră sau beton ciclopian.


5. Solicitări transmise infrastructurilor

5.1. Prevederi generale

5.1.1. Solicitările transmise infrastructurilor se determină considerând eforturile transmise de
suprastructură, încărcările aplicate direct infrastructurii (încărcări din greutatea proprie,
din încărcări de exploatare, forţe seismice etc.), presiuni sau împingeri ale pământului, presiunea
apei etc.
Orice acţiune semnificativă pentru proiectarea elementelor infrastructurii sau pentru verificarea
terenului de fundare se va considera în categoria de solicitări transmise infrastructurii.
                                                                                                 11
5.1.2. Solicitările transmise infrastructurilor se determină în grupările fundamentale de încărcări şi
în grupările speciale de încărcări.
Stabilirea solicitările transmise infrastructurilor în grupările speciale de încărcări este, de regulă,
condiţionată de dimensionarea completă a suprastructurii.

5.1.3. Solicitările transmise infrastructurilor se determină cu valori corespunzătoare proiectării
elementelor de beton ale infrastructuturii şi cu valori corespunzătoare verificării terenului de
fundare.

5.1.4. Structurile considerate în calcul în stadiul de comportare liniară (elastic) se recomandă să fie
schematizate ca ansamblul constituit din suprastructură, infrastructură şi teren de fundare.

5.1.5. În gruparea specială de încărcări la acţiuni seismice, când, de regulă, se acceptă plastificarea
suprastructurii şi dezvoltarea unui mecanism de disipare a energiei induse de cutremur, solicitările
transmise infrastructurilor se determină corespunzător forţelor generalizate (N, M, Q etc.)
dezvoltate în secţiunea de la baza suprastructurii (fig 5.1).




                    Fig. 5.1 Solicitările transmise infrastructurii de suprastructură.

5.2. Solicitări transmise infrastructurilor în grupările fundamentale de încărcări

5.2.1. La verificarea rezistenţei infrastructurii şi a terenului de fundare vor considera valorile de
calcul ale eforturilor transmise de suprastructură.

5.2.2. Valorile solicitărilor transmise infrastructurii se definesc în concordanţă cu reglementarea
tehnică de referinţă STAS 10101/0-75 şi coeficienţii încărcărilor se definesc în concordanţă cu
reglementarea tehnică de referinţă STAS 10101/0A-77.

5.3. Solicitări transmise infrastructurilor în grupările speciale de încărcări

5.3.1. Prevederile de la pct. 5.3. sunt aplicabile grupărilor speciale de încărcări în care se consideră
acţiunile seismice aplicate construcţiei.
Calculul va considera orice direcţie de acţiune seismică semnificativă pentru proiectarea
infrastructurii. De regulă, se vor considera 8 direcţii în plan orizontal, corespunzătoare direcţiilor
principale şi direcţiilor oblice (la 45º şi 135º) ale construcţiei.

5.3.2. Solicitările transmise infrastructurilor proiectate corespunzător unei comportări elastice de
către suprastructura plastificată sunt asociate mecanismului de disipare a energiei induse de
acţiunile seismice.


                                                                                                     12
Valorile forţelor generalizate transmise infrastructurii sunt determinate prin majorarea forţelor
capabile dezvoltate de mecanismul de plastificare a suprastructurii cu coeficientul kF:

    kF = 1.35                                                                                   (5.1)
Forţele generalizate capabile se determină considerând rezistenţele de calcul ale materialelor.
Dacă forţele generalizate capabile se determină considerând rezistenţele medii ale materialelor
valoarea coeficientului kF este:
    kF = 1.00                                                                                   (5.2)

5.3.3. Dacă mecanismul de plastificare care asigură disiparea energiei induse de cutremur implică
dezvoltarea de deformaţii inelastice şi în elementele substructurii, pentru calcul se consideră
următoarele valori ale solicitărilor transmise de suprastructură:
- pentru calculul elementelor infrastructurii se consideră valorile solicitărilor capabile din grupările
speciale de încărcări;
- pentru verificarea terenului de fundare se consideră valorile solicitărilor capabile din grupările
speciale de încărcări majorate cu coeficientul kF dat de (5.1).

5.3.4. Solicitările transmise infrastructurilor de către suprastructurile       care răspund elastic la
acţiunile seismice se consideră cu valorile date la pct. 5.3.3.

5.3.5. Efectul componentei verticale a acţiunii seismice se va lua în considerare la proiectarea
sistemelor de fundare în concordanţă cu reglementarea tehnică de referinţă P100-92; în cazul
fundaţiilor sensibile la forţă tăietoare/străpungere (radiere tip dală groasă etc.) valorile coefientului
seismic de calcul pe direcţie verticală sunt ±2ks.

5.3.6. În grupările speciale de încărcări care cuprind şi acţiunea seismică se consideră acţiunea de
lungă durată a încărcărilor aplicate direct elementelor infrastructurii precum şi forţele seismice de
calcul stabilite pe baza unui coeficient seismic cu valoarea minimă:
  cs = 1.5αks                                                                                  (5.3)


6. Stabilirea dimensiunilor bazei fundaţiei

6.1. Condiţii generale

6.1.1. Dimensiunile bazei fundaţiei se stabilesc pe baza calculului terenului de fundare definit în
reglementarea tehnică de referinţă STAS 3300/1-85 respectiv STAS 3300/2-85.

6.1.2. Dimensiunile bazei fundaţiei se aleg astfel încât presiunile la contactul între fundaţie şi teren
să aibă valori acceptabile, pentru a se împiedica apariţia unor stări limită care să perecliteze
siguranţa construcţiei şi/sau exploatarea normală a construcţiei.
Stările limită ale terenului de fundare pot fi de natura unei stări limită ultime (SLU), a cărei depăşire
conduce la pierderea ireversibilă, în parte sau în totalitate, a capacităţii funcţionale a construcţiei sau
de natura unei stări limită a exploatării normale (SLEN), a cărei depăşire conduce la întreruperea
exploatării normale a construcţiei.

6.1.3. Având ca referinţă reglementarea tehnică STAS 3300/1-85, stările limită ale terenului de
fundare sunt:
- starea limită de deformaţii (SLD), care poate fi de natura unei stări limită ultime (SLD.U), dacă
deformaţiile terenului conduc la deplasări şi deformaţii ale construcţiei incompatibile cu structura
de rezistenţă sau de natura unei stări limită a exploatării normale (SLD.EN), dacă deformaţiile
terenului împiedică exploatarea normală a construcţiei;
                                                                                                  13
- starea limită de capacitate portantă (SLCP) corespunde unei extinderi a zonelor în care se
îndeplineşte condiţia de rupere (efortul tangenţial efectiv este egal cu rezistenţa la forfecare a
materialului) astfel încât are loc pierderea stabilităţii terenului şi a construcţiei, în parte sau în
totalitate; starea limită de capacitate portantă a terenului de fundare este întotdeauna de natura unei
stări limite ultime.

6.1.4. În funcţie de particularităţile construcţiei şi ale terenului de fundare, presiunile acceptabile pe
terenul de fundare se pot stabili, în cazul fundării directe, în trei moduri:
   - ca presiuni convenţionale, pconv;
   - ca presiuni care să asigure îndeplinirea condiţiilor calcului la starea limită de deformaţii
(SLD.U şi SLD.EN);
   - ca presiuni care să asigure îndeplinirea condiţiilor calcului la starea limită de capacitate
portantă (SLCP).

6.1.5. Din punctul de vedere al construcţiei, calculul terenului de fundare se diferenţiază în funcţie
de următorii factori:
   a) Clasa de importanţă
- construcţii speciale, CS (din clasele de importanţă I şi II);
- construcţii obişnuite, CO (din clasele de importanţă III, IV, V).
   b) Sensibilitatea la tasări
- construcţii sensibile la tasări diferenţiale (CSEN);
- construcţii nesensibile la tasări diferenţiale.
   c) Existenţa restricţiilor de deformaţii în exploatare
- construcţii cu restricţii (CRE);
- construcţii fără restricţii.

6.1.6. Din punctul de vedere al terenului de fundare, calculul terenului de fundare se diferenţiază în
funcţie de apartenenţa terenului la una din următoarele categorii:
   a) terenuri bune (TB)
   b) terenuri dificile
În tabelul 6.1 sunt date, având ca referinţă reglementarea tehnică STAS 3300/2-85, situaţiile in
care terenul de fundare aparţine categoriei TB.

6.1.7. Condiţiile de efectuare a calculului terenului de fundare alcătuit din pământuri, în vederea
stabilirii unor dimensiuni ale bazei fundaţiei care să conducă la presiuni acceptabile pe teren, sunt
sintetizate în tabelul 6.2.
După cum rezultă din tabelul 6.2, calculul terenului de fundare pe bază de presiuni convenţionale
impune îndeplinirea simultană a patru condiţii. În schimb, o singură condiţie este suficientă pentru
a face obligatoriu calculul la starea limită de deformaţie (la SLD.U sau SLD.EN) sau calculul la
starea limită de capacitate portantă (SLCP).

6.1.8. În cazul fundării pe rocă, folosirea presiunilor convenţionale ca presiuni acceptabile este
admisă în toate cazurile, cu excepţia construcţiilor speciale când se impune calculul la starea limită
de capacitate portantă (SLCP).

6.2. Calculul terenului de fundare pe baza presiunilor convenţionale

6.2.1. Presiunile convenţionale sunt presiuni acceptabile stabilite pe cale empirică, ţinând seama de
experienţa de construcţie din ţară.
În anexa A sunt reproduse, având ca referinţă reglementarea tehnică STAS 3300/2-85, tabelele
cuprinzând aşa-numitele valori de bază ale presiunilor convenţionale, p conv, corespunzătoare unor

                                                                                                       14
fundaţii convenţionale având lăţimea tălpii B = 1,0 m şi adâncimea de fundare Df = 2.0 m, precum şi
 regulile de stabilire a corecţiilor de lăţime CB şi de adâncime CD .
 Caracterul empiric al presiunilor convenţionale este evidenţiat de faptul că valorile de bază din
 tabele se obţin în funcţie de caracteristici ale naturii pământurilor (granulozitate, plasticitate) şi ale
 stării pământurilor (starea de îndesare, starea de consistenţă, gradul de saturaţie, indicele porilor),
 fără a se face uz de cunoaşterea proprietăţilor mecanice (compresibilitatea şi rezistenţa
                                                                                                  Tabelul 6.1
  Nr.
                                                  Terenuri bune (TB)
  crt.
  1     Blocuri, bolovănişuri sau pietrişuri conţinând mai puţin de 40% nisip şi mai puţin de 30%
        argilă, în condiţiile unei stratificaţii practic uniforme şi orizontale (având înclinarea mai
        mică de 10%)
  2     Pământuri nisipoase, inclusiv nisipuri prăfoase, îndesate sau de îndesare medie, în condiţiile
        unei stratificaţii practic uniforme şi orizontale
  3     Pământuri coezive cu plasticitate redusă: nisipuri argiloase, prafuri nisipoase şi prafuri, având
        e ≤ 0, 7 şi Ic ≥ 0,5 , în condiţiile unei stratificaţii practic uniforme şi orizontale
  4     Pământuri coezive cu plasticitate medie: nisipuri argiloase, prafuri nisipoase-argiloase, având
        e ≤1 şi Ic ≥ 0,5 , în condiţiile unei stratificaţii practic uniforme şi orizontale
  5     Pământuri coezive cu plasticitate mare: argile nisipoase, argile prăfoase şi argile, având
        e ≤1,1 şi Ic ≥ 0,5 , în condiţiile unei stratificaţii practic uniforme şi orizontale
  6     Roci stâncoase şi semistâncoase în condiţiile unei stratificaţii practic uniforme şi orizontale
  7     Orice combinaţie între stratificaţiile precizate la nr. crt. 1...6
  8     Umpluturi de provenienţă cunoscută realizate organizat, conţinând materii organice sub 5%
 Notă: Pământurile coezive saturate de consistenţă ridicată (Ic > 0,5) pot fi considerate terenuri bune
 în accepţia tabelului 6.1.
 Totuşi, în situaţia în care încărcarea transmisă de fundaţia directă asupra acestor pământuri se
 realizează rapid, fără posibilitatea drenării apei din porii pământului, devine necesară o verificare a
 terenului la starea limită de capacitate portantă (SLCP).
                                                                                                   Tabelul 6.2
 Modul de                 Terenul                                          Construcţia
    calcul
                                   Pământ                                                       Restricţii de
 (stabilirea Bun                                                          Sensibilitatea la
                      Dificil coeziv saturat       Importanţa                                  deformaţii în
  presiunii (TB)                                                         tasări diferenţiale
                               încărcat rapid                                                    exploatare
acceptabile)
                                                                                                          Cu
                                              Obişnuită Specială                     Sensibilă Fără
                                                                      Nesensibilă                      restricţii
                                                 (CO)        (CS)                    (CSEN) restricţii
                                                                                                        (CRE)
 pconv           x                                 x                        x                   x
 SLD.U                   x
 SLD.U                                                          x
 SLD.U                                                                                   x
 SLD.EN                                                                                                    x
 SLCP                    x
 SLCP                                x

 6.2.2. Condiţiile care trebuie respectate în cazul calculului terenului de fundare pe baza presiunilor
 convenţionale se diferenţiază în funcţie de tipul încărcării şi de gruparea de încărcare (gruparea
 fundamentală GF, gruparea specială GS) şi sunt sintetizate în tabelul 6.3.



                                                                                                             15
6.2.3. Pentru stabilirea dimensiunilor în plan ale fundaţiei este necesară, după caz, îndeplinirea
tuturor condiţiilor specificate în tabelul 6.3. Prin aceasta se consideră implicit îndeplinite condiţiile
calcului terenului de fundare la starea limită de deformaţie şi la starea limită de capacitate portantă,
ca stări limită ultime.

                                                                                              Tabelul 6.3
                                   Centrică           Cu excentricitate după          Cu excentricitate
    Tipul încărcării                                    o singură direcţie            după două direcţii




 Gruparea de
 încărcare



          GF                      pef ≤ pconv            pef max ≤ 1.2 pconv          pef max ≤ 1.4 pconv
          GS                    p’ef ≤ 1.2 pconv         p’ef max ≤ 1.4 pconv         p’ef max ≤ 1.6 pconv

6.2.4. Dimensiunile în plan ale fundaţiilor se stabilesc astfel ca rezultanta încărcărilor provenite din
acţiuni din grupări fundamentale să fie aplicată în cadrul sâmburelui central.

6.2.5. Pentru situaţiile în care în gruparea fundamentală intervin solicitări orizontale importante,
nepermanente, se admite ca rezultanta încărcărilor să se aplice în afara sâmburelui central cu
condiţia ca secţiunea activă a tălpii fundaţiei să nu fie mai mică de 80% din aria totală a acesteia.
În cazul construcţiilor de tipul castele de apă, turnuri etc. nu se admite desprinderea fundaţiei de pe
teren în grupările fundamentale de încărcări.

6.2.6. Excentricităţile maxime admise pentru rezultantele încărcărilor din grupări speciale trebuie să
fie limitate astfel încât secţiunea activă a suprafeţei tălpii fundaţiei să se extindă cel puţin până în
dreptul centrului de greutate al acesteia.

6.2.7. Modul de calcul al lui pef pentru excentricitate pe două direcţii este prezentat în anexa F.

6.3. Calculul terenului de fundare la starea limită de deformaţii

6.3.1. Prin calculul terenului de fundare la starea limită de deformaţii se cere îndeplinirea a două
seturi de condiţii, sintetizate în tabelele 6.4 şi 6.5.
                                                                                         Tabelul 6.4
         Tipul stării limită de deformaţie                       Condiţia de îndeplinit
                       SLD.U                                                Δs ≤ Δs
                       SLD.EN                                               Δt ≤ Δt
Condiţiile specificate în tabelul 6.4 au semnificaţia:
- Δs : deplasări sau deformaţii posibile ale construcţiei datorate tasărilor terenului de fundare,
calculate cu încărcări din gruparea fundamentală pentru SLU;
- Δ t : aceeaşi semnificaţie ca şi Δs calculate cu încărcări din gruparea fundamentală pentru SLEN;


                                                                                                             16
- Δs :deplasări sau deformaţii de referinţă admise pentru structură, stabilite de proiectantul
structurii;
In lipsa unor valori stabilite de proiectant pot fi luate în considerare, orientativ, valorile specificate
în anexa A pentru construcţii neadaptate în mod special în vederea preluării tasărilor neuniforme
- Δ t : deplasări sau deformaţii admise din punct de vedere tehnologic, specificate de
proiectantul tehnolog.
                                                                                             Tabelul 6.5
                             Centrică            Cu excentricitate după o      Cu excentricitate după
                                                      singură direcţie               două direcţii



     Tipul
   încărcării




   Condiţia de
                            pef ≤ ppl                pef max ≤ 1.2 ppl           pef max ≤ 1.4 ppl
    îndeplinit
În condiţiile definite în tabelul 6.5, ppl (presiunea plastică) reprezintă presiunea corespunzătoare
unei extinderi limitate pe o adâncime egală cu B/4, B fiind lăţimea fundaţiei, a zonei plastice în
terenul de fundare. Prin zonă plastică se înţelege zona pe conturul şi în interiorul căreia se
îndeplineşte condiţia de rupere în pământ.

6.3.2. Presiunea plastică ppl este o presiune acceptabilă.
Condiţiile din tabelul 6.5, a căror îndeplinire precede efectuarea calculului deformaţiilor probabile
ale terenului de fundare, reprezintă condiţii de valabilitate a calculului de deformaţii, în care
terenul este asimilat cu un mediu liniar-deformabil iar utilizarea relaţiilor din Teoria Elasticităţii
este admisă.

6.3.3. În anexa A sunt sintetizate prevederile din reglementarea tehnică de referinţă STAS 3300/2-
85 referitoare la calculul terenului de fundare la starea limită de deformaţii.

6.4. Calculul terenului de fundare la starea limită de capacitate portantă

6.4.1. Prin calculul terenului de fundare la starea limită de capacitate portantă, în cazul fundării
directe, se cere respectarea condiţiei generale Q ≤ mR , cu cele trei forme particulare date
în tabelul 6.6.




                                                                                                       17
Tabelul 6.6
                     Fundaţie de              Fundaţie solicitată          Fundaţie pe taluz sau în
                      suprafaţă                  transversal                 apropiere de taluz



  Tipul
 lucrării



                                                          N
                                                 T



 Cazul de
                       SLCP.1                     SLCP.2                   SLCP.3
  calcul
 Condiţia                                        T ≤ 0.8μN
                    N ≤ 0.9L’B’pcr                                        Mr ≤ 0.8Ms
 Q ≤ mR
unde: Q reprezintă încărcarea de calcul asupra terenului de fundare, provenită din acţiunile din
grupările speciale;
      R reprezintă valoarea de calcul a rezistenţei terenului de fundare;
      m reprezintă coeficientul condiţiilor de lucru.

6.4.2. În anexa A sunt sintetizate prevederile din reglementarea tehnică de referinţă STAS 3300/2-
85 referitoare la calculul terenului de fundare la starea limită de capacitate portantă.


7. Proiectarea fundaţiilor izolate
Prevederile prezentului capitol se aplică la proiectarea fundaţiilor izolate ale stâlpilor de beton armat
şi de metal. Fundaţiile izolate pot fi utilizate şi în cazul unor elemente structurale continue, dacă
structura este proiectată considerând rezemările concentrate.

Tipurile de fundaţii izolate care fac obiectul prezentului normativ sunt:
a) Fundaţiile pentru stâlpi de beton armat monolit:
- fundaţii tip talpă de beton armat (fundaţii elastice);
- fundaţii tip bloc şi cuzinet (fundaţii rigide).
b) Fundaţiile pentru stâlpi de beton armat prefabricat:
- fundaţii tip pahar;
- alte tipuri de fundaţii adaptate sistemului de îmbinare dintre stâlpul prefabricat şi fundaţie.
c) Fundaţiile pentru stâlpi metalici:
- fundaţii tip bloc şi cuzinet;
- fundaţii tip talpă de beton armat.
Proiectarea fundaţiilor izolate de beton armat se face având ca referinţă prevederile definite în
reglementarea tehnică STAS 10107/0-90.
Dimensiunile în plan ale fundaţiilor izolate se stabilesc conform prevederilor de la capitolul 6.

La alcătuirea fundaţiilor izolate se va ţine seama de următoarele reguli cu caracter general:
a) sub fundaţiile de beton armat monolit se prevede un strat de beton de egalizare de 50÷100 mm
   grosime, stabilit funcţie de condiţiile de teren, execuţie şi suprafaţa fundaţiei;
b) sub fundaţiile de beton armat prefabricat se prevede un pat de nisip de 70÷150 mm grosime;
c) fundaţiile se poziţionează, de regulă, centrat în axul stâlpului;

                                                                                                      18
d) pentru stâlpii de calcan, de rost sau situaţii în care există în vecinătate alte elemente de
construcţii sau instalaţii se pot utiliza fundaţii excentrice în raport cu axul stâlpului; în acest caz
momentul transmis tălpii fundaţiei se poate reduce prin prevederea de grinzi de echilibrare.

7.1. Fundaţii pentru stâlpi de beton armat monolit

7.1.1. Fundaţii tip talpă de beton armat
Fundaţiile tip talpă de beton armat pot fi de formă prismatică (fig. 7.1.a) sau formă de
obelisc (fig. 7.1.b).
Betonul utilizat la realizarea fundaţiilor tip talpă armată va fi de clasă minimă C8/10.

7.1.1.1. Înălţimea fundaţiei (H) se stabileşte funcţie de următoarele condiţii:
a) asigurarea rigidităţii fundaţiei de beton armat; dacă se respectă valorile minime ale raportului
dintre înălţimea fundaţiei şi dimensiunea cea mai mare în plan (H/L) date în tabelul 7.1
(ultima coloană) este admisă ipoteza distribuţiei liniare a presiunilor pe teren;
b) verificarea fundaţiei la forţă tăietoare; dacă se respectă valorile minime ale raportului dintre
înălţimea fundaţiei şi dimensiunea cea mai mare în plan (H/L) date în tabelul 7.1, secţiunea de beton
poate prelua forţa tăietoare nefiind necesare armături transversale;




                              Fig. 7.1 Fundaţii tip talpă de beton armat


c) verificarea fundaţiei la încovoiere; de regulă verificarea secţiunii de beton armat la starea limită
de rezistenţă la încovoiere nu implică modificarea înălţimii secţiunii de beton stabilită conform
punctelor a şi b;
d) valoarea minimă a înălţimii fundaţiei este Hmin = 300 mm.

   Înălţimea la marginea fundaţiei tip obelisc (H’) rezultă în funcţie de următoarele condiţii:
a) înălţimea minimă necesară pentru ancorarea armăturilor de pe talpa fundaţiei (15φmax);
b) panta feţelor înclinate ale fundaţiei nu va fi mai mare de 1/3;
c) valoarea minimă este H’min = 250 mm.

7.1.1.2. Armătura fundaţiei (fig. 7.2) este compusă din:
a) armătura de pe talpă, realizată ca o reţea din bare dispuse paralel cu laturile fundaţiei
Armătura rezultă din verificarea la moment încovoietor în secţiunile de la faţa stâlpului. În calculul
momentelor încovoietoare din fundaţie se consideră presiunile pe teren determinate de solicitările
transmise de stâlp. Se vor considera situaţiile de încărcare (presiuni pe teren) care conduc la
solicitările maxime în fundaţie.


                                                                                                    19
Procentul minim de armare pe fiecare direcţie este 0.10 % pentru armături OB37 şi 0.075 %
pentru armături PC52.
Diametrul minim al armăturilor este de 10 mm.
Distanţa maximă între armături este de 250 mm; distanţa minimă este de 100 mm.
Armătura se distribuie uniform pe lăţimea fundaţiei şi se prevede la capete cu ciocuri cu lungimea
minimă de 15φ.
b) armătura de la partea superioară, realizată din 3÷4 bare dispuse în dreptul stâlpului
sau ca o reţea dezvoltată pe toată suprafaţa fundaţiei
Fundaţiile tip obelisc care nu au desprindere de pe terenul de fundare au armătură constructivă la
partea superioară, unde se dispun pe fiecare direcţie principală minimum 3 bare de armătură OB37,
cu diametrul de minim 12 mm.
La fundaţiile care lucrează cu arie activă, armătura de la partea superioară rezultă din calculul la
încovoiere. Dimensionarea armăturii se face în secţiunile de consolă cele mai solicitate, considerând
momentele încovoietoare negative rezultate din acţiunea încărcărilor din greutatea fundaţiei,
a umpluturii peste fundaţie şi a sarcinilor aplicate pe teren sau prin repartizarea momentului
încovoietor transmis de stâlp. În această situaţie de solicitare armătura se realizează ca o reţea de
bare dispuse paralel cu laturile fundaţiei.
Diametrul minim al armăturilor este de 10 mm.
Distanţa maximă între armături este de 250 mm; distanţa minimă este de 100 mm.
Armătura se distribuie uniform pe lăţimea fundaţiei şi se prevede la capete cu ciocuri cu lungimea
minimă de 15φ.

c) armătura transversală pentru preluarea forţelor tăietoare se realizează ca armătură înclinată
dispusă în dreptul stâlpului
Forţa tăietoare în secţiunea de calcul se determină considerând o fisură înclinată cu 45º şi presiunile
dezvoltate pe teren de forţele transmise de stâlp.
Dacă fundaţia lucrează cu arie activă, la calculul forţei tăietoare se vor considera presiunile
efective pe teren.

d) armături pentru stâlp (mustăţi)
Armăturile verticale din fundaţie, pentru conectarea cu stâlpul de beton armat, rezultă în urma
dimensionării/verificării stâlpului. Armăturile din fundaţie (mustăţile) se alcătuiesc astfel încât în
prima secţiune potenţial plastică a stâlpului, aflată deasupra fundaţiei, barele de armătură să fie
continue (fără înnădiri).
Etrierii din fundaţie au rol de poziţionare a armăturilor verticale pentru stâlp; se dispun la distanţe
de maximum 250 mm şi cel puţin în 3 secţiuni.
Armătura trebuie prelungită în fundaţie pe o lungime cel puţin egală cu lancorare + 250 mm, unde
lancorare se determină având ca referinţă reglementarea tehnică STAS 10107/0-90.




                        Fig. 7.2 Armarea fundaţiilor tip talpă de beton armat


                                                                                                    20
Tabelul 7.1
                 Presiunea        H/L minim pentru care nu
                                                                     H/L minim pentru
                  efectivă        este necesară verificarea la
                                                                     care nu se verifică
                  maximă           forţă tăietoare a fundaţiei
                                                                    rigiditatea fundaţiei
               pe teren (kPa)     Beton C8/10      Beton C12/15*
                    100              0.22              0.20                  0.25
                    150              0.25              0.23                  0.26
                    200              0.27              0.26                  0.27
                    250              0.29              0.27                  0.28
                    300              0.30              0.29                  0.29
                    400              0.32              0.30                  0.33
                    600              0.39              0.35                  0.35
*) pentru betoane de clasă superioară se utilizează valorile date în tabelul 7.1. pentru clasa C12/15.

7.1.1.3. Calculul momentelor încovoietoare în fundaţie
Pentru calculul momentelor încovoietoare în fundaţie se consideră secţiunile de încastrare de la faţa
stâlpului şi presiunile pe teren pe suprafaţa delimitată de laturile tălpii şi planul de încastrare
considerat (fig.7.3).
Calculul simplificat al momentelor încovoietoare în talpa fundaţiei se face cu relaţiile 7.1 şi 7.2:
            ⎡ l2                l2 ⎤
  M x = B ⋅ ⎢p o x + (p1 − p 0 ) x ⎥                                                              (7.1)
            ⎣ 2                  3⎦
                   l2
                    y
 M y = L ⋅ p med        ; p med = ( p1 + p2 ) / 2                                                  (7.2)
                   2




                                                    Fig. 7.3

În cazul fundaţiilor la care se respectă condiţiile privind raportul minim H/L din tabelul 7.1 stabilit
în funcţie de condiţia de rigiditate a tălpii şi pentru care aria activă este de minimum 80%, armătura
calculată funcţie de momentele încovoietoare (Mx şi My) se distribuie uniform pe talpa fundaţiei.
Dacă aria activă este mai mică de 80%, în relaţia 7.2 se înlocuieşte pmed cu valoarea p1.
Dacă fundaţia este solicitată cu momente încovoietoare pe două direcţii (solicitare oblică), p1, având
semnificaţia de presiune maximă pe teren, se determină cu relaţiile indicate în Anexa F.


                                                                                                         21
7.1.2. Fundaţii tip bloc şi cuzinet
Fundaţiile tip bloc de beton şi cuzinet sunt alcătuite dintr-un bloc de beton simplu pe care reazemă
un cuzinet de beton armat în care se încastrează stâlpul (fig. 7.4).

7.1.2.1. Blocul de beton simplu se realizează respectând următoarele condiţii:

a) înălţimea treptei este de minimum 400 mm la blocul de beton cu o treaptă;
b) blocul de beton poate avea cel mult 3 trepte a căror înălţime minimă este de 300 mm;
   înălţimea treptei inferioare este de minimum 400 mm;
c) clasa betonului este minim C4/5; dacă în bloc sunt prevăzute armături pentru ancorarea
   cuzinetului clasa betonului este cel puţin C8/10;
d) înălţimea blocului de beton se stabileşte astfel încât tgα să respecte valorile minime din
   tabelul 7.2; această condiţie va fi realizată şi în cazul blocului realizat în trepte (fig. 7.4);
e) rosturile orizontale de turnare a betonului se vor trata astfel încât să se asigure condiţii pentru
   realizarea unui coeficient de frecare supraunitar între cele două suprafeţe.




                 Fig. 7.4 Fundaţii cu bloc de beton simplu şi cuzinet de beton armat

                                .                        Tabelul 7.2
                                                Valori minime tgα
                                 Presiunea       funcţie de clasa
                                efectivă pe         betonului
                                teren (kPa)                C8/10 sau
                                                 C4/5
                                                           mai mare
                                    200          1.15         1.05
                                    250          1.30         1.15
                                    300          1.40         1.30
                                    350          1.50         1.40
                                    400          1.60         1.50
                                    600          2.00         1.85

7.1.2.2. Cuzinetul de beton armat se proiectează respectând următoarele:

a) cuzinetul se realizează cu formă prismatică;
b) dimensiunile în plan (lc şi bc) vor respecta următoarele condiţii:
- să fie mai mari decât dimensiunile care asigură limitarea presiunilor pe planul de contact cu blocul
la valori mai mici decât rezistenţa de calcul la compresiune a betonului;
- se recomandă următoarele intervale pentru raportul lc/L respectiv bc/B:
• bloc de beton cu o treaptă: lc/L = 0.50 ÷ 0.65
                                                                                                   22
• bloc de beton cu mai multe treapte: lc/L = 0.40 ÷ 0.50
c) înălţimea cuzinetului (hc) va respecta următoalele valori minime:
- hc ≥ 300mm;
- hc/lc ≥ 0.25;
- tgβ ≥ 0.65 (fig. 7.4); dacă tgβ ≥ 1.00 nu este necesară verificarea cuzinetului la forţă tăietoare;
- valori minime impuse de condiţia de ancorare a armăturilor pentru stâlp, cu lungimea
lancorare + 250 mm, unde lancorare este definită în reglementarea tehnică de referinţă STAS 10107/0-90;
d) clasa betonului este minim C8/10; clasa betonului rezultă şi din condiţia de rezistenţă la
compresiune locală a betonului din cuzinet în secţiunea de încastrare a stâlpului (de regulă,
Rc_cuzinet ≥ 0.7Rc stâlp);
e) rostul de turnare dintre bloc şi cuzinet se tratează astfel încât să se realizeze continuitatea
betonului sau, cel puţin, condiţiile care asigură un coeficient de frecare μ ≥ 1.0 (definit în
reglementarea tehnică de referinţă STAS 10107/0-90).

7.1.2.3. Calculul momentelor încovoietoare pozitive în cuzinet se face considerând încastrarea
consolelor în secţiunile de la faţa stâlpului (fig. 7.5).




                                               Fig. 7.5

Presiunile pe suprafaţa de contact dintre cuzinet şi bloc, funcţie de care se determină eforturile
secţionale în cuzinet, sunt determinate de solicitările din stâlp (nu se ţine cont de greutatea
cuzinetului).
Presiunile pe suprafaţa de contact dintre cuzinet şi blocul de beton, dacă nu apar desprinderi sau aria
activă este cel puţin 70%, se determină cu relaţiile (7.3):
              N        6M C ( x )                           N       6M C ( y )
  pc1,c 2 = C ± 2                  ≥ 0 sau pc1,c 2 = C ±                                         (7.3)
            lc ⋅ bc      lc ⋅ bc                          lc ⋅ bc    lc ⋅ bc2
dacă: pc2<0, atunci se admite pc2=0 iar pc1 se determină cu relaţiile (7.4):
                   2NC                                            2NC
  pc1 =                                 sau       pc1 =
                 ⎛l      M C ( x) ⎞                            ⎛ b M C( y) ⎞                     (7.4)
          3 ⋅ bc ⎜ c −
                 ⎜2               ⎟
                                  ⎟                     3 ⋅ lc ⎜ c −
                                                               ⎜2              ⎟
                 ⎝         NC ⎠                                ⎝       NC ⎟    ⎠
unde: NC, MC(x) şi MC(y), sunt forţa axială şi momentele încovoietore la nivelul tălpii cuzinetului.
Momentele încovoietoare în cuzinet se calculează cu (7.5) şi (7.6):
               ⎡     lc21                  lc21 ⎤
  M x = bc ⋅ ⎢ pc 0        + ( pc1 − pc 0 ) ⎥                                                    (7.5)
               ⎣      2                     3⎦
                 bc21           p + p c2
 M Y = lc ⋅ pcmed     , p cmed = c1                                                   (7.6)
                  2                 2
Dacă aria activă de pe suprafaţa de contact cuzinet – bloc este mai mică decât 70% din talpa
cuzinetului (lcxbc):

                                                                                                    23
Mx= MC(x) şi, respectiv, My= MC(y)                                                                (7.7)

7.1.2.4. Armarea cuzinetului va respecta următoarele condiţii:

a) Armătura de la partea inferioară:
-se realizează ca o reţea de bare dispuse paralel cu laturile cuzinetului; aria de armătură rezultă din
verificarea la moment încovoietor în secţiunile de la faţa stâlpului (fig. 7.5);
- procentul minim de armare pe fiecare direcţie este 0.10% pentru armături OB37 şi 0.075% pentru
armături PC52;
- diametrul minim al armăturilor este de 10 mm;
- distanţa maximă între armături va fi de 250 mm; distanţa minimă este 100 mm.
-armătura se distribuie uniform pe lăţimea cuzinetului şi se prevede la capete cu ciocuri cu lungimea
minimă de 15φ.

b) Armătura de la partea superioară :
 - se dispune dacă cuzinetul are desprinderi de pe blocul fundaţiei ;
- se realizează ca o reţea de bare dispuse paralel cu laturile cuzinetului şi ancorate în blocul de beton
simplu, după modelul din fig. 7.4.b;
- aria de armătură pe fiecare direcţie rezultă din:
   • verificarea la compresiune excentrică a secţiunii de beton armat pe suprafaţa de contact dintre
cuzinet şi bloc; în verificare se va considera rezistenţa de calcul a betonului (Rc*) cu valoarea:
             +
         2M cap.cuzinet
  Rc =
     *
                2
                                                                                                     (7.8)
             bclc
unde: bc este lăţimea tălpii cuzinetului (fig. 7.5);
    •dacă zona comprimată pe talpa cuzinetului este mai mare de 70% din aria tălpii, pentru
dimensionarea armăturilor de ancorare în bloc se poate considera şi o schemă de calcul bazată de
preluarea de armătură a rezultantei volumului de eforturi unitare de întindere de pe suprafaţa de
contact, obţinută dintr-o distribuţie liniară a presiunilor;
  • verificarea la moment încovoietor negativ a cuzinetului încărcat cu forţele dezvoltate în
armăturile de ancorare;
- diametrul minim al armăturilor este de 10 mm;
- distanţa între armături va fi de minim 100 mm şi maxim 250 mm.
c) Armăturile pentru stâlp (mustăţi):
- armăturile verticale din cuzinet, pentru conectarea cu stâlpul de beton armat, rezultă în urma
dimensionării/verificării stâlpului;
- armăturile din cuzinet se alcătuiesc astfel încât în prima secţiune potenţial plastică a stâlpului,
aflată deasupra fundaţiei, barele de armătură să fie fără înnădiri;
- etrierii din cuzinet au rol de poziţionare a armăturiilor verticale pentru stâlp şi se dispun în cel
puţin în 2 secţiuni;
- armăturile trebuie prelungite în fundaţie pe o lungime cel puţin egală cu lungimea de
ancorare majorată cu 250 mm;
- armăturile înclinate se dispun pentru preluarea forţei tăietoare în consolele cuzinetului dacă
tgβ < 1 (fig. 7.4) şi se dimensionează având ca referinţă reglementarea tehnică STAS 10107/0-90.

7.2. Fundaţii pentru stâlpi de beton armat prefabricaţi
Fundaţiile izolate pentru stâlpi de beton armat prefabricat pot fi realizate ca fundaţii tip pahar
(fig. 7.6).




                                                                                                       24
lS                                                  la    bp l1

                                                                                      lS
                                                   b1        Beton de monolitizare
                                                   bp

             bS                                    lb B          Hp
                                                                                                  ≥100 mm    H
                                                   bp                          20÷30 mm
                                                                 Hf       β                             Ht
                                                   b1
                       l1 bp      la    bp l1      Beton de egalizare 50÷100          la’   bp’
                                                   mm
                                  L                                                   L

                                Fig. 7.6 Fundaţie tip pahar pentru stâlp prefabricat

7.2.1. Dimensiunile secţiunilor de beton

7.2.1.1. Înălţimea paharului HP
Înălţimea paharului HP se stabileşte respectând următoarele cerinţe:
- asigurarea lungimii de ancoraj (lancoraj) a armăturilor longitudinale din stâlp: HP ≥ lancoraj + 250mm;
HP se poate reduce dacă armătura este întoarsă la baza stâlpului;
- lancoraj se determină având ca referinţă reglementarea tehnică STAS 10107/0-90, considerând
condiţii normale de solicitare;
- condiţiile de aderenţă sunt stabilite funcţie de modul de realizare a stâlpului prefabricat;
- limitarea efectului forţei tăietoare pe lungimea de stâlp introdusă în pahar:
            M ST ,cap
  HP ≥                                                                                                (7.9)
          3 ⋅ lS bS R t
unde: MST.cap - momentul capabil al stâlpului în secţiunea de la faţa paharului;
        lS, bS - dimensiunile secţiunii transversale a stâlpului;
        Rt - rezistenţa de calcul la întindere a betonului din stâlp.

Condiţii constructive generale:
• HP ≥ 1.2ls în cazul stâlpilor cu secţiune dreptunghiulară cu dimensiunile ls şi bs, ls ≥ bs;
• HP ≥ 500 mm în cazul stâlpilor la construcţii etajate;
• HP≥ HS/11 la fundaţiile stâlpilor de hale cu poduri rulante şi ai estacadelor; HS este înălţimea
liberă a stâlpului de la faţa superioară a fundaţiei până la rigla acoperişului.

7.2.1.2. Grosimea Hf
Grosimea fundului paharului (Hf) rezultă în urma verificării la străpungere; în calcul se va considera
situaţia cea mai defavorabilă de solicitare la străpungere, din faza de montaj sau exploatare
a construcţiei.
În faza de montaj, cu paharul nemonolitizat, verificarea la străpungere este dată de condiţia (7.10):
                 L ⋅ B − (l S + H f )(b S + H f )
 N ST , montaj                                    ≤ 0,75 ⋅ U ⋅ H f ⋅ R t + N av                                  (7.10)
                              L⋅B
unde: N ST.montaj este forţa axială maximă în stâlp în faza de montaj a structurii prefabricate;
      U = 2lS+2bS+4Hf este perimetrul secţiunii de forfecare;
      Rt rezistenţa de calcul la întindere a betonului din fundaţia pahar;
      Nav = σavAav; σav = 100 N/mm2 şi Aav = aria de armătură verticală dispusă pe faţa interioară a
paharului, ancorată corespunzător pe fiecare parte a planulului de cedare la străpungere;

                                                                                                                     25
În faza finală, forţă axială maximă NST,max (valoare de calcul) trebuie să respecte
relaţiile (7.11 şi7.12):
            L ⋅ B − (lS + H f )(bS + H f )
  NST , max                                ≤ 0,75 ⋅ U ⋅ H f ⋅ R t + N av + N1cap              (7.11)
                        L⋅B
 N1cap = AS mbt Rt                                                                            (7.12)
unde: N1cap - este forţa axială transmisă la pahar prin betonul de monolitizare (Fig. 7.7);
         AS - aria laterală a stâlpului pe înălţimea paharului: AS = (2lS+2bS)Hp;
         Rt - rezistenţa de calcul la întindere a betonului de monolitizare;
         mbt - coeficientul condiţiilor de lucru, cu valoarea mbt = 0,30 în cazul construcţiilor fără
poduri rulante sau cu poduri rulante cu regim uşor de lucru; mbt = 0 în cazul halelor cu poduri
rulante cu regim mediu sau greu de lucru sau al construcţiilor solicitate dinamic din încărcările
curente de exploatare.




             Fig. 7.7 Transmiterea forţei axiale din stâlpul prefabricat la fundaţia pahar

7.2.1.3. Verificarea paharului (bP)

Verificarea pereţilor paharului în plan orizontal
Eforturile transmise pereţilor paharului de solicitările din stâlp (M şi Q) sunt reprezentate în
figura 7.8. Momentul încovoietor (M1) transmis paharului prin presiuni pe peretele frontal se
determină cu relatia (7.13):
           ⎛            a⎞
  M 1 = 0.8⎜ M ST − N ST ⎟ ≥ 0,4M ST                                                     (7.13)
           ⎝            3⎠
Rezultanta presiunilor (P) pe peretele frontal este:
 P = 1.25M1/HP+QST                                                                       (7.14)




                                Fig. 7.8 Solicitări în pereţii paharului


                                                                                                  26
Momentele încovoietoare rezultate în plan orizontal aplicate părţii superioare a peretelui frontal:
 Mr = 0.045Plb                                                                                 (7.15)
 Mc = 0.020Plb                                                                                 (7.16)
Forţa de întindere în pereţii longitudinali (NP) rezultă:
 NP = P/2                                                                                      (7.17)
Secţiunea de beton şi de armătură în pereţii paharului trebuie să repecte următoarele:

a) Peretele frontal se verifică la acţiunea momentelor încovoietoare Mr şi Mc stabilite cu relaţia
(7.15), respectiv (7.16). Armătura rezultată se dispune în treimea superioară a peretelui şi se
prelungeşte cu lungimea de ancorare măsurată de la jumătătea grosimii peretelui lungitudinal al
paharului (fig. 7.10).
b)Verificarea peretelui frontal la forţă tăietoare implică limitarea eforturilor principale în peretele
paharului, condiţie care impune:

         1.5P
 bp ≥                                                                                         (7.18)
        HP ⋅ R t
c) Pereţii longitudinali se verifică la întindere centrică cu forţa NP. Armătura rezultată se dispune
simetric pe feţele peretelui, distribuită în treimea superioară a paharului (fig. 7.10).
d) Verificarea pereţilor longitudinali la forţă tăietoare consideră secţiunea activă cu
dimensiunile bp’a0 sau bp’b0 (fig. 7.9), în funcţie de direcţia acţiunii în stâlp şi
forţa tăietoare de calcul cu valoarea NP.
Dacă:
 NP ≤ 0.5bp’a0Rt (NP ≤ 0.5bp’b0Rt)                                                            (7.19)
armătura pentru preluarea forţei tăietoare nu este necesară şi se dispune pe considerente de
armare minimă. În situaţiile în care condiţia 7.18 nu este respectată se dimensionează
armătura pentru preluarea forţei tăietoare cu relaţia (7.19) sau se dimensionează ca etrieri;
armătura se distribuie în pereţii longitudinali pe direcţia corespunzătoare dimensiunii mai mici a
pereţilor longitudinali (fig. 7.9).




                       a) Cazul: a0 ≥ HP−Δ                  b) Cazul: b0 < HP−Δ
   Fig. 7.9 Direcţia armăturii pentru preluarea forţei tăietoare în pereţii longitudinali ai paharului

Dacă armătura se dispune pe direcţie verticală în peretele paharului (a0 ≥ HP−Δ), aria totală necesară
(Aav) într-un perete rezultă:
            N H
 A av = 0.6 P P                                                                                (7.20)
             aoR a
Dacă: bo < HP−Δ, armătura se dimensionează ca etrieri, conf. STAS 10107/0-90.
e) Verificarea în secţiunea orizontală de la baza paharului consideră secţiunea chesonată cu
dimensiunile exterioare a0b0 şi grosimea pereţilor bp’. Secţiunea se verifică la compresiune
excentrică cu valori ale eforturile de calcul N şi M, determinate astfel:
                                                                                                         27
Forţa axială N = N1.cap (valoare calculată cu relaţia (7.12)).
Momentul încovoietor :
  M = MST+QSTHP                                                                               (7.21)
f) Armătura rezultată din calculul paharului la compresiune excentrică se dispune pe direcţie
verticală, uniform distribuită pe laturile secţiunii.
g) Grosimea minimă a pereţilor paharului (bP) este de
- 200 mm în cazul paharelor din beton armat monolit;
- 150 mm la paharele din beton armat prefabricat.
h) Armătura dispusă în pereţii paharului trebuie să respecte şi următoarele cerinţe minimale:
- procentul minim de armătură orizontală este 0.10% pentru armături OB37 şi 0.075% pentru
armături PC52;
- procentul minim de armătură verticală este 0.10% pentru armături OB37 şi 0.075% pentru
armături PC52.

7.2.2. Monolitizarea paharului
Dimensiunile golului paharului se aleg mai mari decât ale secţiunii stâlpului pe fiecare direcţie şi
sens cu 50÷75 mm la baza paharului şi cu 85÷120 mm la partea superioară a paharului.
Îmbinarea dintre stâlp şi fundaţie se realizează prin betonarea spaţiului din pahar. Betonul de clasă
minimă C16/20 va avea dimensiunea maximă a agregatelor de 16 mm. Suprafeţele stâlpului şi
paharului se curăţă şi se umezesc înainte de montare în pahar şi monolitizare.
Dacă într-un pahar se montează mai mulţi stâlpi (în dreptul unui rost), distanţa între aceştia va fi cel
puţin 50 mm pentru a se asigura betonarea completă a spaţiului dintre stâlpi şi a paharului.

7.2.3. Armarea paharului
Schema de armare recomandată a paharului este dată în figura 7.10a.
Varianta de armare din figura 7.10b corespunde situaţiilor în care nu rezultă armătură pentru
preluarea forţei tăietoare în pereţii longitudinali şi din verificarea secţiunii de la baza paharului
(la compresiune excentrică) nu rezultă necesară o armătură verticală.
Armăturile orizontale se ancorează sau, după caz, se înnădesc, ca bare întinse (fig. 7.10c).
Armăturile verticale se ancorează în talpa fundaţiei (fig. 7.10a şi b).
Armătura orizontală din pahar trebuie să respecte următoarele condiţii:
- diametrul minim φ10 mm în treimea superioară a paharului şi φ8 mm în restul paharului;
- cel puţin 2x3 bare orizontale în treimea superioară a paharului;
- distanţa maximă între armături este 250 mm.
Barele verticale din pahar au diametrul minim φ8 mm şi se dispun la cel mult 250 mm distanţă.

7.2.4. Verificarea tălpii fundaţiei pahar
Talpa fundaţiei pahar se verifică la moment încovoietor şi la forţă tăietoare.
Verificarea la moment încovoietor şi forţă tăietoare se face în secţiunile de la faţa paharului şi din
axul stâlpului prefabricat.

Calculul momentelor încovoietoare se face cu relaţii de tipul (7.1) şi (7.2), pe fiecare direcţie
principală a fundaţiei. Se recomandă ca înălţimea Ht să fie stabilită astfel încât armătura calculată în
secţiunea din axul stâlpului, cu înălţimea Hf, să fie suficientă pentru preluarea momentului
încovoietor din secţiunea de la faţa paharului. Se vor respecta şi condiţiile (fig. 7.6):
• Ht ≥ Hf +100mm
• Ht ≥ 0,6 l1
Procentul minim de armătură în talpa fundaţiei este 0.10% pentru armături tip OB37 şi
0.075% pentru armături tip PC52.
Diametrul minim al armăturilor este 10 mm.
Distanţa maximă între armături este 250 mm.

                                                                                                     28
Armătura se distribuie uniform pe lăţimea tălpii şi se prevede la capete cu ciocuri având lungimea
minimă de 15φ.

Verificarea la forţă tăietoare este semnificativă în secţiunile de la faţa paharului.
Dacă înălţimea secţiunii (Ht) şi lungimile consolelor (l1, b1 − fig. 7.6) respectă:
 l1≤Ht şi b1≤Ht                                                                               (7.22)
forţă tăietoare este preluată de beton.
Dacă condiţiile (7.22) nu sunt realizate se dimensionează armătura transversală din bare înclinate.




                                       Fig. 7.10 Armarea paharului

7.3. Fundaţii pentru stâlpi metalici

7.3.1. Fundaţiile izolate ale stâlpilor metalici se realizează ca fundaţie cu bloc şi cuzinet (fig. 7.11).
Se pot utiliza şi modele de fundaţii tip talpă armată, de formă prismatică, dacă înălţimea acestora
asigură lungimea de înglobare necesară pentru şuruburile de ancorare ale stâlpului şi este adecvată
adâncimii de fundare.




                                                Fig. 7.11

                                                                                                       29
7.3.2. Stâlpul metalic se realizează cu o placă de bază prevăzută cu rigidizări care asigură
transmiterea presiunilor la fundaţie şi a forţelor la şuruburile de ancorare.
Secţiunea în plan a plăcii de bază rezultă din condiţiile privind limitarea presiunii maxime pe
suprafaţa de contact cu betonul la următoarele valori:
- rezistenţa la compresiune a betonului din cuzinet;
- rezistenţa la compresiune a mortarului de poză.
Presiunea pe placa de bază se determină considerând solicitările capabile ale stâlpului (Ncap şi Mcap)
şi forţa de pretensionare a şuruburilor.

7.3.3. Dimensiunile şi poziţia şuruburilor de ancoraj definite în reglementarea tehnică de referinţă
STAS 10108/90 , se stabilesc în funcţie de momentul încovoietor capabil al stâlpului.
Lungimea minimă a şuruburilor de ancoraj prelungită în fundaţie este determinată astfel:
- valoarea maximă a dimensiunilor plăcii de bază (La sau Lb(fig. 7.11)) majorată cu lungimea de
ancoraj a şurubului (30φ) dacă suprafaţa laterală a acestuia este nervurată;
- valoarea maximă La sau Lb, (fig. 7.11) majorată cu lungimea de ancoraj a şurubului (15φ) dacă
suprafaţa laterală a acestuia nu este nervurată dar la capătul şurubului este prevăzută o placă
metalică rigidă şi rezistentă pentru ancorare; aria minimă a plăcii (AP) rezultă din verificarea
presiunilor transmise betonului pentru ancorarea şurubului (7.22)conform relaţiei 7.23:
           NS
  AP =                                                                                      (7.23)
        0 .4 R c
unde: NS este forţa de întindere din şurub

7.3.4. Secţiunea de beton

7.3.4.1. Betonul din cuzinet este de clasă minimă C8/10. Betonul din bloc este de clasă minimă C8/10
dacă armăturile cuzinetului sunt ancorate în blocul fundaţiei; dacă în bloc nu sunt dispuse armături
de rezistenţă, clasa minimă este C4/5.

7.3.4.2. Blocul de beton se realizează respectând următoarele condiţii:
- înălţimea blocului de beton se stabileşte astfel ca valoarea tgα să respecte limitele minime din
tabelul 7.2; această condiţie se impune şi în cazul blocului realizat în trepte;
- înălţimea treptei este de minimum 400 mm la blocul de beton cu o treaptă;
- blocul de beton poate avea cel mult 3 trepte a căror înălţime minimă este de 300 mm;
- turnarea blocului de beton se va realiza astfel încât să fie asigurată continuitatea betonului.

7.3.4.3. Cuzinetul de beton armat se proiectează respectând următoarele condiţii:
- cuzinetul se realizează cu formă prismatică;
- dimensiunile în plan ale cuzinetul (lc şi bc) vor fi mai mari cel puţin cu 300 mm decât
dimensiunile plăcii de bază a stâlpului (La, Lb (fig. 7.11)).
- dimensiunile în plan ale cuzinetului se stabilesc şi în funcţie de condiţia de limitare a presiunilor
pe planul de contact cu blocul la valori mai mici decât rezistenţa de calcul la compresiune
a betonului;
- se recomandă ca raportul bc/B (lc/L) să se situeze în intervalul 0.50÷0.65;
- înălţimea cuzinetului hc va respecta următoalele limite minime:
• hc ≥ 300mm;
• hc se stabileşte astfel încât tgα să respecte valorile minime din tabelul 7.2 pentru betonul de
clasă C8/10;
- rostul de turnare dintre bloc şi cuzinet se tratează astfel încât să se realizeze continuitatea
betonului sau, cel puţin, condiţiile care asigură un coeficient de frecare μ ≥ 1.0 (având ca referinţă
reglementarea tehnică STAS 10107/0-90).
                                                                                                    30
7.3.5. Armarea fundaţiei se realizează după modelul din fig. 7.11. Se vor respecta următoarele
condiţii:
a) armătura verticală din cuzinet rezultă din verificarea la compresiune excentrică a secţiunii de rost
dintre bloc şi cuzinet; eforturile de calcul din secţiune au valori asociate momentului de
dimensionare a şuruburilor de ancoraj ale stâlpului;
b) armătura de la partea superioară a cuzinetului, dispusă la cel mult 100 mm sub placa de bază a
stâlpului, se realizează ca o reţea de bare dispuse paralel cu laturile cuzinetului, prelungite pe
verticală în cuzinet şi bloc;
- diametrul minim al armăturilor este de 10 mm;
- distanţa dintre armături va fi cuprinsă între minim 70 mm şi maxim 200 mm;
c) armătura verticală de pe fiecare latură a cuzinetului se prelungeşte în bloc cu o lungime care
asigură ca distanţele l1, l2, şi l3, din figura 7.12 să fie cel puţin egale cu lungimea de ancorare
(definită în reglementarea tehnică de referinţă STAS 10107/0-90);
d) armăturile orizontale minime, dispuse pe perimetrul cuzinetului sunt:
- 1/4 din armătura verticală din cuzinet;
- φ8/200 mm.




                Fig. 7.12 Armarea fundaţiei cu bloc şi cuzinet pentru stâlpi metalici


8. Proiectarea fundaţiilor continue de beton armat sub stâlpi

8.1. Domeniul de aplicare
Prevederile prezentului capitol se aplică la proiectarea fundaţiilor continue ale stâlpilor de beton
armat monolit. Prin adaptarea sistemelor de fixare ale stâlpilor (pahar, şuruburi de ancorare),
fundaţiile continue pot fi utilizate şi pentru stâlpii de beton armat prefabricat sau la structurile cu
stâlpi metalici.
Soluţia de fundaţii continue sub stâlpi poate fi impusă, în general, în cazul următoarelor condiţii:
a) fundaţii independente care nu pot fi extinse suficient în plan (construcţii cu travei sau deschideri
mici care determină ”suprapunerea” fundaţiilor independente, stâlpi lângă un rost de tasare sau la
limita proprietăţii etc. (fig. 8.1));
b) fundaţii izolate care nu pot fi centrate sub stâlpi (fig. 8.2) etc;




                                                                                                    31
Fig. 8.1                           Fig. 8.2

c) alcătuirea generală a construcţiei în care stâlpii structurii în cadre au legături (la nivelul
subsolului) cu pereţii de beton armat rezemaţi pe teren prin fundaţii continue (fig. 8.3);
d) terenuri de fundare susceptibile de deformaţii diferenţiale importante şi unde nu se poate realiza
o creştere a rigidităţii în plan a ansamblului structural.




                                               Fig. 8.3


8.2. Alcătuirea fundaţiilor

8.2.1. Secţiunea de beton
La proiectarea fundaţiilor continue sub stâlpi (cazurile a şi b, pct. 8.1) având alcătuirea de grindă se
recomandă respectarea următoarelor condiţii:
- fundaţiile continue se dispun pe o direcţie sau pe două direcţii;
- deschiderile marginale ale fundaţiilor continue pe o direcţie se prelungesc în consolă pe lungimi
cuprinse între 0.20÷0.25L0;
- lăţimea grinzii, B, se determină pe baza condiţiilor descrise în capitolul 6. Se recomandă
majorarea valorii lăţimii obţinute prin calcul cu cca. 20%; această majorare este necesară pentru că,
datorită interacţiunii dintre grinda static nedeterminată şi terenul de fundare, diagrama presiunilor
de contact are o distribuţie neliniară, cu concentrări de eforturi în zonele de rigiditate mai mare, de
obicei sub stâlpi;
- înălţimea secţiunii grinzii de fundaţie, Hc (fig. 8.4a) se alege cu valori cuprinse între 1/3÷1/6 din
distanţa maximă (L0) dintre doi stâlpi succesivi; înălţimea tălpii, Ht, se determină în funcţie de
valorile indicate în tabelul 7.1 pentru raportul Ht/B;
                                                                      ⎛1 1⎞
- în cazul grinzilor cu vute (fig. 8.4b), lungimea vutei, L v = ⎜ ÷ ⎟ ⋅ L 0 , iar înălţimea vutei,
                                                                      ⎝6 4⎠
Hv, rezultă din condiţiile:




                                                                                                     32
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005
Np 112   2004 Cod de proiectare fundatii 2005

More Related Content

What's hot

normativ-scari
normativ-scarinormativ-scari
normativ-scariemikme
 
C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...
C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...
C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...Cristina ROMANESCU
 
Compendiu de rezistenta materialelor
Compendiu de rezistenta materialelorCompendiu de rezistenta materialelor
Compendiu de rezistenta materialelorAlex Belega
 
Cr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armat
Cr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armatCr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armat
Cr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armatMik3laNg3lo
 
Cap 4 divizia studii teren consolidari
Cap 4 divizia studii teren consolidariCap 4 divizia studii teren consolidari
Cap 4 divizia studii teren consolidarieNVy83
 
Cr6 - normativ zidarie revizuire exemple
Cr6 - normativ zidarie revizuire exempleCr6 - normativ zidarie revizuire exemple
Cr6 - normativ zidarie revizuire exempleUTCB
 
30 de citate despre constructii si arhitectura
30 de citate despre constructii si arhitectura30 de citate despre constructii si arhitectura
30 de citate despre constructii si arhitecturaIBC Focus
 
44710438 29315365-structuri-static-determinate-curs
44710438 29315365-structuri-static-determinate-curs44710438 29315365-structuri-static-determinate-curs
44710438 29315365-structuri-static-determinate-cursnadia n
 
Ge 026-97-compactarea-terasamentelor
Ge 026-97-compactarea-terasamentelorGe 026-97-compactarea-terasamentelor
Ge 026-97-compactarea-terasamentelorCristi Neagu
 
Curs proiectarea struct. in cadre de beton armat
Curs proiectarea  struct. in cadre de beton armatCurs proiectarea  struct. in cadre de beton armat
Curs proiectarea struct. in cadre de beton armatMARIANA POMIRLEANU
 
Cr 1 1_4_2012_normativ vant si exemple de calcul
Cr 1 1_4_2012_normativ vant si exemple de calculCr 1 1_4_2012_normativ vant si exemple de calcul
Cr 1 1_4_2012_normativ vant si exemple de calculIvancu Aurel
 
abaterii-disciplinare-pdf
abaterii-disciplinare-pdfabaterii-disciplinare-pdf
abaterii-disciplinare-pdfnickinio
 
Statica Constructiilor
Statica ConstructiilorStatica Constructiilor
Statica ConstructiilorFlorin Darabă
 
Dimensionare grinda betonn_armat_dupa_eurocod_648
Dimensionare grinda betonn_armat_dupa_eurocod_648Dimensionare grinda betonn_armat_dupa_eurocod_648
Dimensionare grinda betonn_armat_dupa_eurocod_648discom
 
Les Adjuvants Pour BéTons, Mortiers Et Coulis
Les Adjuvants Pour BéTons, Mortiers Et CoulisLes Adjuvants Pour BéTons, Mortiers Et Coulis
Les Adjuvants Pour BéTons, Mortiers Et Coulisjexpoz
 
Statica constructiilor ro en
Statica constructiilor ro enStatica constructiilor ro en
Statica constructiilor ro ennadia n
 

What's hot (20)

normativ-scari
normativ-scarinormativ-scari
normativ-scari
 
Cr 1-1-3-2012-zapada
Cr 1-1-3-2012-zapadaCr 1-1-3-2012-zapada
Cr 1-1-3-2012-zapada
 
C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...
C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...
C 56 85 normativ pentru verificarea calităţii şi recepţia lucrărilor de const...
 
Compendiu de rezistenta materialelor
Compendiu de rezistenta materialelorCompendiu de rezistenta materialelor
Compendiu de rezistenta materialelor
 
Cr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armat
Cr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armatCr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armat
Cr2 1-1.1-proiectarea-structurilor-cu-diafragme-de-beton-armat
 
Cap 4 divizia studii teren consolidari
Cap 4 divizia studii teren consolidariCap 4 divizia studii teren consolidari
Cap 4 divizia studii teren consolidari
 
Cr6 - normativ zidarie revizuire exemple
Cr6 - normativ zidarie revizuire exempleCr6 - normativ zidarie revizuire exemple
Cr6 - normativ zidarie revizuire exemple
 
30 de citate despre constructii si arhitectura
30 de citate despre constructii si arhitectura30 de citate despre constructii si arhitectura
30 de citate despre constructii si arhitectura
 
44710438 29315365-structuri-static-determinate-curs
44710438 29315365-structuri-static-determinate-curs44710438 29315365-structuri-static-determinate-curs
44710438 29315365-structuri-static-determinate-curs
 
Ge 026-97-compactarea-terasamentelor
Ge 026-97-compactarea-terasamentelorGe 026-97-compactarea-terasamentelor
Ge 026-97-compactarea-terasamentelor
 
Curs proiectarea struct. in cadre de beton armat
Curs proiectarea  struct. in cadre de beton armatCurs proiectarea  struct. in cadre de beton armat
Curs proiectarea struct. in cadre de beton armat
 
Armare stalp
Armare stalpArmare stalp
Armare stalp
 
Curs_1.ppt
Curs_1.pptCurs_1.ppt
Curs_1.ppt
 
Cr 1 1_4_2012_normativ vant si exemple de calcul
Cr 1 1_4_2012_normativ vant si exemple de calculCr 1 1_4_2012_normativ vant si exemple de calcul
Cr 1 1_4_2012_normativ vant si exemple de calcul
 
01 turnuri si piloni
01 turnuri si piloni01 turnuri si piloni
01 turnuri si piloni
 
abaterii-disciplinare-pdf
abaterii-disciplinare-pdfabaterii-disciplinare-pdf
abaterii-disciplinare-pdf
 
Statica Constructiilor
Statica ConstructiilorStatica Constructiilor
Statica Constructiilor
 
Dimensionare grinda betonn_armat_dupa_eurocod_648
Dimensionare grinda betonn_armat_dupa_eurocod_648Dimensionare grinda betonn_armat_dupa_eurocod_648
Dimensionare grinda betonn_armat_dupa_eurocod_648
 
Les Adjuvants Pour BéTons, Mortiers Et Coulis
Les Adjuvants Pour BéTons, Mortiers Et CoulisLes Adjuvants Pour BéTons, Mortiers Et Coulis
Les Adjuvants Pour BéTons, Mortiers Et Coulis
 
Statica constructiilor ro en
Statica constructiilor ro enStatica constructiilor ro en
Statica constructiilor ro en
 

Viewers also liked

SR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti forati
SR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti foratiSR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti forati
SR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti foratiEURO QUALITY TEST SRL Bucuresti
 
23995836 fundatii-de-adancime moldova
23995836 fundatii-de-adancime moldova23995836 fundatii-de-adancime moldova
23995836 fundatii-de-adancime moldovaMangu Andrei
 
Nomenclator eurocoduri
Nomenclator eurocoduriNomenclator eurocoduri
Nomenclator eurocoduriNoroc Sanatate
 
Fisa Foraj geotehnic
Fisa Foraj geotehnicFisa Foraj geotehnic
Fisa Foraj geotehnicOndrill.ro
 
Certificat de atestare fiscala Ondrill - foraje
Certificat de atestare fiscala Ondrill - forajeCertificat de atestare fiscala Ondrill - foraje
Certificat de atestare fiscala Ondrill - forajeOndrill.ro
 
Fisa De Executie foraje
Fisa De Executie forajeFisa De Executie foraje
Fisa De Executie forajeOndrill.ro
 
30 de salate delicioase
30 de salate delicioase30 de salate delicioase
30 de salate delicioasemelus1
 
Gt 067 din 2013 ghid privind interpretarea si controlul lucrarilor de compa...
Gt 067 din 2013   ghid privind interpretarea si controlul lucrarilor de compa...Gt 067 din 2013   ghid privind interpretarea si controlul lucrarilor de compa...
Gt 067 din 2013 ghid privind interpretarea si controlul lucrarilor de compa...melus1
 

Viewers also liked (12)

SR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti forati
SR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti foratiSR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti forati
SR EN-1536-2004 Executia lucrarilor geotehnice speciale. Piloti forati
 
23995836 fundatii-de-adancime moldova
23995836 fundatii-de-adancime moldova23995836 fundatii-de-adancime moldova
23995836 fundatii-de-adancime moldova
 
PLAN FUNDATII
PLAN FUNDATIIPLAN FUNDATII
PLAN FUNDATII
 
Nomenclator eurocoduri
Nomenclator eurocoduriNomenclator eurocoduri
Nomenclator eurocoduri
 
Fisa Foraj geotehnic
Fisa Foraj geotehnicFisa Foraj geotehnic
Fisa Foraj geotehnic
 
SR EN 1997 1-2004 NB-2007
SR EN 1997 1-2004 NB-2007SR EN 1997 1-2004 NB-2007
SR EN 1997 1-2004 NB-2007
 
Certificat de atestare fiscala Ondrill - foraje
Certificat de atestare fiscala Ondrill - forajeCertificat de atestare fiscala Ondrill - foraje
Certificat de atestare fiscala Ondrill - foraje
 
Fisa De Executie foraje
Fisa De Executie forajeFisa De Executie foraje
Fisa De Executie foraje
 
NP 074:2007
NP 074:2007NP 074:2007
NP 074:2007
 
Ordin NP 120-06
Ordin NP 120-06Ordin NP 120-06
Ordin NP 120-06
 
30 de salate delicioase
30 de salate delicioase30 de salate delicioase
30 de salate delicioase
 
Gt 067 din 2013 ghid privind interpretarea si controlul lucrarilor de compa...
Gt 067 din 2013   ghid privind interpretarea si controlul lucrarilor de compa...Gt 067 din 2013   ghid privind interpretarea si controlul lucrarilor de compa...
Gt 067 din 2013 ghid privind interpretarea si controlul lucrarilor de compa...
 

Similar to Np 112 2004 Cod de proiectare fundatii 2005

Normativ lucrari sustinere
Normativ lucrari sustinereNormativ lucrari sustinere
Normativ lucrari sustinerebanicatiberius
 
22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnat
22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnat22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnat
22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnatPopescuAnca8
 
Tehnologiei de cultură a tomatelor în solarii in zona transilvaniei
Tehnologiei de cultură a tomatelor în solarii in zona transilvanieiTehnologiei de cultură a tomatelor în solarii in zona transilvaniei
Tehnologiei de cultură a tomatelor în solarii in zona transilvanieiGherghescu Gabriel
 
Instalatii electrice si_de_iluminat
Instalatii electrice si_de_iluminatInstalatii electrice si_de_iluminat
Instalatii electrice si_de_iluminatJumoleaAlinaGeorgeta
 
Pomicultura generala si speciala
Pomicultura generala si specialaPomicultura generala si speciala
Pomicultura generala si specialaGherghescu Gabriel
 
kupdf.net_p100-2013pdf.pdf
kupdf.net_p100-2013pdf.pdfkupdf.net_p100-2013pdf.pdf
kupdf.net_p100-2013pdf.pdfcorneliu2
 
p100-2013pdf_compress.pdf
p100-2013pdf_compress.pdfp100-2013pdf_compress.pdf
p100-2013pdf_compress.pdfcorneliu2
 
Diploma Project: Friloc - Retea de socializare bazata pe geolocalizare
Diploma Project: Friloc - Retea de socializare bazata pe geolocalizareDiploma Project: Friloc - Retea de socializare bazata pe geolocalizare
Diploma Project: Friloc - Retea de socializare bazata pe geolocalizareVlad Petre
 
Cicerone laurentiu popa teza doctorat
Cicerone laurentiu popa  teza doctoratCicerone laurentiu popa  teza doctorat
Cicerone laurentiu popa teza doctoratadinachirila
 
Tratat de legumicultura
Tratat de legumiculturaTratat de legumicultura
Tratat de legumiculturaSorin30
 
V_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdf
V_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdfV_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdf
V_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdfmiau27
 
Teza doctorat lolea marius definitiva 2017 semnat
Teza doctorat  lolea marius definitiva 2017 semnatTeza doctorat  lolea marius definitiva 2017 semnat
Teza doctorat lolea marius definitiva 2017 semnatPopescuAnca8
 
Xi fizica (a. 2020 in limba romana)
Xi fizica (a. 2020 in limba romana)Xi fizica (a. 2020 in limba romana)
Xi fizica (a. 2020 in limba romana)VictoriaRomanov
 
19473092 14004572 crestereamatcilorruttner
19473092 14004572 crestereamatcilorruttner19473092 14004572 crestereamatcilorruttner
19473092 14004572 crestereamatcilorruttnerLucian Mera
 
96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatii
96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatii96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatii
96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatiiLucrari de licenta
 

Similar to Np 112 2004 Cod de proiectare fundatii 2005 (20)

Normativ lucrari sustinere
Normativ lucrari sustinereNormativ lucrari sustinere
Normativ lucrari sustinere
 
22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnat
22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnat22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnat
22 teza varga csaba f v_- 27_sept_ 2018 final-converted-semnat
 
Tehnologiei de cultură a tomatelor în solarii in zona transilvaniei
Tehnologiei de cultură a tomatelor în solarii in zona transilvanieiTehnologiei de cultură a tomatelor în solarii in zona transilvaniei
Tehnologiei de cultură a tomatelor în solarii in zona transilvaniei
 
Instalatii electrice si_de_iluminat
Instalatii electrice si_de_iluminatInstalatii electrice si_de_iluminat
Instalatii electrice si_de_iluminat
 
Pomicultura generala si speciala
Pomicultura generala si specialaPomicultura generala si speciala
Pomicultura generala si speciala
 
kupdf.net_p100-2013pdf.pdf
kupdf.net_p100-2013pdf.pdfkupdf.net_p100-2013pdf.pdf
kupdf.net_p100-2013pdf.pdf
 
p100-2013pdf_compress.pdf
p100-2013pdf_compress.pdfp100-2013pdf_compress.pdf
p100-2013pdf_compress.pdf
 
Diploma Project: Friloc - Retea de socializare bazata pe geolocalizare
Diploma Project: Friloc - Retea de socializare bazata pe geolocalizareDiploma Project: Friloc - Retea de socializare bazata pe geolocalizare
Diploma Project: Friloc - Retea de socializare bazata pe geolocalizare
 
berian_sergiu_2010
berian_sergiu_2010berian_sergiu_2010
berian_sergiu_2010
 
Cicerone laurentiu popa teza doctorat
Cicerone laurentiu popa  teza doctoratCicerone laurentiu popa  teza doctorat
Cicerone laurentiu popa teza doctorat
 
Tratat de legumicultura
Tratat de legumiculturaTratat de legumicultura
Tratat de legumicultura
 
Tratat de legumicultura
Tratat de legumiculturaTratat de legumicultura
Tratat de legumicultura
 
GP 124.pdf
GP 124.pdfGP 124.pdf
GP 124.pdf
 
V_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdf
V_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdfV_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdf
V_Nicolaiciuc_Bazele_Endodonţiei_Practice_ROM(1).pdf
 
Legumicultura volumul 2
Legumicultura   volumul 2Legumicultura   volumul 2
Legumicultura volumul 2
 
Teza doctorat lolea marius definitiva 2017 semnat
Teza doctorat  lolea marius definitiva 2017 semnatTeza doctorat  lolea marius definitiva 2017 semnat
Teza doctorat lolea marius definitiva 2017 semnat
 
C4 1
C4 1C4 1
C4 1
 
Xi fizica (a. 2020 in limba romana)
Xi fizica (a. 2020 in limba romana)Xi fizica (a. 2020 in limba romana)
Xi fizica (a. 2020 in limba romana)
 
19473092 14004572 crestereamatcilorruttner
19473092 14004572 crestereamatcilorruttner19473092 14004572 crestereamatcilorruttner
19473092 14004572 crestereamatcilorruttner
 
96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatii
96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatii96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatii
96 analiza conformitatii apelor minerale naturale carbogazoase cu specificatii
 

Np 112 2004 Cod de proiectare fundatii 2005

  • 1. UNIVERSITATEA TEHNICĂ DE CONSTRUCŢII BUCUREŞTI Bd. Lacul Tei 124, Sector 2, RO-020396, Bucureşti 38 CENTRUL DE INGINERIE GEOTEHNICĂ Tel: 021-2429350, Fax: 021-2420866 E-mail: cig@utcb.ro Normativ pentru proiectarea structurilor de fundare directă Redactarea finală Contract Nr. 147 / 2002 Beneficiar M.T.C.T. Rector, Prof.univ. dr. ing. Dan Stematiu Şef de proiect, Prof.univ. dr. ing. Nicoleta Rădulescu Colectiv de elaborare: Prof.univ. dr. ing. Nicoleta Rădulescu Prof. univ. dr. ing. Iacint Manoliu Prof. univ. dr. ing. Marius Gabor Prof. univ. dr. ing. Alexandrina Pretorian Conf. univ. dr. ing. Rodica Vierescu Şef lucrări univ. ing. Andrei Olteanu Şef lucrări univ. ing. Manole Şerbulea - Bucureşti 2004 -
  • 2. UNIVERSITATEA TEHNICĂ DE CONSTRUCŢII BUCUREŞTI Bd. Lacul Tei 124, Sector 2, RO-020396, Bucureşti 38
  • 3. Cuprins Lista notaţiilor şi simbolurilor ..............................................................................................................4 1. Prevederi generale ............................................................................................................................7 2. Principii generale ale conformării de rezistenţă a infrastructurilor ..................................................7 2.1. Definirea sistemului structural şi a subsistemelor componente ale construcţiei .......................7 2.2. Cerinţe privind proiectarea fundaţiilor ......................................................................................7 2.3. Cerinţe privind proiectarea substructurilor................................................................................8 3. Alegerea tipului de fundaţie .............................................................................................................9 3.1. Factori de care depinde alegerea tipului de fundaţie .................................................................9 3.1.1. Sistemul structural al construcţiei ..........................................................................................9 3.1.2. Condiţiile de teren ..................................................................................................................9 3.1.3. Condiţiile de exploatare ale construcţiei ................................................................................9 3.1.4. Condiţiile de execuţie ale infrastructurii ................................................................................9 3.2. Criterii pentru alegerea adâncimii minime de fundare............................................................10 4. Materiale utilizate la fundaţii .........................................................................................................11 5. Solicitări transmise infrastructurilor...............................................................................................11 5.1. Prevederi generale ...................................................................................................................11 5.2. Solicitări transmise infrastructurilor în grupările fundamentale de încărcări..........................12 5.3. Solicitări transmise infrastructurilor în grupările speciale de încărcări ..................................12 6. Stabilirea dimensiunilor bazei fundaţiei.........................................................................................13 6.1. Condiţii generale .....................................................................................................................13 6.2. Calculul terenului de fundare pe baza presiunilor convenţionale ...........................................14 6.3. Calculul terenului de fundare la starea limită de deformaţii ...................................................16 6.4. Calculul terenului de fundare la starea limită de capacitate portantă......................................17 7. Proiectarea fundaţiilor izolate ........................................................................................................18 7.1. Fundaţii pentru stâlpi de beton armat monolit.........................................................................19 7.1.1. Fundaţii tip talpă de beton armat ..........................................................................................19 7.1.2. Fundaţii tip bloc şi cuzinet .............................................................................................22 7.2. Fundaţii pentru stâlpi de beton armat prefabricaţi...................................................................24 7.2.1. Dimensiunile secţiunilor de beton ........................................................................................25 7.2.2. Monolitizarea paharului .......................................................................................................28 7.2.3. Armarea paharului................................................................................................................28 7.2.4. Verificarea tălpii fundaţiei pahar..........................................................................................28 7.3. Fundaţii pentru stâlpi metalici.................................................................................................29 8. Proiectarea fundaţiilor continue de beton armat sub stâlpi ............................................................31 8.1. Domeniul de aplicare...............................................................................................................31 8.2. Alcătuirea fundaţiilor ..............................................................................................................32 8.2.1. Secţiunea de beton................................................................................................................32 8.2.2. Armarea fundaţiilor ..............................................................................................................33 8.3. Calculul grinzilor continue......................................................................................................34 8.3.1. Calculul cu metode simplificate ...........................................................................................34 8.3.2. Calculul cu metode care iau în considerare conlucrarea între fundaţie şi teren ...................35 9. Proiectarea fundaţiilor construcţiilor cu pereţi structurali de zidărie .............................................39 9.1. Prevederi generale de alcătuire................................................................................................39 9.2. Fundaţii la clădiri amplasate pe teren bun de fundare în zone cu seismicitate redusă ............39 9.2.1. Fundaţii la clădiri fără subsol ...............................................................................................39 9.2.2. Fundaţii la clădiri cu subsol..................................................................................................44 9.2.3. Dimensionarea fundaţiilor ....................................................................................................44 9.3. Fundaţii la clădiri amplasate pe teren bun de fundare în zone cu seismicitate ridicată ..........47 9.4. Soluţii de fundare la pereţi nestructurali .................................................................................47 9.5. Racordarea în trepte a fundaţiilor având cote de fundare diferite ...........................................49 1
  • 4. 9.6. Fundaţii la rosturi de tasare .....................................................................................................51 9.7. Fundaţii la clădiri amplasate pe terenuri dificile .....................................................................51 9.7.1. Fundaţii pe pământuri foarte compresibile şi pământuri sensibile la umezire .....................51 9.7.2. Fundaţii pe pământuri cu umflări şi contracţii mari .............................................................55 10. Proiectarea fundaţiilor construcţiilor cu pereţi structurali de beton armat ...................................57 10.1. Principii generale de proiectare .............................................................................................57 10.2. Încărcări transmise infrastructurilor de pereţii structurali de beton armat ............................57 10.3. Dimensionarea tălpii fundaţiilor............................................................................................57 10.4. Alcătuirea fundaţiilor pentru pereţii structurali de beton armat ............................................60 11. Proiectarea radierelor de beton armat...........................................................................................62 11.1. Alcătuire generală şi domenii de aplicare .............................................................................62 11.2. Elemente constructive şi de proiectare..................................................................................63 11.3. Calculul radierelor .................................................................................................................67 11.3.1. Metode simplificate pentru calculul radierelor rigide ........................................................68 11.3.2. Calculul radierelor pe mediu Winkler ................................................................................69 11.3.3. Calculul radierelor pe mediu Boussinesq ...........................................................................69 11.3.4. Calculul radierelor pe mediu Winkler - Boussinesq ..........................................................70 12. Infrastructuri.................................................................................................................................70 12.1. Prevederi generale .................................................................................................................70 12.1.1. Clasificarea infrastructurilor după modul de comportare la acţiuni seismice ....................70 12.1.2. Clasificarea infrastructurilor după modul de solicitare a terenului de fundare ..................70 12.2. Schematizarea încărcărilor pentru calculul infrastructurii ....................................................71 12.3. Calculul eforturilor în elementele infrastructurii...................................................................71 12.3.1. Schematizarea pentru calcul a infrastructurii .....................................................................71 12.3.2. Schematizarea pentru calcul a pereţilor cu goluri ai infrastructurilor ................................72 12.3.3. Schematizarea terenului de fundare pentru calcul infrastructurilor ...................................72 12.4. Dimensionarea elementelor infrastructurii ............................................................................73 12.4.1. Verificarea planşeelor.........................................................................................................74 12.4.2. Verificarea pereţilor ...........................................................................................................74 12.4.3. Verificarea pereţilor în zonele de discontinuitate...............................................................74 12.4.4. Verificarea fundaţiilor ........................................................................................................76 12.5. Transmiterea eforturilor la infrastructură prin intermediul planşeelor - “efectul de menghină” ......................................................................................................................................76 12.5.1. Prevederi generale ..............................................................................................................76 12.5.2. Elemente de calcul, dimensionare şi verificare ..................................................................78 13. Reglementări tehnice de referinta.................................................................................................80 2
  • 5. ANEXA A A1. PRESIUNI CONVENŢIONALE A2. DEPLASĂRI SAU DEFORMAŢII ADMISE. VALORI ORIENTATIVE A3. CALCULUL TERENULUI DE FUNDARE LA STAREA LIMITĂ DE DEFORMAŢII A4. CALCULUL TERENULUI DE FUNDARE LA STAREA LIMITĂ DE CAPACITATE PORTANTĂ ANEXA B CALCULUL GRINZILOR CONTINUE PE MEDIU WINKLER B1. METODA DE CALCUL BAZATĂ PE SOLUŢII EXACTE B2. METODE NUMERICE DE CALCUL ANEXA C CALCULUL GRINZILOR PE MEDIU BOUSSINESQ ANEXA D CALCULUL RADIERELOR PE MEDIU WINKLER ANEXA E CALCULUL RADIERELOR PE MEDIU WINKLER – BOUSSINESQ ANEXA F CALCULUL PRESIUNILOR PE TEREN ALE FUNDAŢIILOR IZOLATE DE FORMĂ DREPTUNGHIULARĂ 3
  • 6. Lista notaţiilor şi simbolurilor Notaţia sau UM Semnificaţia simbolul A [m2] Aria secţiunii transversale a sistemului de fundare Aas [mm2] Aria de armătură de suspendare Aav [mm2] Aria armăturii verticale AP [mm2] Aria minimă a plăcii AS [mm2] Aria laterală a stâlpului pe înălţimea paharului Suprafaţa secţiunii de forfecare (lunecare) dintre elementul vertical Awf [m2] şi planşeu (placă) Dimensiunea cea mai mică a tălpii fundaţiei având forma B [m] dreptunghiulară în plan; Lăţimea sistemului de fundare pentru fundaţii de secţiune dreptunghiulară în plan Ba [m] Lăţimea activă a fundaţiei Lăţimea sau diametrul plăcii utilizate pentru determinarea Bp [m] caracteristicilor de compresibilitate prin incercarea pe teren D [kNm] Rigiditatea cilindrică a radierului E [kPa] Modulul de elasticitate Es [kPa] Modulul de deformaţie liniară al terenului de fundare Es * [kPa] Modulul dinamic de deformaţie liniară al terenului de fundare E' I C [kPa] Rigiditatea aproximativă a construcţiei E' I F [kPa] Rigiditatea fundaţiei F [kN] Forţa tăietoare transmisă între pereţii cu planuri mediane intersectate G [kPa] Modulul transversal (de forfecare) H [m] Înălţimea fundaţiei H’ [m] Înălţimea la marginea fundaţiei tip obelisc H1, H2 [m] Înălţimile treptelor blocului din beton simplu HC [m] Înălţimea secţiunii fundaţiei continue Hf [m] Grosimea fundului paharului Hî [m] Adâncimea de îngheţ Hmin [m] Înălţimea minimă a fundaţiei HP [m] Înălţimea paharului Momentul de inerţie al secţiunii transversale a sistemului de fundare I [m4] în lungul axei longitudinale IC [-] Indicele de consistenţă Momentul de inerţie al unei fâşii de radier definită între mijloacele a If [-] două deschideri succesive IP [%] Indicele de plasticitate Coeficient care depinde de forma în plan a fundaţiei, rigiditatea K [-] fundaţiei, cota z a punctului pentru care se calculează tasarea K0 [-] Coeficientul presiunii laterale a pământului în stare de repaos KG [-] Indice de rigiditate pentru radiere generale de formă dreptunghiulară KR [-] Rigiditatea relativă Dimensiunea cea mai mare a tălpii fundaţiei având forma L [m] dreptunghiulară în plan; Lungimea sistemului de fundare pentru fundaţii de secţiune dreptunghiulară în plan L0 [m] Distanţa dintre doi stâlpi vecini L1 [m] Lungimea treptei blocului din beton simplu 4
  • 7. La, Lb [m] Valoarea maximă a dimensiunilor plăcii de bază Ls [kN] Valoarea de calcul a forţei de lunecare transmisă planşeului superior Momentul încovoietor rezultant în centrul de greutate al secţiunii M [kNm] fundaţiei M [kPa] Modulul edometric Coeficient de corelaţie între valoarea modului edometric în M0 [-] intervalul de presiuni 200÷300 kPa şi modulul de deformaţie liniară Momentul încovoietor transmis paharului prin presiuni pe peretele M1 [kNm] frontal Modulul edometric determinat pentru intervalul de presiuni M2-3 [kPa] 200÷300 kPa Mi [kNm] Momentul încovoietor în stâlpul i Momentele încovoietoare rezultate în plan orizontal aplicate părţii M r, M c [kNm] superioare a peretelui frontal MST,cap [kNm] Momentul capabil al stâlpului în secţiunea de la faţa paharului Mx [kNm] Momentul încovoietor faţă de secţiunea x-x My [kNm] Momentul încovoietor faţă de secţiunea y-y Forţa axială; Rezultanta încărcărilor axiale în centrul de greutate al N [kN] secţiunii fundaţiei Numărul de lovituri necesare penetrării instalaţiei SPT pe o adân- N [-] cime de 30 cm pentru un diametru al tijei de penetrare de 50 mm N1cap [kN] Forţa axială transmisă la pahar prin betonul de monolitizare Ni [kN] Forţa axială în stâlpul i NP [kN] Forţa de întindere în pereţii longitudinali Forţa axială maximă în stâlp în faza de montaj a structurii NST.montaj [kN] prefabricate P [kN] Rezultanta presiunilor pe peretele frontal Q [kN] Forţa tăietoare Forţa tăietoare în elementul vertical al suprastructurii asociată Qas [kN] mecanismului de plastificare la acţiuni seismice Qinf [kN] Forţa tăietoare care se dezvoltă în elementul vertical sub planşeu Ra [kPa] Rezistenţa de calcul a armăturii de suspendare Rc* [N/mm2] Rezistenţa de calcul de bază la compresiune a betonului Ri [kN] Reacţiunea în reazemul i 2 Rt [N/mm ] Rezistenţa de calcul la întindere a betonului din stâlp U [m] Perimetrul secţiunii de forfecare Modulul de rezistenţă al tălpii fundaţiei având forma 3 W [m ] dreptunghiulară în plan; Modulul de rezistenţă al secţiunii transversale a sistemului de fundare Lăţimea unei fâşii de radier definită între mijloacele a două bf [m] deschideri succesive Rezistenţa la compresiune monoaxială a pământului (coeziunea cU [kPa] nedrenată) di [m] Distanţa din centrul de greutate al tălpii fundaţiei la axul stâlpului i e [-] Indicele porilor h [mm] Înălţimea secţiunii transversale a grinzii h [m] Grosimea radierului Înălţimea cuzinetului; Înălţimea secţiunii transversale a grinzii în hc [mm] câmp hd [m] Înălţimea diafragmelor 5
  • 8. hr [mm] Înălţimea secţiunii transversale a grinzii în reazem 3 Coeficientul de pat obţinut prin încercarea de probă cu placa de k’s [kN/m ] latură sau diametru Bp k1 [kN/m3] Coeficientul de pat obţinut din încercarea cu placa de 1m2 ks [kN/m3] Coeficientul de pat al mediului deformabil lancorare [mm] Lungimea de ancorare lc [mm] Lungimea cuzinetului le [mm] Lungimea elastică ls, bs [mm] Dimensiunile secţiunii transversale a stâlpului Coeficient de corecţie care depinde de raportul între grosimea z0 a m [-] stratului deformabil şi lăţimea B a sistemului de fundare mbt [-] Coeficientul condiţiilor de lucru p [kPa] Presiunea de contact fundaţie-teren qc [kPa] Rezistenţa pe vârf (CPT) td [m] Grosimea diafragmelor vp [cm/sec] Viteza de propagarea a undelor longitudinale (principale) prin teren vs [cm/sec] Viteza de propagarea a undelor trasversale (secundare) prin teren z [m] Deplasarea tălpii fundaţiei pe direcţie verticală z0 [m] Grosimea stratului deformabil ∑ E' I ca (kPa) Rigiditatea cadrelor din componenţa construcţiei α [-] Factorul de transformare de la valoarea k’s la valoarea ks α [º] Unghiul blocului din beton simplu β [º] Unghiul cuzinetului ε [%] Deformaţia longitudinală specifică φ [mm] Diametrul barei de armătură Coeficient de flexibilitate pentru radiere sub stâlpi uniform λ [m-1] distribuiţi pe suprafaţa acestora μ [-] Coeficient de frecare Coeficient de deformaţie transversală (Poisson) al terenului de νs [-] fundare Coeficient dinamic de deformaţie transversală (Poisson) al terenului νs * [-] de fundare ρ [g/cm3] Densitatea σ [kPa] Efortul unitar normal σz [kPa] Efortul unitar normal vertical τmed [kPa] Efortul unitar tangenţial mediu pe suprafaţa de lunecare 6
  • 9. 1. Prevederi generale 1.1. Prezentul normativ se aplică la proiectarea structurilor de fundare directă pentru clădirile de locuit şi social – culturale, construcţiile industriale şi agrozootehnice. La proiectarea structurilor de fundare directă se va avea în vedere respectarea cerinţelor prevăzute la punctul 2.2 şi în reglementările tehnice conexe. La proiectarea structurilor de fundare directă în condiţii speciale de teren (pământuri sensibile la umezire, pământuri contractile, pământuri lichefiabile) se au în vedere şi măsurile suplimentare din reglementările tehnice în vigoare specifice acestor cazuri. 1.2. Normativul se referă la următoarele tipuri de fundaţii directe: a) fundaţii izolate b) fundaţii continue c) fundaţii radier 1.3. Reglementările tehnice de referinţă sunt enumerate în capitolul 13. 2. Principii generale ale conformării de rezistenţă a infrastructurilor 2.1. Definirea sistemului structural şi a subsistemelor componente ale construcţiei 2.1.1. Sistemul structural reprezintă ansamblul elementelor care asigură rezistenţa şi stabilitatea unei construcţii sub acţiunea încărcărilor statice şi dinamice, inclusiv cele seismice. Elementele structurale pot fi grupate în patru subsisteme: suprastructura (S); substructura (B); fundaţiile (F); terenul de fundare (T) (fig. 2.1). 2.1.2. Suprastructura reprezintă ansamblul elementelor de rezistenţă situate deasupra infrastructurii (I). 2.1.3. Infrastructura este alcătuită din substructură şi fundaţii. La construcţiile care nu au substructură, infrastructura este alcătuită din fundaţii. 2.1.4. Substructura este zona poziţionată între suprastructură şi fundaţii. În raport cu suprastructura, aceasta prezintă diferenţe de alcătuire şi conformare, care conduc la capacităţi de rigiditate şi rezistenţă majorate. 2.1.5. Fundaţiile reprezintă ansamblul elementelor structurale care transmit încărcările la terenul de fundare. 2.1.6. Terenul de fundare constituie suportul construcţiei şi reprezintă volumul de rocă sau de pământ care resimte influenţa construcţiei respective sau în care pot avea loc fenomene care să influenţeze construcţia. 2.2. Cerinţe privind proiectarea fundaţiilor 2.2.1. Fundaţiile trebuie proiectate astfel încât să transmită la teren încărcările construcţiei, inclusiv cele din acţiuni seismice, asigurând îndeplinirea condiţiilor privind verificarea terenului de fundare la stări limită. 7
  • 10. S S F F T T T T T T T T a b S S S 0.00 0.00 B B F B F F T T T c d e Fig. 2.1 Componentele sistemului structural Suprastructura (S); Substructura (B); Fundaţiile (F); Terenul de fundare (T); Ιnfrastructura (Ι) 2.2.2. Fundaţiile ca elemente structurale se vor proiecta astfel încât să fie îndeplinite condiţiile de verificare la stările limită ultime şi ale exploatării normale. 2.3. Cerinţe privind proiectarea substructurilor 2.3.1. Substructura are rolul de a prelua încărcările provenite de la suprastructură şi de a le transmite fundaţiilor. 2.3.2. Substructura este alcătuită, de regulă, din elemente structurale verticale (pereţi, stâlpi) şi elemente orizontale sau înclinate (plăci, grinzi etc.). 2.3.3. Proiectarea substructurii trebuie să ţină cont de conlucrarea cu fundaţiile şi suprastructura. 2.3.4. La proiectarea substructurilor se vor lua în considerare încărcările proprii, încărcările transmise de suprastructură şi de teren conform prevederilor de la cap. 5. 2.3.5. Eforturile din acţiuni seismice transmise substructurii se vor asocia mecanismului de plastificare al suprastructurii (fig. 2.2). Această condiţie nu este obligatorie în zonele seismice de calcul E şi F definite în reglementarea tehnică de referinţă NP100-92. 2.3.6. La proiectarea elementelor structurale ale substructurii vor fi îndeplinite condiţiile de verificare la stările limită ultime şi ale exploatării normale. Infrastructura se va proiecta astfel încât să fie solicitată, de regulă, în domeniul elastic de comportare. Se admite proiectarea mecanismului de plastificare a structurii la acţiuni seismice severe cu dezvoltarea de articulaţii plastice şi în substructură. In aceste situaţii se vor lua măsuri care să asigure o comportare ductilă a substructurii şi accesul pentru intervenţii post seismice. 8
  • 11. Perete Stâlp Articulaţii plastice Grindă S S F B Ι F T T Fig. 2.2 Sisteme structurale cu mecanisme de plastificare în suprastructură 3. Alegerea tipului de fundaţie 3.1. Factori de care depinde alegerea tipului de fundaţie 3.1.1. Sistemul structural al construcţiei - tipul de suprastructură (în cadre, cu pereţi etc.); - dimensiuni (deschideri, travei, înălţimi – suprateran şi subteran); - alcătuirea substructurii; - materiale (beton, metal, zidărie etc.); - eforturile transmise fundaţiilor în grupările fundamentale şi speciale de încărcări; - mecanismul de disipare a energiei induse de acţiunea seismică (poziţia zonelor potenţial plastice, eforturile transmise fundaţiilor etc.); - sensibilitatea la tasări a sistemului structural. 3.1.2. Condiţiile de teren - natura şi stratificaţia terenului de fundare, caracteristicile fizico-mecanice ale straturilor de pământ sau de rocă şi evoluţia acestora în timp; - condiţiile de stabilitate generală a terenului (terenuri în pantă cu structuri geologice susceptibile de alunecări de teren etc.); - condiţiile hidrogeologice (nivelul şi variaţia sezonieră a apelor subterane, agresivitatea apelor subterane, circulaţia apei prin pământ etc.); - condiţiile hidrologice (nivelul apelor de suprafaţă, posibilităţi de producere a inundaţiilor, a fenomenului de afuiere etc.). 3.1.3. Condiţiile de exploatare ale construcţiei - eforturile transmise la fundaţii (din sarcini statice şi dinamice – vibraţii produse de utilaje etc.); - posibilitatea pierderilor de apă sau substanţe chimice din instalaţiile sanitare sau industriale; - încălzirea terenului în cazul construcţiilor cu degajări mari de căldură (cuptoare, furnale etc.); - degajări de gaze agresive care poluează apele meteorice şi accentuează agresivitatea chimică a apelor subterane; - influenţa deformaţiilor terenului de fundare asupra exploatării normale a construcţiei; - limitarea tasărilor în funcţie de cerinţele tehnologice specifice. 3.1.4. Condiţiile de execuţie ale infrastructurii - adâncimea săpăturii pentru realizarea fundaţiilor construcţiei şi modul de asigurare a stabilităţii săpăturii; 9
  • 12. - existenţa unor construcţii în vecinătate care pot fi afectate de lucrările de execuţie a infrastructurii (instabilitatea taluzului, afuierea terenului la realizarea epuismentelor etc.); - sistemul de epuismente; - prezenţa reţelelor de apă-canal, de gaze, de energie electrică etc. 3.2. Criterii pentru alegerea adâncimii minime de fundare 3.2.1. Adâncimea de fundare este distanţa măsurată de la nivelul terenului (natural sau sistematizat) până la talpa fundaţiei. 3.2.2. Adâncimea minimă de fundare se stabileşte în funcţie de: - adâncimea de îngheţ; - nivelul apei subterane; - natura terenului de fundare; - înălţimea minimă constructivă a fundaţiei; - condiţiile tehnologice. 3.2.3. Adâncimea de îngheţ are valorile indicate în reglementarea tehnică de referinţă STAS 6054/77. 3.2.4. Adâncimea minimă de fundare se stabileşte conform tabelului 3.1 în funcţie de natura terenului de fundare, adâncimea de îngheţ şi nivelul apei subterane. Tabelul 3.1 Hî H Adâncimea minimă de fundare adâncimea de adâncimea apei (cm) îngheţ subterane faţă de Terenul de fundare Terenuri cota terenului Terenuri ferite supuse acţiunii natural de îngheţ*) îngheţului (cm) (m) Roci stâncoase oricare oricare 30÷40 20 Pietrişuri curate, H≥2.00 Hî 40 nisipuri mari şi oricare H<2.00 Hî+10 40 mijlocii curate H≥2.00 80 50 Hî≤70 Pietriş sau nisip H<2.00 90 50 argilos, argilă grasă H≥2.00 Hî+10 50 Hî>70 H<2.00 Hî+20 50 H≥2.50 80 50 Nisip fin prăfos, praf Hî≤70 H<2.50 90 50 argilos, argilă prăfoasă şi nisipoasă H≥2.50 Hî+10 50 Hî>70 H<2.50 Hî+20 50 *) Observaţie – Valorile indicate pentru cazul terenurilor ferite de îngheţ se măsoară de la cota inferioară a pardoselii. 3.2.5. Talpa fundaţiei va pătrunde cel puţin 20 cm în stratul natural bun de fundare sau în stratul de fundare îmbunătăţit. 3.2.6. Pentru construcţiile fundate pe terenuri dificile (pământuri sensibile la umezire, pământuri contractile, pământuri lichefiabile etc.), adâncimea de fundare este indicată în reglementările tehnice de referinţă specifice acestor cazuri. 10
  • 13. 4. Materiale utilizate la fundaţii 4.1. Fundaţiile se alcătuiesc în mod obişnuit din: - beton armat; - beton simplu; - zidărie de piatră. 4.2. Caracteristicile betoanelor utilizate la executarea fundaţiilor se stabilesc de proiectant în funcţie de destinaţie, solicitări, condiţiile mediului de fundare şi influenţa acestora asupra durabilităţii betonului din fundaţii; acestea sunt definite în reglementarea tehnică de referinţă NE 012-99. 4.3. Clasele minime de beton se stabilesc astfel: a) Beton simplu C4/5– pentru umpluturi, egalizări şi bloc (la fundaţiile tip bloc şi cuzinet). b) Beton armat C8/10 pentru fundaţii izolate sau continue, fundaţii monolite tip pahar, cuzineţi, radiere şi reţele de grinzi neexpuse la acţiuni agresive, cu procente optime de armare; C12/15 pentru fundaţii prefabricate tip pahar, fundaţii supuse la solicitări importante şi fundaţii supuse la acţiuni dinamice. În condiţii de agresivitate caracteristicile betoanelor se stabilesc ca în reglementarea tehnică de referinţă NE 012-99 respectiv C215-88. 4.4. Tipul de ciment ce se utilizează la prepararea betonului pentru fundaţii se stabileşte în funcţie de influenţa condiţiilor mediului de fundare ca în reglementarea tehnică de referinţă NE 012-99. 4.5. Oţelul beton trebuie să îndeplinească condiţiile definite în reglementarea tehnică de referinţă STAS 438/1-89 respectiv STAS 438/2-91. Pentru armătura rezultată din criterii constructive se utilizează, de regulă, oţel OB37 iar pentru armătura de rezistenţă rezultată din calcul se utilizează oţel OB37, PC sau plase sudate din STNB. 4.6. Pentru fundaţiile din zidărie de piatră se aplică prevederile definite în reglementarea tehnică de referinţă STAS 2917-79. Mortarul întrebuinţat este din var şi ciment de marcă minim M10 indicat în reglementarea tehnică de referinţă STAS 1030-85. 4.7. Pentru fundaţiile continue ale construcţiilor cu cel mult un nivel amplasate în mediul rural se pot aplica şi soluţii constructive bazate pe folosirea materialelor locale. Fundaţiile se pot realiza din zidărie de piatră sau beton ciclopian. 5. Solicitări transmise infrastructurilor 5.1. Prevederi generale 5.1.1. Solicitările transmise infrastructurilor se determină considerând eforturile transmise de suprastructură, încărcările aplicate direct infrastructurii (încărcări din greutatea proprie, din încărcări de exploatare, forţe seismice etc.), presiuni sau împingeri ale pământului, presiunea apei etc. Orice acţiune semnificativă pentru proiectarea elementelor infrastructurii sau pentru verificarea terenului de fundare se va considera în categoria de solicitări transmise infrastructurii. 11
  • 14. 5.1.2. Solicitările transmise infrastructurilor se determină în grupările fundamentale de încărcări şi în grupările speciale de încărcări. Stabilirea solicitările transmise infrastructurilor în grupările speciale de încărcări este, de regulă, condiţionată de dimensionarea completă a suprastructurii. 5.1.3. Solicitările transmise infrastructurilor se determină cu valori corespunzătoare proiectării elementelor de beton ale infrastructuturii şi cu valori corespunzătoare verificării terenului de fundare. 5.1.4. Structurile considerate în calcul în stadiul de comportare liniară (elastic) se recomandă să fie schematizate ca ansamblul constituit din suprastructură, infrastructură şi teren de fundare. 5.1.5. În gruparea specială de încărcări la acţiuni seismice, când, de regulă, se acceptă plastificarea suprastructurii şi dezvoltarea unui mecanism de disipare a energiei induse de cutremur, solicitările transmise infrastructurilor se determină corespunzător forţelor generalizate (N, M, Q etc.) dezvoltate în secţiunea de la baza suprastructurii (fig 5.1). Fig. 5.1 Solicitările transmise infrastructurii de suprastructură. 5.2. Solicitări transmise infrastructurilor în grupările fundamentale de încărcări 5.2.1. La verificarea rezistenţei infrastructurii şi a terenului de fundare vor considera valorile de calcul ale eforturilor transmise de suprastructură. 5.2.2. Valorile solicitărilor transmise infrastructurii se definesc în concordanţă cu reglementarea tehnică de referinţă STAS 10101/0-75 şi coeficienţii încărcărilor se definesc în concordanţă cu reglementarea tehnică de referinţă STAS 10101/0A-77. 5.3. Solicitări transmise infrastructurilor în grupările speciale de încărcări 5.3.1. Prevederile de la pct. 5.3. sunt aplicabile grupărilor speciale de încărcări în care se consideră acţiunile seismice aplicate construcţiei. Calculul va considera orice direcţie de acţiune seismică semnificativă pentru proiectarea infrastructurii. De regulă, se vor considera 8 direcţii în plan orizontal, corespunzătoare direcţiilor principale şi direcţiilor oblice (la 45º şi 135º) ale construcţiei. 5.3.2. Solicitările transmise infrastructurilor proiectate corespunzător unei comportări elastice de către suprastructura plastificată sunt asociate mecanismului de disipare a energiei induse de acţiunile seismice. 12
  • 15. Valorile forţelor generalizate transmise infrastructurii sunt determinate prin majorarea forţelor capabile dezvoltate de mecanismul de plastificare a suprastructurii cu coeficientul kF: kF = 1.35 (5.1) Forţele generalizate capabile se determină considerând rezistenţele de calcul ale materialelor. Dacă forţele generalizate capabile se determină considerând rezistenţele medii ale materialelor valoarea coeficientului kF este: kF = 1.00 (5.2) 5.3.3. Dacă mecanismul de plastificare care asigură disiparea energiei induse de cutremur implică dezvoltarea de deformaţii inelastice şi în elementele substructurii, pentru calcul se consideră următoarele valori ale solicitărilor transmise de suprastructură: - pentru calculul elementelor infrastructurii se consideră valorile solicitărilor capabile din grupările speciale de încărcări; - pentru verificarea terenului de fundare se consideră valorile solicitărilor capabile din grupările speciale de încărcări majorate cu coeficientul kF dat de (5.1). 5.3.4. Solicitările transmise infrastructurilor de către suprastructurile care răspund elastic la acţiunile seismice se consideră cu valorile date la pct. 5.3.3. 5.3.5. Efectul componentei verticale a acţiunii seismice se va lua în considerare la proiectarea sistemelor de fundare în concordanţă cu reglementarea tehnică de referinţă P100-92; în cazul fundaţiilor sensibile la forţă tăietoare/străpungere (radiere tip dală groasă etc.) valorile coefientului seismic de calcul pe direcţie verticală sunt ±2ks. 5.3.6. În grupările speciale de încărcări care cuprind şi acţiunea seismică se consideră acţiunea de lungă durată a încărcărilor aplicate direct elementelor infrastructurii precum şi forţele seismice de calcul stabilite pe baza unui coeficient seismic cu valoarea minimă: cs = 1.5αks (5.3) 6. Stabilirea dimensiunilor bazei fundaţiei 6.1. Condiţii generale 6.1.1. Dimensiunile bazei fundaţiei se stabilesc pe baza calculului terenului de fundare definit în reglementarea tehnică de referinţă STAS 3300/1-85 respectiv STAS 3300/2-85. 6.1.2. Dimensiunile bazei fundaţiei se aleg astfel încât presiunile la contactul între fundaţie şi teren să aibă valori acceptabile, pentru a se împiedica apariţia unor stări limită care să perecliteze siguranţa construcţiei şi/sau exploatarea normală a construcţiei. Stările limită ale terenului de fundare pot fi de natura unei stări limită ultime (SLU), a cărei depăşire conduce la pierderea ireversibilă, în parte sau în totalitate, a capacităţii funcţionale a construcţiei sau de natura unei stări limită a exploatării normale (SLEN), a cărei depăşire conduce la întreruperea exploatării normale a construcţiei. 6.1.3. Având ca referinţă reglementarea tehnică STAS 3300/1-85, stările limită ale terenului de fundare sunt: - starea limită de deformaţii (SLD), care poate fi de natura unei stări limită ultime (SLD.U), dacă deformaţiile terenului conduc la deplasări şi deformaţii ale construcţiei incompatibile cu structura de rezistenţă sau de natura unei stări limită a exploatării normale (SLD.EN), dacă deformaţiile terenului împiedică exploatarea normală a construcţiei; 13
  • 16. - starea limită de capacitate portantă (SLCP) corespunde unei extinderi a zonelor în care se îndeplineşte condiţia de rupere (efortul tangenţial efectiv este egal cu rezistenţa la forfecare a materialului) astfel încât are loc pierderea stabilităţii terenului şi a construcţiei, în parte sau în totalitate; starea limită de capacitate portantă a terenului de fundare este întotdeauna de natura unei stări limite ultime. 6.1.4. În funcţie de particularităţile construcţiei şi ale terenului de fundare, presiunile acceptabile pe terenul de fundare se pot stabili, în cazul fundării directe, în trei moduri: - ca presiuni convenţionale, pconv; - ca presiuni care să asigure îndeplinirea condiţiilor calcului la starea limită de deformaţii (SLD.U şi SLD.EN); - ca presiuni care să asigure îndeplinirea condiţiilor calcului la starea limită de capacitate portantă (SLCP). 6.1.5. Din punctul de vedere al construcţiei, calculul terenului de fundare se diferenţiază în funcţie de următorii factori: a) Clasa de importanţă - construcţii speciale, CS (din clasele de importanţă I şi II); - construcţii obişnuite, CO (din clasele de importanţă III, IV, V). b) Sensibilitatea la tasări - construcţii sensibile la tasări diferenţiale (CSEN); - construcţii nesensibile la tasări diferenţiale. c) Existenţa restricţiilor de deformaţii în exploatare - construcţii cu restricţii (CRE); - construcţii fără restricţii. 6.1.6. Din punctul de vedere al terenului de fundare, calculul terenului de fundare se diferenţiază în funcţie de apartenenţa terenului la una din următoarele categorii: a) terenuri bune (TB) b) terenuri dificile În tabelul 6.1 sunt date, având ca referinţă reglementarea tehnică STAS 3300/2-85, situaţiile in care terenul de fundare aparţine categoriei TB. 6.1.7. Condiţiile de efectuare a calculului terenului de fundare alcătuit din pământuri, în vederea stabilirii unor dimensiuni ale bazei fundaţiei care să conducă la presiuni acceptabile pe teren, sunt sintetizate în tabelul 6.2. După cum rezultă din tabelul 6.2, calculul terenului de fundare pe bază de presiuni convenţionale impune îndeplinirea simultană a patru condiţii. În schimb, o singură condiţie este suficientă pentru a face obligatoriu calculul la starea limită de deformaţie (la SLD.U sau SLD.EN) sau calculul la starea limită de capacitate portantă (SLCP). 6.1.8. În cazul fundării pe rocă, folosirea presiunilor convenţionale ca presiuni acceptabile este admisă în toate cazurile, cu excepţia construcţiilor speciale când se impune calculul la starea limită de capacitate portantă (SLCP). 6.2. Calculul terenului de fundare pe baza presiunilor convenţionale 6.2.1. Presiunile convenţionale sunt presiuni acceptabile stabilite pe cale empirică, ţinând seama de experienţa de construcţie din ţară. În anexa A sunt reproduse, având ca referinţă reglementarea tehnică STAS 3300/2-85, tabelele cuprinzând aşa-numitele valori de bază ale presiunilor convenţionale, p conv, corespunzătoare unor 14
  • 17. fundaţii convenţionale având lăţimea tălpii B = 1,0 m şi adâncimea de fundare Df = 2.0 m, precum şi regulile de stabilire a corecţiilor de lăţime CB şi de adâncime CD . Caracterul empiric al presiunilor convenţionale este evidenţiat de faptul că valorile de bază din tabele se obţin în funcţie de caracteristici ale naturii pământurilor (granulozitate, plasticitate) şi ale stării pământurilor (starea de îndesare, starea de consistenţă, gradul de saturaţie, indicele porilor), fără a se face uz de cunoaşterea proprietăţilor mecanice (compresibilitatea şi rezistenţa Tabelul 6.1 Nr. Terenuri bune (TB) crt. 1 Blocuri, bolovănişuri sau pietrişuri conţinând mai puţin de 40% nisip şi mai puţin de 30% argilă, în condiţiile unei stratificaţii practic uniforme şi orizontale (având înclinarea mai mică de 10%) 2 Pământuri nisipoase, inclusiv nisipuri prăfoase, îndesate sau de îndesare medie, în condiţiile unei stratificaţii practic uniforme şi orizontale 3 Pământuri coezive cu plasticitate redusă: nisipuri argiloase, prafuri nisipoase şi prafuri, având e ≤ 0, 7 şi Ic ≥ 0,5 , în condiţiile unei stratificaţii practic uniforme şi orizontale 4 Pământuri coezive cu plasticitate medie: nisipuri argiloase, prafuri nisipoase-argiloase, având e ≤1 şi Ic ≥ 0,5 , în condiţiile unei stratificaţii practic uniforme şi orizontale 5 Pământuri coezive cu plasticitate mare: argile nisipoase, argile prăfoase şi argile, având e ≤1,1 şi Ic ≥ 0,5 , în condiţiile unei stratificaţii practic uniforme şi orizontale 6 Roci stâncoase şi semistâncoase în condiţiile unei stratificaţii practic uniforme şi orizontale 7 Orice combinaţie între stratificaţiile precizate la nr. crt. 1...6 8 Umpluturi de provenienţă cunoscută realizate organizat, conţinând materii organice sub 5% Notă: Pământurile coezive saturate de consistenţă ridicată (Ic > 0,5) pot fi considerate terenuri bune în accepţia tabelului 6.1. Totuşi, în situaţia în care încărcarea transmisă de fundaţia directă asupra acestor pământuri se realizează rapid, fără posibilitatea drenării apei din porii pământului, devine necesară o verificare a terenului la starea limită de capacitate portantă (SLCP). Tabelul 6.2 Modul de Terenul Construcţia calcul Pământ Restricţii de (stabilirea Bun Sensibilitatea la Dificil coeziv saturat Importanţa deformaţii în presiunii (TB) tasări diferenţiale încărcat rapid exploatare acceptabile) Cu Obişnuită Specială Sensibilă Fără Nesensibilă restricţii (CO) (CS) (CSEN) restricţii (CRE) pconv x x x x SLD.U x SLD.U x SLD.U x SLD.EN x SLCP x SLCP x 6.2.2. Condiţiile care trebuie respectate în cazul calculului terenului de fundare pe baza presiunilor convenţionale se diferenţiază în funcţie de tipul încărcării şi de gruparea de încărcare (gruparea fundamentală GF, gruparea specială GS) şi sunt sintetizate în tabelul 6.3. 15
  • 18. 6.2.3. Pentru stabilirea dimensiunilor în plan ale fundaţiei este necesară, după caz, îndeplinirea tuturor condiţiilor specificate în tabelul 6.3. Prin aceasta se consideră implicit îndeplinite condiţiile calcului terenului de fundare la starea limită de deformaţie şi la starea limită de capacitate portantă, ca stări limită ultime. Tabelul 6.3 Centrică Cu excentricitate după Cu excentricitate Tipul încărcării o singură direcţie după două direcţii Gruparea de încărcare GF pef ≤ pconv pef max ≤ 1.2 pconv pef max ≤ 1.4 pconv GS p’ef ≤ 1.2 pconv p’ef max ≤ 1.4 pconv p’ef max ≤ 1.6 pconv 6.2.4. Dimensiunile în plan ale fundaţiilor se stabilesc astfel ca rezultanta încărcărilor provenite din acţiuni din grupări fundamentale să fie aplicată în cadrul sâmburelui central. 6.2.5. Pentru situaţiile în care în gruparea fundamentală intervin solicitări orizontale importante, nepermanente, se admite ca rezultanta încărcărilor să se aplice în afara sâmburelui central cu condiţia ca secţiunea activă a tălpii fundaţiei să nu fie mai mică de 80% din aria totală a acesteia. În cazul construcţiilor de tipul castele de apă, turnuri etc. nu se admite desprinderea fundaţiei de pe teren în grupările fundamentale de încărcări. 6.2.6. Excentricităţile maxime admise pentru rezultantele încărcărilor din grupări speciale trebuie să fie limitate astfel încât secţiunea activă a suprafeţei tălpii fundaţiei să se extindă cel puţin până în dreptul centrului de greutate al acesteia. 6.2.7. Modul de calcul al lui pef pentru excentricitate pe două direcţii este prezentat în anexa F. 6.3. Calculul terenului de fundare la starea limită de deformaţii 6.3.1. Prin calculul terenului de fundare la starea limită de deformaţii se cere îndeplinirea a două seturi de condiţii, sintetizate în tabelele 6.4 şi 6.5. Tabelul 6.4 Tipul stării limită de deformaţie Condiţia de îndeplinit SLD.U Δs ≤ Δs SLD.EN Δt ≤ Δt Condiţiile specificate în tabelul 6.4 au semnificaţia: - Δs : deplasări sau deformaţii posibile ale construcţiei datorate tasărilor terenului de fundare, calculate cu încărcări din gruparea fundamentală pentru SLU; - Δ t : aceeaşi semnificaţie ca şi Δs calculate cu încărcări din gruparea fundamentală pentru SLEN; 16
  • 19. - Δs :deplasări sau deformaţii de referinţă admise pentru structură, stabilite de proiectantul structurii; In lipsa unor valori stabilite de proiectant pot fi luate în considerare, orientativ, valorile specificate în anexa A pentru construcţii neadaptate în mod special în vederea preluării tasărilor neuniforme - Δ t : deplasări sau deformaţii admise din punct de vedere tehnologic, specificate de proiectantul tehnolog. Tabelul 6.5 Centrică Cu excentricitate după o Cu excentricitate după singură direcţie două direcţii Tipul încărcării Condiţia de pef ≤ ppl pef max ≤ 1.2 ppl pef max ≤ 1.4 ppl îndeplinit În condiţiile definite în tabelul 6.5, ppl (presiunea plastică) reprezintă presiunea corespunzătoare unei extinderi limitate pe o adâncime egală cu B/4, B fiind lăţimea fundaţiei, a zonei plastice în terenul de fundare. Prin zonă plastică se înţelege zona pe conturul şi în interiorul căreia se îndeplineşte condiţia de rupere în pământ. 6.3.2. Presiunea plastică ppl este o presiune acceptabilă. Condiţiile din tabelul 6.5, a căror îndeplinire precede efectuarea calculului deformaţiilor probabile ale terenului de fundare, reprezintă condiţii de valabilitate a calculului de deformaţii, în care terenul este asimilat cu un mediu liniar-deformabil iar utilizarea relaţiilor din Teoria Elasticităţii este admisă. 6.3.3. În anexa A sunt sintetizate prevederile din reglementarea tehnică de referinţă STAS 3300/2- 85 referitoare la calculul terenului de fundare la starea limită de deformaţii. 6.4. Calculul terenului de fundare la starea limită de capacitate portantă 6.4.1. Prin calculul terenului de fundare la starea limită de capacitate portantă, în cazul fundării directe, se cere respectarea condiţiei generale Q ≤ mR , cu cele trei forme particulare date în tabelul 6.6. 17
  • 20. Tabelul 6.6 Fundaţie de Fundaţie solicitată Fundaţie pe taluz sau în suprafaţă transversal apropiere de taluz Tipul lucrării N T Cazul de SLCP.1 SLCP.2 SLCP.3 calcul Condiţia T ≤ 0.8μN N ≤ 0.9L’B’pcr Mr ≤ 0.8Ms Q ≤ mR unde: Q reprezintă încărcarea de calcul asupra terenului de fundare, provenită din acţiunile din grupările speciale; R reprezintă valoarea de calcul a rezistenţei terenului de fundare; m reprezintă coeficientul condiţiilor de lucru. 6.4.2. În anexa A sunt sintetizate prevederile din reglementarea tehnică de referinţă STAS 3300/2- 85 referitoare la calculul terenului de fundare la starea limită de capacitate portantă. 7. Proiectarea fundaţiilor izolate Prevederile prezentului capitol se aplică la proiectarea fundaţiilor izolate ale stâlpilor de beton armat şi de metal. Fundaţiile izolate pot fi utilizate şi în cazul unor elemente structurale continue, dacă structura este proiectată considerând rezemările concentrate. Tipurile de fundaţii izolate care fac obiectul prezentului normativ sunt: a) Fundaţiile pentru stâlpi de beton armat monolit: - fundaţii tip talpă de beton armat (fundaţii elastice); - fundaţii tip bloc şi cuzinet (fundaţii rigide). b) Fundaţiile pentru stâlpi de beton armat prefabricat: - fundaţii tip pahar; - alte tipuri de fundaţii adaptate sistemului de îmbinare dintre stâlpul prefabricat şi fundaţie. c) Fundaţiile pentru stâlpi metalici: - fundaţii tip bloc şi cuzinet; - fundaţii tip talpă de beton armat. Proiectarea fundaţiilor izolate de beton armat se face având ca referinţă prevederile definite în reglementarea tehnică STAS 10107/0-90. Dimensiunile în plan ale fundaţiilor izolate se stabilesc conform prevederilor de la capitolul 6. La alcătuirea fundaţiilor izolate se va ţine seama de următoarele reguli cu caracter general: a) sub fundaţiile de beton armat monolit se prevede un strat de beton de egalizare de 50÷100 mm grosime, stabilit funcţie de condiţiile de teren, execuţie şi suprafaţa fundaţiei; b) sub fundaţiile de beton armat prefabricat se prevede un pat de nisip de 70÷150 mm grosime; c) fundaţiile se poziţionează, de regulă, centrat în axul stâlpului; 18
  • 21. d) pentru stâlpii de calcan, de rost sau situaţii în care există în vecinătate alte elemente de construcţii sau instalaţii se pot utiliza fundaţii excentrice în raport cu axul stâlpului; în acest caz momentul transmis tălpii fundaţiei se poate reduce prin prevederea de grinzi de echilibrare. 7.1. Fundaţii pentru stâlpi de beton armat monolit 7.1.1. Fundaţii tip talpă de beton armat Fundaţiile tip talpă de beton armat pot fi de formă prismatică (fig. 7.1.a) sau formă de obelisc (fig. 7.1.b). Betonul utilizat la realizarea fundaţiilor tip talpă armată va fi de clasă minimă C8/10. 7.1.1.1. Înălţimea fundaţiei (H) se stabileşte funcţie de următoarele condiţii: a) asigurarea rigidităţii fundaţiei de beton armat; dacă se respectă valorile minime ale raportului dintre înălţimea fundaţiei şi dimensiunea cea mai mare în plan (H/L) date în tabelul 7.1 (ultima coloană) este admisă ipoteza distribuţiei liniare a presiunilor pe teren; b) verificarea fundaţiei la forţă tăietoare; dacă se respectă valorile minime ale raportului dintre înălţimea fundaţiei şi dimensiunea cea mai mare în plan (H/L) date în tabelul 7.1, secţiunea de beton poate prelua forţa tăietoare nefiind necesare armături transversale; Fig. 7.1 Fundaţii tip talpă de beton armat c) verificarea fundaţiei la încovoiere; de regulă verificarea secţiunii de beton armat la starea limită de rezistenţă la încovoiere nu implică modificarea înălţimii secţiunii de beton stabilită conform punctelor a şi b; d) valoarea minimă a înălţimii fundaţiei este Hmin = 300 mm. Înălţimea la marginea fundaţiei tip obelisc (H’) rezultă în funcţie de următoarele condiţii: a) înălţimea minimă necesară pentru ancorarea armăturilor de pe talpa fundaţiei (15φmax); b) panta feţelor înclinate ale fundaţiei nu va fi mai mare de 1/3; c) valoarea minimă este H’min = 250 mm. 7.1.1.2. Armătura fundaţiei (fig. 7.2) este compusă din: a) armătura de pe talpă, realizată ca o reţea din bare dispuse paralel cu laturile fundaţiei Armătura rezultă din verificarea la moment încovoietor în secţiunile de la faţa stâlpului. În calculul momentelor încovoietoare din fundaţie se consideră presiunile pe teren determinate de solicitările transmise de stâlp. Se vor considera situaţiile de încărcare (presiuni pe teren) care conduc la solicitările maxime în fundaţie. 19
  • 22. Procentul minim de armare pe fiecare direcţie este 0.10 % pentru armături OB37 şi 0.075 % pentru armături PC52. Diametrul minim al armăturilor este de 10 mm. Distanţa maximă între armături este de 250 mm; distanţa minimă este de 100 mm. Armătura se distribuie uniform pe lăţimea fundaţiei şi se prevede la capete cu ciocuri cu lungimea minimă de 15φ. b) armătura de la partea superioară, realizată din 3÷4 bare dispuse în dreptul stâlpului sau ca o reţea dezvoltată pe toată suprafaţa fundaţiei Fundaţiile tip obelisc care nu au desprindere de pe terenul de fundare au armătură constructivă la partea superioară, unde se dispun pe fiecare direcţie principală minimum 3 bare de armătură OB37, cu diametrul de minim 12 mm. La fundaţiile care lucrează cu arie activă, armătura de la partea superioară rezultă din calculul la încovoiere. Dimensionarea armăturii se face în secţiunile de consolă cele mai solicitate, considerând momentele încovoietoare negative rezultate din acţiunea încărcărilor din greutatea fundaţiei, a umpluturii peste fundaţie şi a sarcinilor aplicate pe teren sau prin repartizarea momentului încovoietor transmis de stâlp. În această situaţie de solicitare armătura se realizează ca o reţea de bare dispuse paralel cu laturile fundaţiei. Diametrul minim al armăturilor este de 10 mm. Distanţa maximă între armături este de 250 mm; distanţa minimă este de 100 mm. Armătura se distribuie uniform pe lăţimea fundaţiei şi se prevede la capete cu ciocuri cu lungimea minimă de 15φ. c) armătura transversală pentru preluarea forţelor tăietoare se realizează ca armătură înclinată dispusă în dreptul stâlpului Forţa tăietoare în secţiunea de calcul se determină considerând o fisură înclinată cu 45º şi presiunile dezvoltate pe teren de forţele transmise de stâlp. Dacă fundaţia lucrează cu arie activă, la calculul forţei tăietoare se vor considera presiunile efective pe teren. d) armături pentru stâlp (mustăţi) Armăturile verticale din fundaţie, pentru conectarea cu stâlpul de beton armat, rezultă în urma dimensionării/verificării stâlpului. Armăturile din fundaţie (mustăţile) se alcătuiesc astfel încât în prima secţiune potenţial plastică a stâlpului, aflată deasupra fundaţiei, barele de armătură să fie continue (fără înnădiri). Etrierii din fundaţie au rol de poziţionare a armăturilor verticale pentru stâlp; se dispun la distanţe de maximum 250 mm şi cel puţin în 3 secţiuni. Armătura trebuie prelungită în fundaţie pe o lungime cel puţin egală cu lancorare + 250 mm, unde lancorare se determină având ca referinţă reglementarea tehnică STAS 10107/0-90. Fig. 7.2 Armarea fundaţiilor tip talpă de beton armat 20
  • 23. Tabelul 7.1 Presiunea H/L minim pentru care nu H/L minim pentru efectivă este necesară verificarea la care nu se verifică maximă forţă tăietoare a fundaţiei rigiditatea fundaţiei pe teren (kPa) Beton C8/10 Beton C12/15* 100 0.22 0.20 0.25 150 0.25 0.23 0.26 200 0.27 0.26 0.27 250 0.29 0.27 0.28 300 0.30 0.29 0.29 400 0.32 0.30 0.33 600 0.39 0.35 0.35 *) pentru betoane de clasă superioară se utilizează valorile date în tabelul 7.1. pentru clasa C12/15. 7.1.1.3. Calculul momentelor încovoietoare în fundaţie Pentru calculul momentelor încovoietoare în fundaţie se consideră secţiunile de încastrare de la faţa stâlpului şi presiunile pe teren pe suprafaţa delimitată de laturile tălpii şi planul de încastrare considerat (fig.7.3). Calculul simplificat al momentelor încovoietoare în talpa fundaţiei se face cu relaţiile 7.1 şi 7.2: ⎡ l2 l2 ⎤ M x = B ⋅ ⎢p o x + (p1 − p 0 ) x ⎥ (7.1) ⎣ 2 3⎦ l2 y M y = L ⋅ p med ; p med = ( p1 + p2 ) / 2 (7.2) 2 Fig. 7.3 În cazul fundaţiilor la care se respectă condiţiile privind raportul minim H/L din tabelul 7.1 stabilit în funcţie de condiţia de rigiditate a tălpii şi pentru care aria activă este de minimum 80%, armătura calculată funcţie de momentele încovoietoare (Mx şi My) se distribuie uniform pe talpa fundaţiei. Dacă aria activă este mai mică de 80%, în relaţia 7.2 se înlocuieşte pmed cu valoarea p1. Dacă fundaţia este solicitată cu momente încovoietoare pe două direcţii (solicitare oblică), p1, având semnificaţia de presiune maximă pe teren, se determină cu relaţiile indicate în Anexa F. 21
  • 24. 7.1.2. Fundaţii tip bloc şi cuzinet Fundaţiile tip bloc de beton şi cuzinet sunt alcătuite dintr-un bloc de beton simplu pe care reazemă un cuzinet de beton armat în care se încastrează stâlpul (fig. 7.4). 7.1.2.1. Blocul de beton simplu se realizează respectând următoarele condiţii: a) înălţimea treptei este de minimum 400 mm la blocul de beton cu o treaptă; b) blocul de beton poate avea cel mult 3 trepte a căror înălţime minimă este de 300 mm; înălţimea treptei inferioare este de minimum 400 mm; c) clasa betonului este minim C4/5; dacă în bloc sunt prevăzute armături pentru ancorarea cuzinetului clasa betonului este cel puţin C8/10; d) înălţimea blocului de beton se stabileşte astfel încât tgα să respecte valorile minime din tabelul 7.2; această condiţie va fi realizată şi în cazul blocului realizat în trepte (fig. 7.4); e) rosturile orizontale de turnare a betonului se vor trata astfel încât să se asigure condiţii pentru realizarea unui coeficient de frecare supraunitar între cele două suprafeţe. Fig. 7.4 Fundaţii cu bloc de beton simplu şi cuzinet de beton armat . Tabelul 7.2 Valori minime tgα Presiunea funcţie de clasa efectivă pe betonului teren (kPa) C8/10 sau C4/5 mai mare 200 1.15 1.05 250 1.30 1.15 300 1.40 1.30 350 1.50 1.40 400 1.60 1.50 600 2.00 1.85 7.1.2.2. Cuzinetul de beton armat se proiectează respectând următoarele: a) cuzinetul se realizează cu formă prismatică; b) dimensiunile în plan (lc şi bc) vor respecta următoarele condiţii: - să fie mai mari decât dimensiunile care asigură limitarea presiunilor pe planul de contact cu blocul la valori mai mici decât rezistenţa de calcul la compresiune a betonului; - se recomandă următoarele intervale pentru raportul lc/L respectiv bc/B: • bloc de beton cu o treaptă: lc/L = 0.50 ÷ 0.65 22
  • 25. • bloc de beton cu mai multe treapte: lc/L = 0.40 ÷ 0.50 c) înălţimea cuzinetului (hc) va respecta următoalele valori minime: - hc ≥ 300mm; - hc/lc ≥ 0.25; - tgβ ≥ 0.65 (fig. 7.4); dacă tgβ ≥ 1.00 nu este necesară verificarea cuzinetului la forţă tăietoare; - valori minime impuse de condiţia de ancorare a armăturilor pentru stâlp, cu lungimea lancorare + 250 mm, unde lancorare este definită în reglementarea tehnică de referinţă STAS 10107/0-90; d) clasa betonului este minim C8/10; clasa betonului rezultă şi din condiţia de rezistenţă la compresiune locală a betonului din cuzinet în secţiunea de încastrare a stâlpului (de regulă, Rc_cuzinet ≥ 0.7Rc stâlp); e) rostul de turnare dintre bloc şi cuzinet se tratează astfel încât să se realizeze continuitatea betonului sau, cel puţin, condiţiile care asigură un coeficient de frecare μ ≥ 1.0 (definit în reglementarea tehnică de referinţă STAS 10107/0-90). 7.1.2.3. Calculul momentelor încovoietoare pozitive în cuzinet se face considerând încastrarea consolelor în secţiunile de la faţa stâlpului (fig. 7.5). Fig. 7.5 Presiunile pe suprafaţa de contact dintre cuzinet şi bloc, funcţie de care se determină eforturile secţionale în cuzinet, sunt determinate de solicitările din stâlp (nu se ţine cont de greutatea cuzinetului). Presiunile pe suprafaţa de contact dintre cuzinet şi blocul de beton, dacă nu apar desprinderi sau aria activă este cel puţin 70%, se determină cu relaţiile (7.3): N 6M C ( x ) N 6M C ( y ) pc1,c 2 = C ± 2 ≥ 0 sau pc1,c 2 = C ± (7.3) lc ⋅ bc lc ⋅ bc lc ⋅ bc lc ⋅ bc2 dacă: pc2<0, atunci se admite pc2=0 iar pc1 se determină cu relaţiile (7.4): 2NC 2NC pc1 = sau pc1 = ⎛l M C ( x) ⎞ ⎛ b M C( y) ⎞ (7.4) 3 ⋅ bc ⎜ c − ⎜2 ⎟ ⎟ 3 ⋅ lc ⎜ c − ⎜2 ⎟ ⎝ NC ⎠ ⎝ NC ⎟ ⎠ unde: NC, MC(x) şi MC(y), sunt forţa axială şi momentele încovoietore la nivelul tălpii cuzinetului. Momentele încovoietoare în cuzinet se calculează cu (7.5) şi (7.6): ⎡ lc21 lc21 ⎤ M x = bc ⋅ ⎢ pc 0 + ( pc1 − pc 0 ) ⎥ (7.5) ⎣ 2 3⎦ bc21 p + p c2 M Y = lc ⋅ pcmed , p cmed = c1 (7.6) 2 2 Dacă aria activă de pe suprafaţa de contact cuzinet – bloc este mai mică decât 70% din talpa cuzinetului (lcxbc): 23
  • 26. Mx= MC(x) şi, respectiv, My= MC(y) (7.7) 7.1.2.4. Armarea cuzinetului va respecta următoarele condiţii: a) Armătura de la partea inferioară: -se realizează ca o reţea de bare dispuse paralel cu laturile cuzinetului; aria de armătură rezultă din verificarea la moment încovoietor în secţiunile de la faţa stâlpului (fig. 7.5); - procentul minim de armare pe fiecare direcţie este 0.10% pentru armături OB37 şi 0.075% pentru armături PC52; - diametrul minim al armăturilor este de 10 mm; - distanţa maximă între armături va fi de 250 mm; distanţa minimă este 100 mm. -armătura se distribuie uniform pe lăţimea cuzinetului şi se prevede la capete cu ciocuri cu lungimea minimă de 15φ. b) Armătura de la partea superioară : - se dispune dacă cuzinetul are desprinderi de pe blocul fundaţiei ; - se realizează ca o reţea de bare dispuse paralel cu laturile cuzinetului şi ancorate în blocul de beton simplu, după modelul din fig. 7.4.b; - aria de armătură pe fiecare direcţie rezultă din: • verificarea la compresiune excentrică a secţiunii de beton armat pe suprafaţa de contact dintre cuzinet şi bloc; în verificare se va considera rezistenţa de calcul a betonului (Rc*) cu valoarea: + 2M cap.cuzinet Rc = * 2 (7.8) bclc unde: bc este lăţimea tălpii cuzinetului (fig. 7.5); •dacă zona comprimată pe talpa cuzinetului este mai mare de 70% din aria tălpii, pentru dimensionarea armăturilor de ancorare în bloc se poate considera şi o schemă de calcul bazată de preluarea de armătură a rezultantei volumului de eforturi unitare de întindere de pe suprafaţa de contact, obţinută dintr-o distribuţie liniară a presiunilor; • verificarea la moment încovoietor negativ a cuzinetului încărcat cu forţele dezvoltate în armăturile de ancorare; - diametrul minim al armăturilor este de 10 mm; - distanţa între armături va fi de minim 100 mm şi maxim 250 mm. c) Armăturile pentru stâlp (mustăţi): - armăturile verticale din cuzinet, pentru conectarea cu stâlpul de beton armat, rezultă în urma dimensionării/verificării stâlpului; - armăturile din cuzinet se alcătuiesc astfel încât în prima secţiune potenţial plastică a stâlpului, aflată deasupra fundaţiei, barele de armătură să fie fără înnădiri; - etrierii din cuzinet au rol de poziţionare a armăturiilor verticale pentru stâlp şi se dispun în cel puţin în 2 secţiuni; - armăturile trebuie prelungite în fundaţie pe o lungime cel puţin egală cu lungimea de ancorare majorată cu 250 mm; - armăturile înclinate se dispun pentru preluarea forţei tăietoare în consolele cuzinetului dacă tgβ < 1 (fig. 7.4) şi se dimensionează având ca referinţă reglementarea tehnică STAS 10107/0-90. 7.2. Fundaţii pentru stâlpi de beton armat prefabricaţi Fundaţiile izolate pentru stâlpi de beton armat prefabricat pot fi realizate ca fundaţii tip pahar (fig. 7.6). 24
  • 27. lS la bp l1 lS b1 Beton de monolitizare bp bS lb B Hp ≥100 mm H bp 20÷30 mm Hf β Ht b1 l1 bp la bp l1 Beton de egalizare 50÷100 la’ bp’ mm L L Fig. 7.6 Fundaţie tip pahar pentru stâlp prefabricat 7.2.1. Dimensiunile secţiunilor de beton 7.2.1.1. Înălţimea paharului HP Înălţimea paharului HP se stabileşte respectând următoarele cerinţe: - asigurarea lungimii de ancoraj (lancoraj) a armăturilor longitudinale din stâlp: HP ≥ lancoraj + 250mm; HP se poate reduce dacă armătura este întoarsă la baza stâlpului; - lancoraj se determină având ca referinţă reglementarea tehnică STAS 10107/0-90, considerând condiţii normale de solicitare; - condiţiile de aderenţă sunt stabilite funcţie de modul de realizare a stâlpului prefabricat; - limitarea efectului forţei tăietoare pe lungimea de stâlp introdusă în pahar: M ST ,cap HP ≥ (7.9) 3 ⋅ lS bS R t unde: MST.cap - momentul capabil al stâlpului în secţiunea de la faţa paharului; lS, bS - dimensiunile secţiunii transversale a stâlpului; Rt - rezistenţa de calcul la întindere a betonului din stâlp. Condiţii constructive generale: • HP ≥ 1.2ls în cazul stâlpilor cu secţiune dreptunghiulară cu dimensiunile ls şi bs, ls ≥ bs; • HP ≥ 500 mm în cazul stâlpilor la construcţii etajate; • HP≥ HS/11 la fundaţiile stâlpilor de hale cu poduri rulante şi ai estacadelor; HS este înălţimea liberă a stâlpului de la faţa superioară a fundaţiei până la rigla acoperişului. 7.2.1.2. Grosimea Hf Grosimea fundului paharului (Hf) rezultă în urma verificării la străpungere; în calcul se va considera situaţia cea mai defavorabilă de solicitare la străpungere, din faza de montaj sau exploatare a construcţiei. În faza de montaj, cu paharul nemonolitizat, verificarea la străpungere este dată de condiţia (7.10): L ⋅ B − (l S + H f )(b S + H f ) N ST , montaj ≤ 0,75 ⋅ U ⋅ H f ⋅ R t + N av (7.10) L⋅B unde: N ST.montaj este forţa axială maximă în stâlp în faza de montaj a structurii prefabricate; U = 2lS+2bS+4Hf este perimetrul secţiunii de forfecare; Rt rezistenţa de calcul la întindere a betonului din fundaţia pahar; Nav = σavAav; σav = 100 N/mm2 şi Aav = aria de armătură verticală dispusă pe faţa interioară a paharului, ancorată corespunzător pe fiecare parte a planulului de cedare la străpungere; 25
  • 28. În faza finală, forţă axială maximă NST,max (valoare de calcul) trebuie să respecte relaţiile (7.11 şi7.12): L ⋅ B − (lS + H f )(bS + H f ) NST , max ≤ 0,75 ⋅ U ⋅ H f ⋅ R t + N av + N1cap (7.11) L⋅B N1cap = AS mbt Rt (7.12) unde: N1cap - este forţa axială transmisă la pahar prin betonul de monolitizare (Fig. 7.7); AS - aria laterală a stâlpului pe înălţimea paharului: AS = (2lS+2bS)Hp; Rt - rezistenţa de calcul la întindere a betonului de monolitizare; mbt - coeficientul condiţiilor de lucru, cu valoarea mbt = 0,30 în cazul construcţiilor fără poduri rulante sau cu poduri rulante cu regim uşor de lucru; mbt = 0 în cazul halelor cu poduri rulante cu regim mediu sau greu de lucru sau al construcţiilor solicitate dinamic din încărcările curente de exploatare. Fig. 7.7 Transmiterea forţei axiale din stâlpul prefabricat la fundaţia pahar 7.2.1.3. Verificarea paharului (bP) Verificarea pereţilor paharului în plan orizontal Eforturile transmise pereţilor paharului de solicitările din stâlp (M şi Q) sunt reprezentate în figura 7.8. Momentul încovoietor (M1) transmis paharului prin presiuni pe peretele frontal se determină cu relatia (7.13): ⎛ a⎞ M 1 = 0.8⎜ M ST − N ST ⎟ ≥ 0,4M ST (7.13) ⎝ 3⎠ Rezultanta presiunilor (P) pe peretele frontal este: P = 1.25M1/HP+QST (7.14) Fig. 7.8 Solicitări în pereţii paharului 26
  • 29. Momentele încovoietoare rezultate în plan orizontal aplicate părţii superioare a peretelui frontal: Mr = 0.045Plb (7.15) Mc = 0.020Plb (7.16) Forţa de întindere în pereţii longitudinali (NP) rezultă: NP = P/2 (7.17) Secţiunea de beton şi de armătură în pereţii paharului trebuie să repecte următoarele: a) Peretele frontal se verifică la acţiunea momentelor încovoietoare Mr şi Mc stabilite cu relaţia (7.15), respectiv (7.16). Armătura rezultată se dispune în treimea superioară a peretelui şi se prelungeşte cu lungimea de ancorare măsurată de la jumătătea grosimii peretelui lungitudinal al paharului (fig. 7.10). b)Verificarea peretelui frontal la forţă tăietoare implică limitarea eforturilor principale în peretele paharului, condiţie care impune: 1.5P bp ≥ (7.18) HP ⋅ R t c) Pereţii longitudinali se verifică la întindere centrică cu forţa NP. Armătura rezultată se dispune simetric pe feţele peretelui, distribuită în treimea superioară a paharului (fig. 7.10). d) Verificarea pereţilor longitudinali la forţă tăietoare consideră secţiunea activă cu dimensiunile bp’a0 sau bp’b0 (fig. 7.9), în funcţie de direcţia acţiunii în stâlp şi forţa tăietoare de calcul cu valoarea NP. Dacă: NP ≤ 0.5bp’a0Rt (NP ≤ 0.5bp’b0Rt) (7.19) armătura pentru preluarea forţei tăietoare nu este necesară şi se dispune pe considerente de armare minimă. În situaţiile în care condiţia 7.18 nu este respectată se dimensionează armătura pentru preluarea forţei tăietoare cu relaţia (7.19) sau se dimensionează ca etrieri; armătura se distribuie în pereţii longitudinali pe direcţia corespunzătoare dimensiunii mai mici a pereţilor longitudinali (fig. 7.9). a) Cazul: a0 ≥ HP−Δ b) Cazul: b0 < HP−Δ Fig. 7.9 Direcţia armăturii pentru preluarea forţei tăietoare în pereţii longitudinali ai paharului Dacă armătura se dispune pe direcţie verticală în peretele paharului (a0 ≥ HP−Δ), aria totală necesară (Aav) într-un perete rezultă: N H A av = 0.6 P P (7.20) aoR a Dacă: bo < HP−Δ, armătura se dimensionează ca etrieri, conf. STAS 10107/0-90. e) Verificarea în secţiunea orizontală de la baza paharului consideră secţiunea chesonată cu dimensiunile exterioare a0b0 şi grosimea pereţilor bp’. Secţiunea se verifică la compresiune excentrică cu valori ale eforturile de calcul N şi M, determinate astfel: 27
  • 30. Forţa axială N = N1.cap (valoare calculată cu relaţia (7.12)). Momentul încovoietor : M = MST+QSTHP (7.21) f) Armătura rezultată din calculul paharului la compresiune excentrică se dispune pe direcţie verticală, uniform distribuită pe laturile secţiunii. g) Grosimea minimă a pereţilor paharului (bP) este de - 200 mm în cazul paharelor din beton armat monolit; - 150 mm la paharele din beton armat prefabricat. h) Armătura dispusă în pereţii paharului trebuie să respecte şi următoarele cerinţe minimale: - procentul minim de armătură orizontală este 0.10% pentru armături OB37 şi 0.075% pentru armături PC52; - procentul minim de armătură verticală este 0.10% pentru armături OB37 şi 0.075% pentru armături PC52. 7.2.2. Monolitizarea paharului Dimensiunile golului paharului se aleg mai mari decât ale secţiunii stâlpului pe fiecare direcţie şi sens cu 50÷75 mm la baza paharului şi cu 85÷120 mm la partea superioară a paharului. Îmbinarea dintre stâlp şi fundaţie se realizează prin betonarea spaţiului din pahar. Betonul de clasă minimă C16/20 va avea dimensiunea maximă a agregatelor de 16 mm. Suprafeţele stâlpului şi paharului se curăţă şi se umezesc înainte de montare în pahar şi monolitizare. Dacă într-un pahar se montează mai mulţi stâlpi (în dreptul unui rost), distanţa între aceştia va fi cel puţin 50 mm pentru a se asigura betonarea completă a spaţiului dintre stâlpi şi a paharului. 7.2.3. Armarea paharului Schema de armare recomandată a paharului este dată în figura 7.10a. Varianta de armare din figura 7.10b corespunde situaţiilor în care nu rezultă armătură pentru preluarea forţei tăietoare în pereţii longitudinali şi din verificarea secţiunii de la baza paharului (la compresiune excentrică) nu rezultă necesară o armătură verticală. Armăturile orizontale se ancorează sau, după caz, se înnădesc, ca bare întinse (fig. 7.10c). Armăturile verticale se ancorează în talpa fundaţiei (fig. 7.10a şi b). Armătura orizontală din pahar trebuie să respecte următoarele condiţii: - diametrul minim φ10 mm în treimea superioară a paharului şi φ8 mm în restul paharului; - cel puţin 2x3 bare orizontale în treimea superioară a paharului; - distanţa maximă între armături este 250 mm. Barele verticale din pahar au diametrul minim φ8 mm şi se dispun la cel mult 250 mm distanţă. 7.2.4. Verificarea tălpii fundaţiei pahar Talpa fundaţiei pahar se verifică la moment încovoietor şi la forţă tăietoare. Verificarea la moment încovoietor şi forţă tăietoare se face în secţiunile de la faţa paharului şi din axul stâlpului prefabricat. Calculul momentelor încovoietoare se face cu relaţii de tipul (7.1) şi (7.2), pe fiecare direcţie principală a fundaţiei. Se recomandă ca înălţimea Ht să fie stabilită astfel încât armătura calculată în secţiunea din axul stâlpului, cu înălţimea Hf, să fie suficientă pentru preluarea momentului încovoietor din secţiunea de la faţa paharului. Se vor respecta şi condiţiile (fig. 7.6): • Ht ≥ Hf +100mm • Ht ≥ 0,6 l1 Procentul minim de armătură în talpa fundaţiei este 0.10% pentru armături tip OB37 şi 0.075% pentru armături tip PC52. Diametrul minim al armăturilor este 10 mm. Distanţa maximă între armături este 250 mm. 28
  • 31. Armătura se distribuie uniform pe lăţimea tălpii şi se prevede la capete cu ciocuri având lungimea minimă de 15φ. Verificarea la forţă tăietoare este semnificativă în secţiunile de la faţa paharului. Dacă înălţimea secţiunii (Ht) şi lungimile consolelor (l1, b1 − fig. 7.6) respectă: l1≤Ht şi b1≤Ht (7.22) forţă tăietoare este preluată de beton. Dacă condiţiile (7.22) nu sunt realizate se dimensionează armătura transversală din bare înclinate. Fig. 7.10 Armarea paharului 7.3. Fundaţii pentru stâlpi metalici 7.3.1. Fundaţiile izolate ale stâlpilor metalici se realizează ca fundaţie cu bloc şi cuzinet (fig. 7.11). Se pot utiliza şi modele de fundaţii tip talpă armată, de formă prismatică, dacă înălţimea acestora asigură lungimea de înglobare necesară pentru şuruburile de ancorare ale stâlpului şi este adecvată adâncimii de fundare. Fig. 7.11 29
  • 32. 7.3.2. Stâlpul metalic se realizează cu o placă de bază prevăzută cu rigidizări care asigură transmiterea presiunilor la fundaţie şi a forţelor la şuruburile de ancorare. Secţiunea în plan a plăcii de bază rezultă din condiţiile privind limitarea presiunii maxime pe suprafaţa de contact cu betonul la următoarele valori: - rezistenţa la compresiune a betonului din cuzinet; - rezistenţa la compresiune a mortarului de poză. Presiunea pe placa de bază se determină considerând solicitările capabile ale stâlpului (Ncap şi Mcap) şi forţa de pretensionare a şuruburilor. 7.3.3. Dimensiunile şi poziţia şuruburilor de ancoraj definite în reglementarea tehnică de referinţă STAS 10108/90 , se stabilesc în funcţie de momentul încovoietor capabil al stâlpului. Lungimea minimă a şuruburilor de ancoraj prelungită în fundaţie este determinată astfel: - valoarea maximă a dimensiunilor plăcii de bază (La sau Lb(fig. 7.11)) majorată cu lungimea de ancoraj a şurubului (30φ) dacă suprafaţa laterală a acestuia este nervurată; - valoarea maximă La sau Lb, (fig. 7.11) majorată cu lungimea de ancoraj a şurubului (15φ) dacă suprafaţa laterală a acestuia nu este nervurată dar la capătul şurubului este prevăzută o placă metalică rigidă şi rezistentă pentru ancorare; aria minimă a plăcii (AP) rezultă din verificarea presiunilor transmise betonului pentru ancorarea şurubului (7.22)conform relaţiei 7.23: NS AP = (7.23) 0 .4 R c unde: NS este forţa de întindere din şurub 7.3.4. Secţiunea de beton 7.3.4.1. Betonul din cuzinet este de clasă minimă C8/10. Betonul din bloc este de clasă minimă C8/10 dacă armăturile cuzinetului sunt ancorate în blocul fundaţiei; dacă în bloc nu sunt dispuse armături de rezistenţă, clasa minimă este C4/5. 7.3.4.2. Blocul de beton se realizează respectând următoarele condiţii: - înălţimea blocului de beton se stabileşte astfel ca valoarea tgα să respecte limitele minime din tabelul 7.2; această condiţie se impune şi în cazul blocului realizat în trepte; - înălţimea treptei este de minimum 400 mm la blocul de beton cu o treaptă; - blocul de beton poate avea cel mult 3 trepte a căror înălţime minimă este de 300 mm; - turnarea blocului de beton se va realiza astfel încât să fie asigurată continuitatea betonului. 7.3.4.3. Cuzinetul de beton armat se proiectează respectând următoarele condiţii: - cuzinetul se realizează cu formă prismatică; - dimensiunile în plan ale cuzinetul (lc şi bc) vor fi mai mari cel puţin cu 300 mm decât dimensiunile plăcii de bază a stâlpului (La, Lb (fig. 7.11)). - dimensiunile în plan ale cuzinetului se stabilesc şi în funcţie de condiţia de limitare a presiunilor pe planul de contact cu blocul la valori mai mici decât rezistenţa de calcul la compresiune a betonului; - se recomandă ca raportul bc/B (lc/L) să se situeze în intervalul 0.50÷0.65; - înălţimea cuzinetului hc va respecta următoalele limite minime: • hc ≥ 300mm; • hc se stabileşte astfel încât tgα să respecte valorile minime din tabelul 7.2 pentru betonul de clasă C8/10; - rostul de turnare dintre bloc şi cuzinet se tratează astfel încât să se realizeze continuitatea betonului sau, cel puţin, condiţiile care asigură un coeficient de frecare μ ≥ 1.0 (având ca referinţă reglementarea tehnică STAS 10107/0-90). 30
  • 33. 7.3.5. Armarea fundaţiei se realizează după modelul din fig. 7.11. Se vor respecta următoarele condiţii: a) armătura verticală din cuzinet rezultă din verificarea la compresiune excentrică a secţiunii de rost dintre bloc şi cuzinet; eforturile de calcul din secţiune au valori asociate momentului de dimensionare a şuruburilor de ancoraj ale stâlpului; b) armătura de la partea superioară a cuzinetului, dispusă la cel mult 100 mm sub placa de bază a stâlpului, se realizează ca o reţea de bare dispuse paralel cu laturile cuzinetului, prelungite pe verticală în cuzinet şi bloc; - diametrul minim al armăturilor este de 10 mm; - distanţa dintre armături va fi cuprinsă între minim 70 mm şi maxim 200 mm; c) armătura verticală de pe fiecare latură a cuzinetului se prelungeşte în bloc cu o lungime care asigură ca distanţele l1, l2, şi l3, din figura 7.12 să fie cel puţin egale cu lungimea de ancorare (definită în reglementarea tehnică de referinţă STAS 10107/0-90); d) armăturile orizontale minime, dispuse pe perimetrul cuzinetului sunt: - 1/4 din armătura verticală din cuzinet; - φ8/200 mm. Fig. 7.12 Armarea fundaţiei cu bloc şi cuzinet pentru stâlpi metalici 8. Proiectarea fundaţiilor continue de beton armat sub stâlpi 8.1. Domeniul de aplicare Prevederile prezentului capitol se aplică la proiectarea fundaţiilor continue ale stâlpilor de beton armat monolit. Prin adaptarea sistemelor de fixare ale stâlpilor (pahar, şuruburi de ancorare), fundaţiile continue pot fi utilizate şi pentru stâlpii de beton armat prefabricat sau la structurile cu stâlpi metalici. Soluţia de fundaţii continue sub stâlpi poate fi impusă, în general, în cazul următoarelor condiţii: a) fundaţii independente care nu pot fi extinse suficient în plan (construcţii cu travei sau deschideri mici care determină ”suprapunerea” fundaţiilor independente, stâlpi lângă un rost de tasare sau la limita proprietăţii etc. (fig. 8.1)); b) fundaţii izolate care nu pot fi centrate sub stâlpi (fig. 8.2) etc; 31
  • 34. Fig. 8.1 Fig. 8.2 c) alcătuirea generală a construcţiei în care stâlpii structurii în cadre au legături (la nivelul subsolului) cu pereţii de beton armat rezemaţi pe teren prin fundaţii continue (fig. 8.3); d) terenuri de fundare susceptibile de deformaţii diferenţiale importante şi unde nu se poate realiza o creştere a rigidităţii în plan a ansamblului structural. Fig. 8.3 8.2. Alcătuirea fundaţiilor 8.2.1. Secţiunea de beton La proiectarea fundaţiilor continue sub stâlpi (cazurile a şi b, pct. 8.1) având alcătuirea de grindă se recomandă respectarea următoarelor condiţii: - fundaţiile continue se dispun pe o direcţie sau pe două direcţii; - deschiderile marginale ale fundaţiilor continue pe o direcţie se prelungesc în consolă pe lungimi cuprinse între 0.20÷0.25L0; - lăţimea grinzii, B, se determină pe baza condiţiilor descrise în capitolul 6. Se recomandă majorarea valorii lăţimii obţinute prin calcul cu cca. 20%; această majorare este necesară pentru că, datorită interacţiunii dintre grinda static nedeterminată şi terenul de fundare, diagrama presiunilor de contact are o distribuţie neliniară, cu concentrări de eforturi în zonele de rigiditate mai mare, de obicei sub stâlpi; - înălţimea secţiunii grinzii de fundaţie, Hc (fig. 8.4a) se alege cu valori cuprinse între 1/3÷1/6 din distanţa maximă (L0) dintre doi stâlpi succesivi; înălţimea tălpii, Ht, se determină în funcţie de valorile indicate în tabelul 7.1 pentru raportul Ht/B; ⎛1 1⎞ - în cazul grinzilor cu vute (fig. 8.4b), lungimea vutei, L v = ⎜ ÷ ⎟ ⋅ L 0 , iar înălţimea vutei, ⎝6 4⎠ Hv, rezultă din condiţiile: 32