SlideShare a Scribd company logo
1 of 18
Download to read offline
  1	
  
How	
  to	
  extract	
  gasoline	
  from	
  water	
  (&	
  air)	
  
	
  
May	
  1,	
  2016	
  
Fabio	
  Boschetti,	
  PhD	
  student	
  
Max-­‐Plank-­‐Institute	
  for	
  Biogeochemistry	
  
Department	
  of	
  Biogeochemical	
  System	
  
Hans-­‐Knöll-­‐Strasse	
  10	
  
07745	
  Jena,	
  Germany	
  
Room:	
  A3.025	
  
Phone:	
  0049	
  3641-­‐57-­‐6361	
  
E-­‐mail:	
  fabosk@bgc-­‐jena.mpg.de	
  
	
  
	
  
Abstract	
  
	
  
Fossil	
  fuels	
  are	
  deeply	
  rooted	
  in	
  our	
  technological	
  civilization,	
  they	
  are	
  however	
  
a	
  major	
  cause	
  for	
  both	
  climate	
  change	
  and	
  many	
  international	
  conflicts	
  around	
  
the	
  world.	
  While	
  many	
  alternatives	
  are	
  available,	
  technical	
  problems	
  are	
  limiting	
  
their	
  diffusion.	
  In	
  recent	
  years,	
  some	
  country	
  developed	
  a	
  technique	
  to	
  produce	
  
synthetic	
  fuels	
  using	
  nothing	
  but	
  water	
  and	
  air.	
  This	
  technique	
  shows	
  promises	
  
to	
   significantly	
   reduce	
   the	
   greenhouse	
   effect	
   without	
   significantly	
   altering	
   the	
  
existing	
  economic	
  infrastructure	
  and	
  make	
  potentially	
  any	
  country	
  in	
  the	
  world	
  
independent	
   from	
   the	
   energy	
   point	
   of	
   view,	
   with	
   likely	
   improving	
   of	
   global	
  
wellbeing	
  and	
  reduction	
  of	
  international	
  conflicts.	
  
	
  
	
  
	
  
Contents:	
  
	
  
Introduction	
   	
   	
   	
   	
   	
   	
   p.	
  2	
  
Gasoline	
  from	
  seawater	
   	
   	
   	
   	
   p.	
  2	
  
Gasoline	
  from	
  fresh	
  water	
  and	
  air	
   	
   	
   	
   p.	
  11	
  
Potential	
  customers	
  and	
  Further	
  applications	
   	
   p.	
  16	
  
Conclusions	
   	
   	
   	
   	
   	
   	
   p.	
  17	
  
References	
   	
   	
   	
   	
   	
   	
   p.	
  18	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  2	
  
1.	
  Introduction	
  
	
  
	
  Our	
   civilization	
   is	
   based	
   on	
   fossil	
   fuels.	
   Fossil	
   fuels	
   are	
   used	
   to	
   produce	
  
electricity,	
   warm	
   our	
   houses,	
   cook	
   our	
   food	
   and	
   propel	
   our	
   vehicles;	
   they	
  
permeate	
  the	
  very	
  essence	
  of	
  human	
  lifestyle	
  in	
  the	
  modern	
  age.	
  	
  
	
  
This	
  centrality	
  makes	
  them	
  a	
  limiting	
  factor	
  for	
  economic	
  prosperity,	
  making	
  the	
  
struggle	
  to	
  secure	
  fossil	
  fuel	
  supply	
  a	
  major	
  cause	
  for	
  conflicts.	
  In	
  addition,	
  and	
  
most	
   importantly,	
   they	
   are	
   the	
   most	
   important	
   cause	
   of	
   climate	
   change.	
   This	
  
means	
  that,	
  ironically,	
  the	
  very	
  base	
  of	
  our	
  civilization	
  can	
  cause	
  the	
  end	
  of	
  it.	
  
	
  
For	
   what	
   said	
   before,	
   it	
   is	
   however	
   extremely	
   difficult	
   to	
   replace	
   fossil	
   fuels	
  
without	
   re-­‐engineering	
   the	
   existing	
   economic	
   infrastructure.	
   Despite	
   many	
  
promising	
   technologies	
   have	
   been	
   developed,	
   they	
   still	
   have	
   important	
  
downsides.	
  In	
  the	
  case	
  of	
  the	
  renewable	
  energies,	
  especially	
  solar	
  and	
  wind,	
  the	
  
problem	
  stands	
  in	
  their	
  dependence	
  on	
  weather.	
  	
  
	
  
Stating	
  the	
  problem	
  in	
  this	
  way,	
  the	
  ideal	
  solution	
  would	
  be	
  to	
  use	
  renewable	
  
energies	
   to	
   produce	
   ecologic	
   fuels	
   that	
   can	
   be	
   used	
   by	
   any	
   device	
   originally	
  
intended	
  for	
  fossil	
  fuels.	
  This	
  may	
  sound	
  like	
  science	
  fiction,	
  but	
  it	
  is	
  not.	
  
	
  
In	
   the	
   last	
   years,	
   different	
   institutions	
   in	
   different	
   countries	
   succeeded	
   in	
  
extracting	
  gasoline	
  from	
  water.	
  There	
  are	
  two	
  main	
  variants	
  of	
  this	
  technique:	
  
the	
  first	
  one	
  focuses	
  on	
  seawater,	
  while	
  the	
  second	
  makes	
  use	
  of	
  fresh	
  water	
  and	
  
air.	
  For	
  reasons	
  that	
  will	
  become	
  immediately	
  obvious,	
  the	
  two	
  variants	
  can	
  also	
  
be	
  called	
  the	
  ‘military’	
  and	
  ‘civilian’	
  one	
  respectively.	
  
	
  
	
  
	
  
2.	
  Gasoline	
  from	
  seawater	
  
	
  
The	
  US	
  Navy	
  developed	
  this	
  method	
  few	
  years	
  ago.	
  Existence	
  of	
  this	
  technique	
  
first	
  hit	
  the	
  news	
  in	
  September	
  2012,	
  with	
  the	
  first	
  results	
  apparently	
  from	
  the	
  
year	
  2009.	
  So	
  far,	
  the	
  service	
  has	
  demonstrated	
  the	
  ability	
  of	
  the	
  synthetic	
  fuel	
  
(syn-­‐gas)	
   extracted	
   from	
   seawater	
   to	
   power	
   a	
   2-­‐time	
   engine	
   by	
   successfully	
  
flying	
   a	
   model	
   aircraft	
   (Fig.	
   1,	
   right)	
   and	
   is	
   now	
   working	
   on	
   up-­‐scaling	
   the	
  
process.	
  Researchers	
  from	
  the	
  Naval	
  Research	
  Laboratory	
  expect	
  their	
  syn-­‐gas	
  to	
  
eventually	
  cost	
  3-­‐6$	
  per	
  gallon	
  (1	
  gallon	
  =	
  3.78	
  liters),	
  and	
  so	
  to	
  be	
  economically	
  
competitive.	
   The	
   technology	
   is	
   based	
   on	
   a	
   Fisher-­‐Tropf	
   reactor,	
   developed	
   in	
  
1925	
  in	
  Germany	
  to	
  convert	
  coal	
  into	
  a	
  liquid	
  hydrocarbon.	
  
	
  
	
  
  3	
  
	
  
	
  
Figure	
  1:	
  the	
  chemical	
  reactor	
  (left)	
  and	
  an	
  aircraft	
  model	
  that	
  already	
  flew	
  using	
  the	
  synthetic	
  
fuel	
  from	
  water	
  (right)	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  2:	
  scheme	
  illustrating	
  the	
  impact	
  of	
  the	
  synthetic	
  fuel	
  on	
  the	
  US	
  Navy	
  
	
  
	
  
	
  
At	
   the	
   basis	
   of	
   the	
   whole	
   concept	
   lays	
   the	
   idea	
   of	
   using	
   the	
   abovementioned	
  
chemical	
  reactor	
  to	
  combine	
  seawater	
  and	
  nuclear	
  power,	
  two	
  elements	
  that	
  are	
  
aplenty	
  on	
  a	
  US	
  carrier,	
  in	
  order	
  to	
  produce	
  fuel	
  for	
  both	
  the	
  aircrafts	
  and	
  the	
  
other	
  ships	
  of	
  the	
  battle	
  group,	
  allowing	
  the	
  fleet	
  to	
  get	
  rid	
  of	
  the	
  tanker	
  usually	
  
accompanying	
   it	
   (Figure	
   2).	
   This	
   has	
   not	
   only	
   financial	
   benefits	
   due	
   to	
   the	
  
elimination	
  of	
  the	
  maintenance	
  of	
  the	
  tanker;	
  it	
  also	
  eliminates	
  a	
  factor	
  of	
  risk.	
  
Tankers	
  carrying	
  aviation	
  fuel	
  can	
  be	
  seen	
  in	
  fact	
  as	
  huge	
  floating	
  bombs;	
  in	
  case	
  
  4	
  
the	
  tanker	
  is	
  hit	
  during	
  the	
  refueling	
  operation,	
  which	
  requires	
  more	
  ships	
  to	
  be	
  
very	
  close	
  to	
  each	
  other,	
  the	
  massive	
  resulting	
  explosion	
  is	
  likely	
  to	
  provoke	
  even	
  
other	
  ships	
  to	
  sink.	
  
	
  
The	
   service	
   has	
   been	
   focusing	
   on	
   seawater	
   because	
   CO2	
   is	
   140	
   times	
   more	
  
concentrated	
   into	
   seawater	
   than	
   in	
   air.	
   More	
   precisely,	
   97-­‐98	
   percent	
   of	
   CO2	
  
seawater	
   assumes	
   the	
   form	
   of	
   bicarbonate	
   (HCO3-­‐),	
   and	
   roughly	
   2	
   percent	
   as	
  
carbonic	
  acid	
  	
  (H2CO3).	
  
	
  
	
  
	
  
Figure	
  3:	
  part	
  of	
  the	
  carbon	
  cycle	
  in	
  the	
  Ocean	
  
	
  
	
  
	
  
	
  
2.1	
  Only	
  Hydrogen	
  and	
  Carbon	
  
	
  
As	
  implied	
  by	
  it	
  own	
  name,	
  a	
  hydrocarbon	
  is	
  uniquely	
  composed	
  of	
  hydrogen	
  
and	
  carbon.	
  Intuitively,	
  to	
  create	
  a	
  hydrocarbon,	
  one	
  must	
  collect	
  both	
  elements	
  
separately,	
  and	
  then	
  combine	
  them	
  to	
  form	
  a	
  chain	
  of	
  carbon	
  atoms	
  surrounded	
  
by	
   atoms	
   of	
   hydrogen.	
   Different	
   techniques	
   are	
   used	
   to	
   collect	
   the	
   two	
   basic	
  
ingredients.	
  
	
  	
  
No	
  technical	
  detail	
  was	
  released	
  on	
  how	
  carbon	
  is	
  harvested,	
  but	
  it	
  is	
  claimed	
  
that	
   the	
   process	
   can	
   recover	
   up	
   to	
   92	
   percent	
   of	
   CO2	
   in	
   a	
   certain	
   volume	
   of	
  
seawater.	
   Hydrogen	
   is	
   harvested	
   using	
   a	
   normal	
   electrolysis	
   process	
   as	
  
described	
  in	
  Eq.1,	
  	
  
	
  
Eq	
  1:	
  	
  	
  	
  2Na+	
  +H2O	
  +	
  2e-­‐	
  -­‐>	
  2NaOH	
  +	
  2H2	
  
	
  
Where	
  the	
  sodium	
  (Na+)	
  is	
  naturally	
  present	
  in	
  the	
  seawater	
  (Figure	
  4),	
  and	
  the	
  
2	
  electrons	
  is	
  courtesy	
  of	
  the	
  nuclear	
  reactor	
  of	
  the	
  aircraft	
  carrier.	
  It	
  is	
  obvious	
  
in	
   fact	
   that	
   this	
   technique	
   does	
   not	
   create	
   energy	
   from	
   nothing	
   but	
   just	
  
transforms	
  it,	
  hence	
  requires	
  more	
  energy	
  than	
  the	
  one	
  stored	
  into	
  the	
  produced	
  
fuel.	
  For	
  this	
  reason,	
  it	
  is	
  meaningful	
  only	
  when	
  a	
  non-­‐fossil	
  fuel	
  energy	
  source	
  is	
  
used	
  to	
  power	
  it.	
  
	
  
  5	
  
The	
   produced	
   basic	
   solution	
   (2NaOH)	
   may	
   be	
   re-­‐combined	
   with	
   the	
   acidified	
  
seawater	
  to	
  return	
  the	
  seawater	
  to	
  its	
  original	
  pH	
  with	
  no	
  additional	
  chemicals.	
  	
  
	
  
	
  
	
  
Figure	
  4:	
  Major	
  ion	
  composition	
  of	
  seawater	
  
	
  
	
  
	
  
The	
  two	
  basic	
  components	
  are	
  then	
  turned	
  into	
  a	
  long	
  hydrocarbon	
  chain	
  in	
  a	
  
two-­‐step	
  process.	
  In	
  the	
  first	
  step	
  uses	
  an	
  iron-­‐based	
  catalyst	
  to	
  convert	
  CO2	
  into	
  
unsaturated	
  hydrocarbons	
  called	
  olefins,	
  (CnH2n).	
  Low-­‐grade	
  gaseous	
  olefins	
  are	
  
then	
   olygomineralized	
   (aggregated)	
   into	
   a	
   liquid	
   containing	
   hydrocarbon	
  
molecule	
  in	
  the	
  carbon	
  C9-­‐C16	
  range.	
  This	
  is	
  apparently	
  enough	
  for	
  fuelling	
  ships;	
  
to	
  create	
  jet	
  fuel,	
  a	
  third	
  step	
  making	
  use	
  of	
  a	
  nickel	
  supported	
  catalyst	
  is	
  needed.	
  
	
  
It	
  is	
  claimed	
  that	
  up	
  to	
  60	
  percent	
  of	
  CO2	
  can	
  be	
  converted	
  during	
  the	
  first	
  step,	
  
with	
  a	
  decrease	
  of	
  unwanted	
  methane	
  production	
  from	
  97	
  percent	
  to	
  25	
  percent.	
  
The	
   produced	
   methane	
   is	
   of	
   course	
   a	
   source	
   of	
   risk	
   on	
   a	
   military	
   ship,	
   while	
  
being	
  in	
  addition	
  a	
  very	
  powerful	
  greenhouse	
  gas.	
  Capturing	
  it	
  and	
  burning	
  it	
  on	
  
the	
  spot	
  to	
  produce	
  electricity	
  and	
  partially	
  powering	
  the	
  plant	
  may	
  be	
  the	
  best	
  
course	
  of	
  action.	
  
	
  
While	
  traditional	
  fossil	
  fuels	
  are	
  complex	
  mixtures	
  that	
  include	
  a	
  great	
  number	
  of	
  
substances	
   other	
   than	
   hydrocarbons,	
   the	
   syn-­‐gas	
   literally	
   contains	
   only	
  
hydrogen	
  and	
  carbon.	
  This	
  purity	
  translates	
  in	
  a	
  whole	
  host	
  of	
  positive	
  effects:	
  
	
  
1. Higher	
  efficiency	
  
2. Absence	
  of	
  Mercury,	
  with	
  obvious	
  effects	
  on	
  human	
  health	
  
3. Absence	
  of	
  Sulphur,	
  resulting	
  in	
  a	
  reduction	
  of	
  emitted	
  particulate	
  matter	
  
(PM).	
  According	
  to	
  Righi	
  et	
  al.	
  (2011),	
  a	
  Sulphur	
  reduction	
  from	
  4.5%	
  to	
  
0.5%	
   of	
   ship	
   fuel	
   mass	
   would	
   turn	
   into	
   a	
   40-­‐60%	
   sulphate	
   aerosol	
  
reduction	
   in	
   high	
   shipping	
   regions,	
   and	
   a	
   decrease	
   of	
   indirect	
   loading	
  
aerosol	
  effect	
  by	
  a	
  factor	
  of	
  3-­‐4.	
  
4. Virtual	
  absence	
  of	
  aromatic	
  content,	
  resulting	
  in	
  a	
  40-­‐95%	
  of	
  emitted	
  PM	
  
for	
  a	
  jet	
  engine	
  (Figure	
  5)	
  
	
  
	
  
  6	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  5:	
  	
  Reduction	
  in	
  number	
  and	
  mass	
  of	
  particulate	
  emission	
  for	
  different	
  alternative	
  fuels	
  
compared	
  to	
  a	
  traditional	
  avio	
  gasoline.	
  FAME	
  is	
  a	
  biofuel	
  based	
  on	
  animal	
  fat	
  waste,	
  while	
  F-­‐T	
  
stands	
  for	
  Fischer-­‐Tropf,	
  used	
  in	
  this	
  study	
  (Lobo	
  et	
  al,	
  2011)	
  to	
  convert	
  coal.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  7	
  
2.2	
  Fixing	
  the	
  carbon	
  cycle	
  
	
  
The	
  Carbon	
  cycle	
  as	
  originally	
  intended	
  by	
  Mother	
  Nature	
  (Figure	
  6)	
  tends	
  to	
  be	
  
stable	
   over	
   very	
   long	
   time	
   scales.	
   The	
   feature	
   that	
   keeps	
   the	
   whole	
   system	
   in	
  
equilibrium	
   is	
   that	
   input	
   and	
   outputs	
   for	
   each	
   of	
   the	
   four	
   main	
   carbon	
   pools,	
  
which	
   means	
   Atmosphere,	
   Hydrosphere,	
   Biosphere	
   and	
   Lithosphere,	
   are	
  
characterized	
  by	
  processes	
  with	
  the	
  same	
  time	
  scale.	
  
	
  
Figure	
  6:	
  natural	
  biogeochemical	
  cycle	
  for	
  carbon.	
  	
  
	
  
	
  
  8	
  
	
  
Figure	
   7:	
   biogeochemical	
   carbon	
   cycle	
   for	
   carbon	
   after	
   being	
   perturbed	
   by	
   anthropogenic	
  
activities.	
  As	
  the	
  rate	
  of	
  extraction	
  of	
  the	
  carbon	
  from	
  the	
  Lithosphere	
  is	
  much	
  faster	
  than	
  the	
  
natural	
  burial	
  process,	
  the	
  carbon	
  content	
  of	
  the	
  Atmosphere	
  is	
  increased,	
  with	
  the	
  well-­‐known	
  
effects	
  on	
  climate.	
  
	
  
	
  
When	
  considering	
  the	
  human	
  effect	
  to	
  the	
  Carbon	
  cycle,	
  one	
  can	
  visualize	
  it	
  by	
  
simply	
  adding	
  a	
  flux	
  of	
  Carbon	
  from	
  the	
  Lithosphere	
  to	
  the	
  Atmosphere	
  (Figure	
  
7),	
  symbolizing	
  extraction	
  and	
  combustion	
  of	
  fossil	
  fuels.	
  The	
  main	
  problem	
  with	
  
this	
  effect	
  is	
  not	
  the	
  combustion	
  in	
  itself,	
  but	
  that	
  the	
  extraction	
  rate	
  of	
  carbon	
  
from	
  the	
  Lithosphere	
  (in	
  form	
  of	
  oil,	
  coal	
  and	
  natural	
  gas)	
  is	
  immensely	
  faster	
  
than	
  the	
  deposition	
  rate	
  from	
  the	
  Biosphere	
  due	
  to	
  burial	
  processes.	
  This	
  causes	
  
the	
   carbon	
   distribution	
   to	
   be	
   altered,	
   notably	
   by	
   an	
   increase	
   of	
   CO2	
   in	
   the	
  
Atmosphere,	
  with	
  the	
  well	
  know	
  effect	
  on	
  climate.	
  
This	
   problem	
   can	
   however	
   be	
   fixed	
   if	
   the	
   carbon	
   is	
   extracted	
   by	
   a	
   pool	
  
characterized	
   by	
   fast	
   exchange	
   rates	
   like	
   the	
   Hydrosphere	
   (Figure	
   8)	
   or	
   the	
  
Atmosphere	
  itself,	
  as	
  we	
  shall	
  see	
  later.	
  In	
  this	
  way	
  in	
  fact,	
  all	
  of	
  the	
  carbon	
  that	
  
is	
  extracted	
  from	
  the	
  Hydrosphere	
  and	
  released	
  into	
  the	
  Atmosphere,	
  returns	
  to	
  
the	
  Hydrosphere	
  in	
  a	
  relatively	
  short	
  time,	
  and	
  the	
  carbon	
  content	
  of	
  the	
  pools	
  
(and	
  the	
  global	
  climate)	
  remains	
  unchanged.	
  
	
  
	
  
  9	
  
	
  
Figure	
  8:	
  biogeochemical	
  carbon	
  cycle	
  for	
  carbon	
  in	
  a	
  seawater	
  syn-­‐gas	
  based	
  economy	
  
	
  
	
  
	
  
	
  
	
  
	
  
2.3	
  Syn-­‐gas	
  for	
  Germany	
  
	
  
Military	
  technology	
  has	
  quite	
  a	
  tradition	
  of	
  migrating	
  into	
  the	
  civilian	
  domain,	
  
with	
   most	
   notably	
   examples	
   being	
   the	
   drones,	
   the	
   transistor,	
   the	
   GPS	
   and	
   the	
  
Internet.	
  In	
  this	
  section	
  we	
  will	
  be	
  using	
  some	
  released	
  information	
  to	
  infer	
  what	
  
would	
  be	
  needed	
  for	
  this	
  technology	
  to	
  be	
  able	
  to	
  produce	
  the	
  whole	
  gasoline	
  
consumption	
  of	
  a	
  country	
  as	
  Germany	
  (where	
  the	
  author	
  currently	
  lives).	
  
	
  
Our	
   case	
   study	
   will	
   be	
   a	
   syn-­‐gas	
   plant	
   with	
   a	
   production	
   capacity	
   of	
   100,000	
  
gallons	
  per	
  day	
  (0.375	
  millions	
  of	
  liters	
  per	
  day,	
  or	
  Ml/day	
  for	
  short).	
  According	
  
to	
  the	
  released	
  information,	
  to	
  produce	
  this	
  amount	
  of	
  syn-­‐gas,	
  the	
  plant	
  would	
  
need	
  to	
  process	
  8,900	
  Ml/day	
  of	
  seawater,	
  equivalent	
  to	
  a	
  cube	
  of	
  200	
  meters	
  of	
  
side.	
  Note	
  that	
  due	
  to	
  lack	
  of	
  reliable	
  data,	
  it	
  is	
  assumed	
  for	
  what	
  follows	
  that	
  1	
  
liter	
  of	
  crude	
  oil	
  is	
  converted	
  in	
  1	
  liter	
  of	
  gasoline.	
  
	
  
As	
   late	
   as	
   2014,	
   Germany’s	
   oil	
   consumption	
   was	
   2,400,000	
   barrels/day	
   (288	
  
Ml/day),	
  which	
  is	
  770	
  as	
  much	
  as	
  the	
  production	
  of	
  the	
  plant	
  used	
  in	
  our	
  case	
  
study.	
  Making	
  the	
  necessary	
  proportion,	
  it	
  turns	
  out	
  that	
  the	
  amount	
  of	
  water	
  to	
  
be	
  processed	
  to	
  satisfy	
  Germany’s	
  consumption	
  is	
  35	
  times	
  the	
  mean	
  flow	
  of	
  the	
  
  10	
  
Rein	
   river	
   (198,000	
   Ml/day).	
   Note	
   that	
   all	
   of	
   the	
   above	
   assume	
   a	
   100%	
  
efficiency,	
  hence	
  all	
  of	
  the	
  estimates	
  should	
  probably	
  be	
  doubled	
  for	
  a	
  real	
  plant.	
  
	
  
However,	
   as	
   this	
   technique	
   requires	
   seawater,	
   it	
   would	
   not	
   be	
   necessary	
   for	
  
Germany	
   to	
   create	
   35	
   dams	
   on	
   the	
   course	
   of	
   the	
   Rein	
   river.	
   Instead,	
   a	
  
combination	
  of	
  offshore	
  wind	
  farm	
  and	
  modified	
  oil	
  platforms	
  would	
  have	
  to	
  do	
  
the	
  job.	
  
	
  
More	
  precisely,	
  the	
  platforms	
  would	
  host	
  the	
  machinery	
  responsible	
  for	
  the	
  syn-­‐
gas	
   production,	
   while	
   the	
   wind	
   fields	
   should	
   provide	
   renewable	
   power	
   to	
   the	
  
system	
  (Figure	
  9).	
  Tankers	
  or	
  pipelines	
  can	
  than	
  be	
  used	
  to	
  bring	
  the	
  oil	
  to	
  the	
  
mainland.	
  
	
  
	
  
	
  
Figure	
  9:	
  Artistic	
  impression	
  of	
  an	
  off-­‐shore	
  wind	
  farm	
  (left)	
  and	
  a	
  traditional	
  oil	
  platform	
  (right)	
  
	
  
	
  
	
  
	
  
Figure	
  10:	
  Carbon	
  cycle	
  in	
  proximity	
  of	
  a	
  syn-­‐gas	
  platform	
  
	
  
	
  
  11	
  
There	
   is	
   no	
   reason	
   to	
   worry	
   that	
   the	
   syn-­‐gas	
   platforms	
   will	
   extract	
   all	
   of	
   the	
  
carbon	
  in	
  the	
  water	
  around	
  the	
  rig	
  causing	
  the	
  production	
  to	
  stop,	
  nor	
  that	
  the	
  
excessive	
   CO2	
   extraction	
   will	
   make	
   the	
   ocean	
   to	
   basic	
   to	
   sustain	
   life.	
   As	
  
previously	
  mentioned,	
  the	
  exchange	
  rate	
  between	
  Atmosphere	
  and	
  Idrosphere	
  is	
  
very	
  high,	
  and	
  hence	
  is	
  opinion	
  of	
  the	
  author	
  that	
  air	
  and	
  ocean	
  will	
  always	
  be	
  in	
  
equilibrium,	
   provided	
   few	
   simple	
   precautions	
   to	
   maximize	
   the	
   carbon	
   flux	
  
between	
  water	
  and	
  air,	
  like	
  nebulize	
  the	
  process	
  water	
  before	
  releasing	
  it	
  into	
  
the	
   atmosphere	
   (Figure	
   10).	
   Something	
   similar	
   have	
   been	
   claimed	
   by	
   the	
   US	
  
Navy’s	
  researchers.	
  
	
  
	
  
	
  
3.	
  Gasoline	
  from	
  fresh	
  water	
  and	
  air	
  
	
  
To	
  translate	
  into	
  reality	
  what	
  presented	
  in	
  section	
  1.3,	
  one	
  need	
  to	
  know	
  how	
  
much	
  renewable	
  energy	
  from	
  wind	
  is	
  actually	
  available	
  to	
  be	
  converted	
  into	
  syn-­‐
gas.	
  However,	
  this	
  may	
  be	
  an	
  unnecessary	
  intellectual	
  exercise,	
  as	
  four	
  different	
  
institutions	
  other	
  than	
  the	
  US	
  Navy	
  have	
  started	
  the	
  production	
  of	
  their	
  own	
  syn-­‐
gas,	
  using	
  a	
  slightly	
  different	
  method	
  that	
  makes	
  use	
  of	
  fresh	
  water	
  and	
  air.	
  	
  
	
  
First	
  to	
  produce	
  syn-­‐gas	
  after	
  the	
  US	
  Navy	
  was	
  a	
  British	
  company	
  called	
  Air	
  Fuel	
  
Synthesis,	
  that	
  broke	
  the	
  news	
  on	
  October	
  2012;	
  next	
  year,	
  on	
  November,	
  it	
  was	
  
the	
  time	
  of	
  the	
  Ben-­‐Gurion	
  University	
  of	
  Negev,	
  in	
  Israel,	
  followed	
  in	
  November	
  
2014	
  by	
  a	
  German	
  company	
  named	
  Sunfire.	
  Furthermore,	
  a	
  european	
  research	
  
project	
  called	
  Solar	
  Jet	
  has	
  been	
  launched	
  in	
  April	
  2014,	
  with	
  a	
  slightly	
  different	
  
focus.	
  
	
  
	
  
  12	
  
	
  
Figure	
  11:	
  biogeochemical	
  carbon	
  cycle	
  for	
  carbon	
  in	
  a	
  civilian	
  syn-­‐gas	
  based	
  economy	
  
	
  
	
  
	
  
Figure	
  12:	
  Scheme	
  of	
  a	
  syn-­‐methane	
  production	
  plant	
  (Somnath	
  et	
  al.,2010).	
  In	
  the	
  paper	
  it	
  is	
  
suggested	
  that	
  that	
  the	
  water	
  can	
  also	
  be	
  harvested	
  from	
  atmospheric	
  water	
  vapor.	
  
	
  
	
  
	
  
	
  
3.1	
  Air	
  Fuel	
  Synthesis,	
  UK,	
  Oct	
  2012	
  
  13	
  
	
  
Few	
   months	
   after	
   the	
   US	
   Navy	
   flying	
   a	
   model	
   aircraft	
   using	
   syn-­‐gas,	
   a	
   British	
  
company	
  called	
  Air	
  Fuel	
  Synthesis	
  announced	
  the	
  production	
  of	
  the	
  first	
  batch	
  of	
  
their	
   own	
   syn-­‐gas	
   obtained	
   by	
   fresh	
   water	
   and	
   CO2	
   collected	
   from	
   the	
  
atmosphere.	
  
	
  
At	
  the	
  time,	
  the	
  machine	
  was	
  powered	
  by	
  the	
  traditional	
  power	
  grid,	
  while	
  CO2	
  
was	
   collected	
   from	
   the	
   atmosphere,	
   which	
   was	
   an	
   inefficient	
   and	
   inexpensive	
  
process.	
  According	
  to	
  the	
  news	
  in	
  fact,	
  the	
  cost	
  of	
  extracting	
  a	
  ton	
  of	
  CO2	
  was	
  
roughly	
  400	
  pounds.	
  
	
  
The	
  company	
  announced	
  that	
  in	
  the	
  future,	
  renewable	
  energies	
  were	
  going	
  to	
  
provide	
  power,	
  making	
  their	
  syn-­‐gas	
  carbon-­‐neutral	
  (Figure	
  13).	
  In	
  addition,	
  to	
  
increase	
   efficiency,	
   CO2	
   was	
   to	
   be	
   harvested	
   from	
   industrial	
   sources,	
   where	
  
concentration	
  is	
  higher.	
  	
  
	
  
In	
  2012,	
  the	
  company	
  was	
  expecting	
  to	
  increase	
  the	
  production	
  to	
  1	
  ton	
  of	
  petrol	
  
per	
  day	
  (roughly	
  1200	
  liters)	
  in	
  a	
  couple	
  of	
  years,	
  and	
  to	
  complete	
  a	
  refinery-­‐
scale	
  plant	
  within	
  15	
  years.	
  In	
  2014,	
  AFS	
  was	
  awarded	
  a	
  Regional	
  Growth	
  Fund	
  
and	
  expected	
  to	
  start	
  servicing	
  customers	
  in	
  early	
  2015.	
  
	
  
	
  
Figure	
  13:	
  Scheme	
  from	
  Air	
  Fuel	
  Synthesis	
  illustrating	
  the	
  company’s	
  production	
  chain	
  
	
  
	
  
	
  
3.2	
  Sunfire	
  GmbH,	
  D,	
  Nov	
  2014	
  
	
  
  14	
  
The	
  second	
  company	
  producing	
  syn-­‐gas	
  using	
  the	
  civilian	
  method	
  is	
  a	
  spin-­‐off	
  of	
  
Audi,	
   is	
   based	
   in	
   Dresden	
   (Germany),	
   and	
   is	
   expected	
   to	
   start	
   commercial	
  
exploitation	
   of	
   this	
   technique	
   by	
   2016	
   by	
   selling	
   fuel	
   for	
   diesel	
   engine	
   at	
   an	
  
expected	
  price	
  of	
  1-­‐1.5	
  euro	
  per	
  liter.	
  At	
  the	
  end	
  of	
  2014,	
  the	
  production	
  capacity	
  
of	
  the	
  plant	
  was	
  roughly	
  160	
  liters	
  per	
  day,	
  with	
  an	
  overall	
  energy	
  efficiency	
  of	
  
fuel	
   creation	
   using	
   renewable	
   energy	
   of	
   70	
   percent.	
   The	
   high	
   efficiency	
   was	
  
obtained	
  by	
  powering	
  steam	
  electrolysis	
  using	
  the	
  excess	
  heat	
  in	
  other	
  processes	
  
of	
  the	
  chain.	
  
	
  	
  
Figure	
  13:	
  Adapted	
  scheme	
  from	
  Sunfire	
  GmbH	
  illustrating	
  the	
  company’s	
  production	
  chain	
  
	
  
Sunfire’s	
  production	
  chain	
  is	
  showed	
  in	
  Figure	
  13.	
  First	
  renewable	
  sources	
  are	
  
used	
   to	
   produce	
   electricity	
   (a),	
   to	
   power	
   the	
   whole	
   process,	
   including	
   the	
  
electrolysis	
  cell	
  charged	
  with	
  separating	
  H2O	
  into	
  H2	
  and	
  O2(b).	
  The	
  harvested	
  H2	
  
is	
  then	
  combined	
  with	
  CO2	
  from	
  industrial	
  sources	
  and	
  converted	
  into	
  CO	
  and	
  
H2O	
   into	
   a	
   first	
   chemical	
   reactor	
   (c).	
   The	
   final	
   step	
   consists	
   in	
   combining	
   the	
  
produced	
  CO	
  with	
  H2	
  in	
  the	
  Fischer-­‐Tropf	
  reactor	
  (d)	
  to	
  obtain	
  syn-­‐gas	
  (methane	
  
in	
  Figure	
  13d)	
  and	
  water.	
  Note	
  that	
  the	
  only	
  waste	
  product	
  of	
  the	
  whole	
  process	
  
is	
  oxygen.	
  
	
  
The	
  Fisher-­‐Tropf	
  reactor	
  was	
  developed	
  in	
  1925	
  in	
  Germany,	
  to	
  convert	
  coal	
  into	
  
a	
   liquid	
   hydrocarbon.	
   In	
   recent	
   years,	
   it	
   has	
   been	
   used	
   by	
   different	
   countries	
  
with	
  limited	
  amount	
  of	
  oil	
  to	
  obtain	
  gasoline	
  from	
  other	
  kind	
  of	
  fuels.	
  It	
  is	
  the	
  
case	
  of	
  South	
  Africa	
  (coal),	
  Qatar	
  (natural	
  gas)	
  and	
  Finland	
  (biomass).	
  
	
  
	
  
	
  
	
  
3.3	
  Solar	
  Jet	
  Project,	
  EU,	
  Apr	
  2014	
  
	
  
Optimazation	
   of	
   the	
   overall	
   efficiency	
   of	
   the	
   previously	
   described	
   chain	
   of	
  
processes	
  (see	
  Section	
  3.2)	
  is	
  most	
  likely	
  the	
  goal	
  of	
  a	
  european	
  research	
  project	
  
called	
  Solar	
  Jet.	
  
  15	
  
	
  
The	
   syn-­‐gas’s	
   production	
   chain	
   as	
   intended	
   by	
   this	
   project	
   still	
   has	
   a	
   Fisher-­‐
Tropf	
   reactor	
   to	
   the	
   end,	
   but	
   combines	
   the	
   first	
   three	
   process,	
   namely	
   power	
  
generation	
   from	
   a	
   renewable	
   source,	
   hydrogen	
   production	
   due	
   to	
   electrolysis	
  
and	
  conversion	
  of	
  CO2	
  into	
  CO,	
  into	
  a	
  single	
  step	
  performed	
  by	
  what	
  is	
  defined	
  as	
  
a	
  ‘Solar	
  Reactor’,	
  or	
  ‘Concentrated	
  Solar	
  Energy	
  Reactor’	
  (Figure	
  14).	
  	
  
	
  
	
  
Figure	
   14:	
   Scheme	
   from	
   Solar	
   Jet	
   illustrating	
   the	
   fuel’s	
   production	
   chain	
   as	
   intended	
   by	
   the	
  
project	
  
	
  
	
  
	
  
	
  
Figure	
  15:	
  Scheme	
  of	
  the	
  concentrated	
  solar	
  energy	
  reactor.	
  Note	
  that	
  input	
  and	
  output	
  are	
  the	
  
same	
  as	
  in	
  the	
  Sunfire	
  production	
  chain	
  right	
  before	
  the	
  Fischer-­‐Tropf	
  reactor	
  (credit:	
  Solar	
  Jet)	
  
	
  
	
  
Research	
  on	
  said	
  Solar	
  Reactor	
  is	
  the	
  focus	
  of	
  the	
  project,	
  which	
  likely	
  aims	
  to	
  
increase	
  the	
  overall	
  efficiency	
  by	
  combining	
  three	
  different	
  processes	
  into	
  one.	
  
  16	
  
	
  
It	
   is	
   clear	
   comparing	
   Figures	
   13	
   and	
   15,	
   that	
   Input	
   and	
   output	
   of	
   the	
  
concentrated	
  solar	
  energy	
  reactor	
  are	
  exactly	
  the	
  same	
  as	
  in	
  the	
  Sunfire	
  process	
  
line	
  before	
  the	
  Fisher-­‐Tropf	
  reactor.	
  
	
  
	
  
	
  
	
  
4.	
  Potential	
  customers	
  and	
  Further	
  applications	
  
	
  
In	
  Figure	
  16,	
  the	
  upper	
  map	
  shows	
  the	
  oil	
  production	
  per	
  nation,	
  while	
  the	
  lower	
  
map	
   shows	
   corresponding	
   oil	
   consumption.	
   The	
   difference	
   between	
   the	
   two	
  
allows	
  for	
  teasing	
  apart	
  oil	
  exporters	
  and	
  importers.	
  In	
  this	
  way	
  it	
  is	
  relatively	
  
easy	
   to	
   understand	
   which	
   countries	
   may	
   find	
   convenient	
   to	
   start	
   extracting	
  
gasoline	
  from	
  water.	
  
	
  
	
  
	
  
Figure	
  16:	
  Map	
  of	
  oil	
  production	
  values	
  for	
  different	
  countries	
  (above)	
  and	
  corresponding	
  map	
  
for	
  consumption	
  values	
  (below).	
  
	
  
	
  
Countries	
  that	
  will	
  be	
  interested	
  in	
  this	
  technique	
  should	
  be	
  China	
  and	
  India,	
  so	
  
already	
   half	
   of	
   the	
   global	
   population,	
   then	
   Japan	
   and	
   South	
   Korea,	
   the	
   US	
  
themselves,	
  and	
  more	
  or	
  less	
  the	
  whole	
  Europe.	
  By	
  contrast,	
  oil	
  exporters	
  are	
  not	
  
going	
  to	
  be	
  particularly	
  happy	
  because	
  they	
  are	
  going	
  to	
  loose	
  money.	
  
	
  
  17	
  
However,	
  it	
  was	
  noted	
  many	
  times	
  in	
  the	
  past	
  that	
  the	
  abundance	
  of	
  fossil	
  fuels	
  
in	
   a	
   country’s	
   soil	
   often	
   produces	
   an	
   excessively	
   polarized	
   economy	
   and	
  
concentrates	
  huge	
  amounts	
  of	
  money	
  in	
  the	
  hands	
  of	
  few	
  individuals.	
  This	
  allows	
  
for	
  corruption	
  to	
  spread	
  at	
  all	
  levels	
  of	
  society,	
  turning	
  what	
  should	
  have	
  been	
  a	
  
blessing	
   into	
   its	
   exact	
   contrary.	
   Should	
   synthetic	
   fuels	
   spread	
   worldwide,	
   this	
  
would	
  be	
  a	
  serious	
  incentive	
  for	
  oil	
  exporters	
  to	
  diversify	
  their	
  economy.	
  For	
  this	
  
reason,	
   it’s	
   opinion	
   of	
   the	
   author	
   that	
   syn-­‐gas	
   may	
   in	
   the	
   long	
   term	
   produce	
  
beneficial	
  effects	
  also	
  in	
  the	
  traditional	
  oil	
  exporters.	
  	
  	
  
	
  
The	
   technique	
   can	
   of	
   course	
   be	
   used	
   to	
   synthetize	
   methane,	
   so	
   a	
   similar	
  
reasoning	
  can	
  be	
  done	
  for	
  the	
  natural	
  gas	
  market.	
  The	
  problem	
  is	
  that	
  methane	
  is	
  
a	
   much	
   more	
   powerful	
   greenhouse	
   gas	
   than	
   carbon	
   dioxide;	
   hence	
   if	
   CO2	
   is	
  
harvested	
  only	
  to	
  be	
  converted	
  into	
  CH4	
  that	
  is	
  then	
  spilled	
  into	
  the	
  atmosphere	
  
along	
  the	
  distribution	
  grid,	
  the	
  greenhouse	
  effect	
  is	
  still	
  going	
  to	
  get	
  worse.	
  
	
  
If	
   this	
   technique	
   is	
   used	
   to	
   produce	
   syn-­‐methane,	
   great	
  care	
   must	
   be	
   put	
   into	
  
minimizing	
  methane	
  spill	
  into	
  the	
  atmosphere	
  to	
  maintain	
  the	
  carbon-­‐neutrality	
  
of	
  the	
  process,	
  although	
  this	
  will	
  have	
  of	
  course	
  a	
  cost.	
  The	
  best	
  course	
  of	
  action	
  
may	
  actually	
  be	
  to	
  burn	
  it	
  on	
  the	
  spot	
  to	
  produce	
  electricity.	
  Same	
  holds	
  for	
  the	
  
unwanted	
  methane	
  inevitably	
  produced	
  while	
  trying	
  to	
  obtain	
  syn-­‐gas.	
  
	
  
For	
  countries	
  heavily	
  relying	
  on	
  methane	
  to	
  produce	
  electricity,	
  the	
  best	
  course	
  
of	
  action	
  will	
  probably	
  be	
  to	
  build	
  a	
  syn-­‐methane	
  plant	
  beside	
  each	
  traditional	
  
thermal	
  methane	
  plant.	
  
	
  
It	
  is	
  the	
  author’s	
  opinion	
  that	
  by	
  adding	
  a	
  further	
  step	
  in	
  the	
  process,	
  it	
  may	
  be	
  
possible	
  to	
  create	
  a	
  synthetic	
  coal	
  as	
  well;	
  this	
  may	
  have	
  important	
  implication,	
  
as	
   coal	
   was	
   responsible	
   for	
   44	
   percent	
   of	
   the	
   global	
   CO2	
   emissions	
   in	
   2012	
  
esteem.	
  Unfortunately,	
  coal	
  is	
  in	
  fact	
  extremely	
  cheap,	
  only	
  48.16$	
  per	
  short	
  ton	
  
in	
  2015,	
  making	
  extremely	
  difficult	
  for	
  a	
  hypothetical	
  syn-­‐coal	
  to	
  conquer	
  part	
  of	
  
the	
  market.	
  
	
  
	
  
	
  
5.	
  Conclusions	
  
	
  
Syn-­‐gas	
  produced	
  using	
  either	
  of	
  the	
  presented	
  methods:	
  
1. Solves	
   the	
   main	
   problem	
   of	
   renewable	
   energy,	
   which	
   is	
   usually	
   very	
  
intermittent	
  and	
  unpredictable	
  due	
  to	
  its	
  dependence	
  on	
  meteorological	
  
weather,	
  and	
  it	
  turns	
  them	
  into	
  easy	
  to	
  store	
  and	
  handle	
  hydrocarbons.	
  
2. Allows	
  for	
  keeping	
  the	
  energetic	
  infrastructure	
  mostly	
  unchanged,	
  unlike	
  
for	
   example	
   hydrogen,	
   that	
   also	
   have	
   other	
   issues	
   still	
   in	
   need	
   to	
   be	
  
addressed.	
  	
  
3. Allows	
  for	
  energetic	
  independence	
  for	
  potentially	
  any	
  nation,	
  with	
  likely	
  
increase	
  of	
  worldwide	
  wellbeing	
  and	
  reduction	
  in	
  the	
  global	
  conflictuality.	
  
	
  
	
  
	
  
	
  
  18	
  
Acknowledgement	
  
	
  
The	
   author	
   wish	
   to	
   thank	
   all	
   those	
   whose	
   support	
   and	
   comments	
   helped	
   to	
  
improve	
   the	
   current	
   manuscript,	
   especially	
   Dietrich	
   Feist,	
   Min	
   Jung	
   Kwon	
   and	
  
Friedemann	
  Reum,	
  from	
  MPI-­‐BGC	
  in	
  Jena.	
  
	
  
	
  
References	
  
	
  
Lobo, Prem, Donald E. Hagen, and Philip D. Whitefield. "Comparison of PM emissions from a
commercial jet engine burning conventional, biomass, and Fischer–Tropsch
fuels." Environmental science & technology 45.24 (2011): 10744-10749.
	
  
Righi, Mattia, et al. "Climate impact of biofuels in shipping: global model studies of the aerosol
indirect effect." Environmental science & technology45.8 (2011): 3519-3525.
	
  
Roy, Somnath C., et al. "Toward solar fuels: photocatalytic conversion of carbon dioxide to
hydrocarbons." Acs Nano 4.3 (2010): 1259-1278.
	
  
	
  
http://www.nrl.navy.mil/media/news-­‐releases/2012/fueling-­‐the-­‐fleet-­‐navy-­‐
looks-­‐to-­‐the-­‐seas	
  
	
  
http://www.huffingtonpost.com/2014/04/09/seawater-­‐to-­‐fuel-­‐navy-­‐vessels-­‐
_n_5113822.html	
  
	
  
http://www.voanews.com/content/us-­‐navy-­‐lab-­‐turns-­‐seawater-­‐into-­‐
fuel/1919512.html	
  
	
  
http://www.vice.com/read/can-­‐we-­‐really-­‐fly-­‐planes-­‐on-­‐seawater	
  
	
  
http://www.sunfire.de/en/	
  
	
  
http://airfuelsynthesis.com	
  
	
  
http://www.geek.com/science/german-­‐company-­‐can-­‐make-­‐gasoline-­‐from-­‐
water-­‐and-­‐airborne-­‐co2-­‐1609987/	
  
	
  
http://io9.gizmodo.com/5953227/engineers-­‐create-­‐gasoline-­‐from-­‐air-­‐and-­‐
water-­‐yes-­‐really	
  
	
  
http://www.timesofisrael.com/israeli-­‐researchers-­‐develop-­‐revolutionary-­‐
alternative-­‐fuel-­‐process/	
  
	
  
https://www.ethz.ch/en/news-­‐and-­‐events/eth-­‐
news/news/2014/04/solarjet.html	
  
	
  
	
  
	
  

More Related Content

What's hot

Capturing Co2 - The Global Resolutique
Capturing Co2 - The Global ResolutiqueCapturing Co2 - The Global Resolutique
Capturing Co2 - The Global ResolutiqueKelly Kokaisel
 
Lifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel Sources
Lifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel SourcesLifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel Sources
Lifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel SourcesBing Huang
 
Global warming
Global warmingGlobal warming
Global warmingnoorizzah
 
energies-15-00887.pdf
energies-15-00887.pdfenergies-15-00887.pdf
energies-15-00887.pdfevalvarado
 
CO2 Capture and Storage (CCS) Model PTKS
CO2 Capture and Storage (CCS) Model PTKSCO2 Capture and Storage (CCS) Model PTKS
CO2 Capture and Storage (CCS) Model PTKSHernanto Wiryomijoyo
 
Shale gas in USA presentation final
Shale gas in USA presentation finalShale gas in USA presentation final
Shale gas in USA presentation finalMatemilola Saheed
 
energy-revolution-report-2009
energy-revolution-report-2009energy-revolution-report-2009
energy-revolution-report-2009Aladdin Diakun
 
Asian oil and gas
Asian oil and gasAsian oil and gas
Asian oil and gasDaniel Liu
 
Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...
Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...
Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...ChristianDunn
 
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...Ofori Kwabena
 
Shale Gas Briefing Note - FINAL
Shale Gas Briefing Note - FINALShale Gas Briefing Note - FINAL
Shale Gas Briefing Note - FINALDanette Moulé
 
Shale Gas. Short overview of market
Shale Gas. Short overview of marketShale Gas. Short overview of market
Shale Gas. Short overview of marketEvaldas Paliliūnas
 
COAL IN A CHANGING CLIMATE
COAL IN A CHANGING CLIMATECOAL IN A CHANGING CLIMATE
COAL IN A CHANGING CLIMATEjundumaug1
 
A novel approach to carbon dioxide capture and storage by brett p. spigarelli...
A novel approach to carbon dioxide capture and storage by brett p. spigarelli...A novel approach to carbon dioxide capture and storage by brett p. spigarelli...
A novel approach to carbon dioxide capture and storage by brett p. spigarelli...Kuan-Tsae Huang
 
CO2 Between Disposal and Utilization
CO2 Between Disposal and UtilizationCO2 Between Disposal and Utilization
CO2 Between Disposal and UtilizationMohamed Gamal
 
Intro sustainable energy
Intro sustainable energyIntro sustainable energy
Intro sustainable energyMatthew Donald
 

What's hot (20)

WWF-LCD October2014
WWF-LCD October2014WWF-LCD October2014
WWF-LCD October2014
 
Capturing Co2 - The Global Resolutique
Capturing Co2 - The Global ResolutiqueCapturing Co2 - The Global Resolutique
Capturing Co2 - The Global Resolutique
 
Lifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel Sources
Lifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel SourcesLifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel Sources
Lifetime Evaluation of Electric Vehicles and Gasoline Vehicles Fuel Sources
 
Global warming
Global warmingGlobal warming
Global warming
 
energies-15-00887.pdf
energies-15-00887.pdfenergies-15-00887.pdf
energies-15-00887.pdf
 
CO2 Capture and Storage (CCS) Model PTKS
CO2 Capture and Storage (CCS) Model PTKSCO2 Capture and Storage (CCS) Model PTKS
CO2 Capture and Storage (CCS) Model PTKS
 
Shale gas in USA presentation final
Shale gas in USA presentation finalShale gas in USA presentation final
Shale gas in USA presentation final
 
energy-revolution-report-2009
energy-revolution-report-2009energy-revolution-report-2009
energy-revolution-report-2009
 
Asian oil and gas
Asian oil and gasAsian oil and gas
Asian oil and gas
 
Liquefied Natural Gas Report 2015: Part 2
Liquefied Natural Gas Report 2015: Part 2Liquefied Natural Gas Report 2015: Part 2
Liquefied Natural Gas Report 2015: Part 2
 
Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...
Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...
Peatlands in the Kyoto Protocol and their potential role in post-2012 climate...
 
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
 
Shale Gas Briefing Note - FINAL
Shale Gas Briefing Note - FINALShale Gas Briefing Note - FINAL
Shale Gas Briefing Note - FINAL
 
Shale Gas. Short overview of market
Shale Gas. Short overview of marketShale Gas. Short overview of market
Shale Gas. Short overview of market
 
COAL IN A CHANGING CLIMATE
COAL IN A CHANGING CLIMATECOAL IN A CHANGING CLIMATE
COAL IN A CHANGING CLIMATE
 
A novel approach to carbon dioxide capture and storage by brett p. spigarelli...
A novel approach to carbon dioxide capture and storage by brett p. spigarelli...A novel approach to carbon dioxide capture and storage by brett p. spigarelli...
A novel approach to carbon dioxide capture and storage by brett p. spigarelli...
 
Nuclear and Climate - Position paper - SFEN
Nuclear and Climate - Position paper - SFENNuclear and Climate - Position paper - SFEN
Nuclear and Climate - Position paper - SFEN
 
CO2 Between Disposal and Utilization
CO2 Between Disposal and UtilizationCO2 Between Disposal and Utilization
CO2 Between Disposal and Utilization
 
Intro sustainable energy
Intro sustainable energyIntro sustainable energy
Intro sustainable energy
 
Carbon Capture & Storage
Carbon Capture & StorageCarbon Capture & Storage
Carbon Capture & Storage
 

Similar to How to extract gasoline from water

hho technology project
hho technology project hho technology project
hho technology project Krunal Patel
 
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014Sayed Farid
 
atmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdfatmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdfMajidBaqeri
 
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...Energy Network marcus evans
 
Economic Analysis: Green Hydrogen Production Systems
Economic Analysis: Green Hydrogen Production SystemsEconomic Analysis: Green Hydrogen Production Systems
Economic Analysis: Green Hydrogen Production SystemsAproximacionAlFuturo
 
Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...
Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...
Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...Dr. Amarjeet Singh
 
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEPERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEijsrd.com
 
Hydrogen Fuel Cell (Case Study)
Hydrogen Fuel Cell (Case Study)Hydrogen Fuel Cell (Case Study)
Hydrogen Fuel Cell (Case Study)Kunal Panchal
 
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGENPRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGENPriyam Jyoti Borah
 
Hydrogen-Poster-Final.pdf
Hydrogen-Poster-Final.pdfHydrogen-Poster-Final.pdf
Hydrogen-Poster-Final.pdfSaifulIslam930
 
Seminar Report on Heat transfer in metallic hydride
Seminar Report on Heat transfer in metallic hydrideSeminar Report on Heat transfer in metallic hydride
Seminar Report on Heat transfer in metallic hydrideMOHAMED ALI JAHAR
 
HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...
HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...
HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...Faga1939
 
Meeting energy demand uk 2014
Meeting energy demand uk 2014Meeting energy demand uk 2014
Meeting energy demand uk 2014Keith_Shotbolt
 
Carbonsequestration
CarbonsequestrationCarbonsequestration
CarbonsequestrationIan Calder
 
Literature Survey, Power to Methanol.pdf
Literature Survey, Power to Methanol.pdfLiterature Survey, Power to Methanol.pdf
Literature Survey, Power to Methanol.pdfDevidasKhatri
 
The future mix of alternative marine fuels
The future mix of alternative marine fuelsThe future mix of alternative marine fuels
The future mix of alternative marine fuelsGeorge Teriakidis
 

Similar to How to extract gasoline from water (20)

hho technology project
hho technology project hho technology project
hho technology project
 
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
 
atmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdfatmosphere-14-00584-v2 (1).pdf
atmosphere-14-00584-v2 (1).pdf
 
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
 
Economic Analysis: Green Hydrogen Production Systems
Economic Analysis: Green Hydrogen Production SystemsEconomic Analysis: Green Hydrogen Production Systems
Economic Analysis: Green Hydrogen Production Systems
 
Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...
Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...
Theoretical Estimation of CO2 Compression and Transport Costs for an hypothet...
 
Controling Co2
Controling Co2Controling Co2
Controling Co2
 
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEPERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
 
Green (cell) shipping
Green (cell) shippingGreen (cell) shipping
Green (cell) shipping
 
Fossil Fuels and Renewable Energy for Ships
Fossil Fuels and Renewable Energy for ShipsFossil Fuels and Renewable Energy for Ships
Fossil Fuels and Renewable Energy for Ships
 
Hydrogen Fuel Cell (Case Study)
Hydrogen Fuel Cell (Case Study)Hydrogen Fuel Cell (Case Study)
Hydrogen Fuel Cell (Case Study)
 
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGENPRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
PRESENTATION ON PLANT DESIGN FOR MANUFACTURING OF HYDROGEN
 
Hydrogen-Poster-Final.pdf
Hydrogen-Poster-Final.pdfHydrogen-Poster-Final.pdf
Hydrogen-Poster-Final.pdf
 
Seminar Report on Heat transfer in metallic hydride
Seminar Report on Heat transfer in metallic hydrideSeminar Report on Heat transfer in metallic hydride
Seminar Report on Heat transfer in metallic hydride
 
HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...
HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...
HYDROGEN AS A SOLUTION TO REPLACE FOSSIL FUEL AND AVOID THE EMISSION OF GREEN...
 
3.pdf
3.pdf3.pdf
3.pdf
 
Meeting energy demand uk 2014
Meeting energy demand uk 2014Meeting energy demand uk 2014
Meeting energy demand uk 2014
 
Carbonsequestration
CarbonsequestrationCarbonsequestration
Carbonsequestration
 
Literature Survey, Power to Methanol.pdf
Literature Survey, Power to Methanol.pdfLiterature Survey, Power to Methanol.pdf
Literature Survey, Power to Methanol.pdf
 
The future mix of alternative marine fuels
The future mix of alternative marine fuelsThe future mix of alternative marine fuels
The future mix of alternative marine fuels
 

How to extract gasoline from water

  • 1.   1   How  to  extract  gasoline  from  water  (&  air)     May  1,  2016   Fabio  Boschetti,  PhD  student   Max-­‐Plank-­‐Institute  for  Biogeochemistry   Department  of  Biogeochemical  System   Hans-­‐Knöll-­‐Strasse  10   07745  Jena,  Germany   Room:  A3.025   Phone:  0049  3641-­‐57-­‐6361   E-­‐mail:  fabosk@bgc-­‐jena.mpg.de       Abstract     Fossil  fuels  are  deeply  rooted  in  our  technological  civilization,  they  are  however   a  major  cause  for  both  climate  change  and  many  international  conflicts  around   the  world.  While  many  alternatives  are  available,  technical  problems  are  limiting   their  diffusion.  In  recent  years,  some  country  developed  a  technique  to  produce   synthetic  fuels  using  nothing  but  water  and  air.  This  technique  shows  promises   to   significantly   reduce   the   greenhouse   effect   without   significantly   altering   the   existing  economic  infrastructure  and  make  potentially  any  country  in  the  world   independent   from   the   energy   point   of   view,   with   likely   improving   of   global   wellbeing  and  reduction  of  international  conflicts.         Contents:     Introduction               p.  2   Gasoline  from  seawater           p.  2   Gasoline  from  fresh  water  and  air         p.  11   Potential  customers  and  Further  applications     p.  16   Conclusions               p.  17   References               p.  18                            
  • 2.   2   1.  Introduction      Our   civilization   is   based   on   fossil   fuels.   Fossil   fuels   are   used   to   produce   electricity,   warm   our   houses,   cook   our   food   and   propel   our   vehicles;   they   permeate  the  very  essence  of  human  lifestyle  in  the  modern  age.       This  centrality  makes  them  a  limiting  factor  for  economic  prosperity,  making  the   struggle  to  secure  fossil  fuel  supply  a  major  cause  for  conflicts.  In  addition,  and   most   importantly,   they   are   the   most   important   cause   of   climate   change.   This   means  that,  ironically,  the  very  base  of  our  civilization  can  cause  the  end  of  it.     For   what   said   before,   it   is   however   extremely   difficult   to   replace   fossil   fuels   without   re-­‐engineering   the   existing   economic   infrastructure.   Despite   many   promising   technologies   have   been   developed,   they   still   have   important   downsides.  In  the  case  of  the  renewable  energies,  especially  solar  and  wind,  the   problem  stands  in  their  dependence  on  weather.       Stating  the  problem  in  this  way,  the  ideal  solution  would  be  to  use  renewable   energies   to   produce   ecologic   fuels   that   can   be   used   by   any   device   originally   intended  for  fossil  fuels.  This  may  sound  like  science  fiction,  but  it  is  not.     In   the   last   years,   different   institutions   in   different   countries   succeeded   in   extracting  gasoline  from  water.  There  are  two  main  variants  of  this  technique:   the  first  one  focuses  on  seawater,  while  the  second  makes  use  of  fresh  water  and   air.  For  reasons  that  will  become  immediately  obvious,  the  two  variants  can  also   be  called  the  ‘military’  and  ‘civilian’  one  respectively.         2.  Gasoline  from  seawater     The  US  Navy  developed  this  method  few  years  ago.  Existence  of  this  technique   first  hit  the  news  in  September  2012,  with  the  first  results  apparently  from  the   year  2009.  So  far,  the  service  has  demonstrated  the  ability  of  the  synthetic  fuel   (syn-­‐gas)   extracted   from   seawater   to   power   a   2-­‐time   engine   by   successfully   flying   a   model   aircraft   (Fig.   1,   right)   and   is   now   working   on   up-­‐scaling   the   process.  Researchers  from  the  Naval  Research  Laboratory  expect  their  syn-­‐gas  to   eventually  cost  3-­‐6$  per  gallon  (1  gallon  =  3.78  liters),  and  so  to  be  economically   competitive.   The   technology   is   based   on   a   Fisher-­‐Tropf   reactor,   developed   in   1925  in  Germany  to  convert  coal  into  a  liquid  hydrocarbon.      
  • 3.   3       Figure  1:  the  chemical  reactor  (left)  and  an  aircraft  model  that  already  flew  using  the  synthetic   fuel  from  water  (right)               Figure  2:  scheme  illustrating  the  impact  of  the  synthetic  fuel  on  the  US  Navy         At   the   basis   of   the   whole   concept   lays   the   idea   of   using   the   abovementioned   chemical  reactor  to  combine  seawater  and  nuclear  power,  two  elements  that  are   aplenty  on  a  US  carrier,  in  order  to  produce  fuel  for  both  the  aircrafts  and  the   other  ships  of  the  battle  group,  allowing  the  fleet  to  get  rid  of  the  tanker  usually   accompanying   it   (Figure   2).   This   has   not   only   financial   benefits   due   to   the   elimination  of  the  maintenance  of  the  tanker;  it  also  eliminates  a  factor  of  risk.   Tankers  carrying  aviation  fuel  can  be  seen  in  fact  as  huge  floating  bombs;  in  case  
  • 4.   4   the  tanker  is  hit  during  the  refueling  operation,  which  requires  more  ships  to  be   very  close  to  each  other,  the  massive  resulting  explosion  is  likely  to  provoke  even   other  ships  to  sink.     The   service   has   been   focusing   on   seawater   because   CO2   is   140   times   more   concentrated   into   seawater   than   in   air.   More   precisely,   97-­‐98   percent   of   CO2   seawater   assumes   the   form   of   bicarbonate   (HCO3-­‐),   and   roughly   2   percent   as   carbonic  acid    (H2CO3).         Figure  3:  part  of  the  carbon  cycle  in  the  Ocean           2.1  Only  Hydrogen  and  Carbon     As  implied  by  it  own  name,  a  hydrocarbon  is  uniquely  composed  of  hydrogen   and  carbon.  Intuitively,  to  create  a  hydrocarbon,  one  must  collect  both  elements   separately,  and  then  combine  them  to  form  a  chain  of  carbon  atoms  surrounded   by   atoms   of   hydrogen.   Different   techniques   are   used   to   collect   the   two   basic   ingredients.       No  technical  detail  was  released  on  how  carbon  is  harvested,  but  it  is  claimed   that   the   process   can   recover   up   to   92   percent   of   CO2   in   a   certain   volume   of   seawater.   Hydrogen   is   harvested   using   a   normal   electrolysis   process   as   described  in  Eq.1,       Eq  1:        2Na+  +H2O  +  2e-­‐  -­‐>  2NaOH  +  2H2     Where  the  sodium  (Na+)  is  naturally  present  in  the  seawater  (Figure  4),  and  the   2  electrons  is  courtesy  of  the  nuclear  reactor  of  the  aircraft  carrier.  It  is  obvious   in   fact   that   this   technique   does   not   create   energy   from   nothing   but   just   transforms  it,  hence  requires  more  energy  than  the  one  stored  into  the  produced   fuel.  For  this  reason,  it  is  meaningful  only  when  a  non-­‐fossil  fuel  energy  source  is   used  to  power  it.    
  • 5.   5   The   produced   basic   solution   (2NaOH)   may   be   re-­‐combined   with   the   acidified   seawater  to  return  the  seawater  to  its  original  pH  with  no  additional  chemicals.           Figure  4:  Major  ion  composition  of  seawater         The  two  basic  components  are  then  turned  into  a  long  hydrocarbon  chain  in  a   two-­‐step  process.  In  the  first  step  uses  an  iron-­‐based  catalyst  to  convert  CO2  into   unsaturated  hydrocarbons  called  olefins,  (CnH2n).  Low-­‐grade  gaseous  olefins  are   then   olygomineralized   (aggregated)   into   a   liquid   containing   hydrocarbon   molecule  in  the  carbon  C9-­‐C16  range.  This  is  apparently  enough  for  fuelling  ships;   to  create  jet  fuel,  a  third  step  making  use  of  a  nickel  supported  catalyst  is  needed.     It  is  claimed  that  up  to  60  percent  of  CO2  can  be  converted  during  the  first  step,   with  a  decrease  of  unwanted  methane  production  from  97  percent  to  25  percent.   The   produced   methane   is   of   course   a   source   of   risk   on   a   military   ship,   while   being  in  addition  a  very  powerful  greenhouse  gas.  Capturing  it  and  burning  it  on   the  spot  to  produce  electricity  and  partially  powering  the  plant  may  be  the  best   course  of  action.     While  traditional  fossil  fuels  are  complex  mixtures  that  include  a  great  number  of   substances   other   than   hydrocarbons,   the   syn-­‐gas   literally   contains   only   hydrogen  and  carbon.  This  purity  translates  in  a  whole  host  of  positive  effects:     1. Higher  efficiency   2. Absence  of  Mercury,  with  obvious  effects  on  human  health   3. Absence  of  Sulphur,  resulting  in  a  reduction  of  emitted  particulate  matter   (PM).  According  to  Righi  et  al.  (2011),  a  Sulphur  reduction  from  4.5%  to   0.5%   of   ship   fuel   mass   would   turn   into   a   40-­‐60%   sulphate   aerosol   reduction   in   high   shipping   regions,   and   a   decrease   of   indirect   loading   aerosol  effect  by  a  factor  of  3-­‐4.   4. Virtual  absence  of  aromatic  content,  resulting  in  a  40-­‐95%  of  emitted  PM   for  a  jet  engine  (Figure  5)      
  • 6.   6                 Figure  5:    Reduction  in  number  and  mass  of  particulate  emission  for  different  alternative  fuels   compared  to  a  traditional  avio  gasoline.  FAME  is  a  biofuel  based  on  animal  fat  waste,  while  F-­‐T   stands  for  Fischer-­‐Tropf,  used  in  this  study  (Lobo  et  al,  2011)  to  convert  coal.                  
  • 7.   7   2.2  Fixing  the  carbon  cycle     The  Carbon  cycle  as  originally  intended  by  Mother  Nature  (Figure  6)  tends  to  be   stable   over   very   long   time   scales.   The   feature   that   keeps   the   whole   system   in   equilibrium   is   that   input   and   outputs   for   each   of   the   four   main   carbon   pools,   which   means   Atmosphere,   Hydrosphere,   Biosphere   and   Lithosphere,   are   characterized  by  processes  with  the  same  time  scale.     Figure  6:  natural  biogeochemical  cycle  for  carbon.        
  • 8.   8     Figure   7:   biogeochemical   carbon   cycle   for   carbon   after   being   perturbed   by   anthropogenic   activities.  As  the  rate  of  extraction  of  the  carbon  from  the  Lithosphere  is  much  faster  than  the   natural  burial  process,  the  carbon  content  of  the  Atmosphere  is  increased,  with  the  well-­‐known   effects  on  climate.       When  considering  the  human  effect  to  the  Carbon  cycle,  one  can  visualize  it  by   simply  adding  a  flux  of  Carbon  from  the  Lithosphere  to  the  Atmosphere  (Figure   7),  symbolizing  extraction  and  combustion  of  fossil  fuels.  The  main  problem  with   this  effect  is  not  the  combustion  in  itself,  but  that  the  extraction  rate  of  carbon   from  the  Lithosphere  (in  form  of  oil,  coal  and  natural  gas)  is  immensely  faster   than  the  deposition  rate  from  the  Biosphere  due  to  burial  processes.  This  causes   the   carbon   distribution   to   be   altered,   notably   by   an   increase   of   CO2   in   the   Atmosphere,  with  the  well  know  effect  on  climate.   This   problem   can   however   be   fixed   if   the   carbon   is   extracted   by   a   pool   characterized   by   fast   exchange   rates   like   the   Hydrosphere   (Figure   8)   or   the   Atmosphere  itself,  as  we  shall  see  later.  In  this  way  in  fact,  all  of  the  carbon  that   is  extracted  from  the  Hydrosphere  and  released  into  the  Atmosphere,  returns  to   the  Hydrosphere  in  a  relatively  short  time,  and  the  carbon  content  of  the  pools   (and  the  global  climate)  remains  unchanged.      
  • 9.   9     Figure  8:  biogeochemical  carbon  cycle  for  carbon  in  a  seawater  syn-­‐gas  based  economy               2.3  Syn-­‐gas  for  Germany     Military  technology  has  quite  a  tradition  of  migrating  into  the  civilian  domain,   with   most   notably   examples   being   the   drones,   the   transistor,   the   GPS   and   the   Internet.  In  this  section  we  will  be  using  some  released  information  to  infer  what   would  be  needed  for  this  technology  to  be  able  to  produce  the  whole  gasoline   consumption  of  a  country  as  Germany  (where  the  author  currently  lives).     Our   case   study   will   be   a   syn-­‐gas   plant   with   a   production   capacity   of   100,000   gallons  per  day  (0.375  millions  of  liters  per  day,  or  Ml/day  for  short).  According   to  the  released  information,  to  produce  this  amount  of  syn-­‐gas,  the  plant  would   need  to  process  8,900  Ml/day  of  seawater,  equivalent  to  a  cube  of  200  meters  of   side.  Note  that  due  to  lack  of  reliable  data,  it  is  assumed  for  what  follows  that  1   liter  of  crude  oil  is  converted  in  1  liter  of  gasoline.     As   late   as   2014,   Germany’s   oil   consumption   was   2,400,000   barrels/day   (288   Ml/day),  which  is  770  as  much  as  the  production  of  the  plant  used  in  our  case   study.  Making  the  necessary  proportion,  it  turns  out  that  the  amount  of  water  to   be  processed  to  satisfy  Germany’s  consumption  is  35  times  the  mean  flow  of  the  
  • 10.   10   Rein   river   (198,000   Ml/day).   Note   that   all   of   the   above   assume   a   100%   efficiency,  hence  all  of  the  estimates  should  probably  be  doubled  for  a  real  plant.     However,   as   this   technique   requires   seawater,   it   would   not   be   necessary   for   Germany   to   create   35   dams   on   the   course   of   the   Rein   river.   Instead,   a   combination  of  offshore  wind  farm  and  modified  oil  platforms  would  have  to  do   the  job.     More  precisely,  the  platforms  would  host  the  machinery  responsible  for  the  syn-­‐ gas   production,   while   the   wind   fields   should   provide   renewable   power   to   the   system  (Figure  9).  Tankers  or  pipelines  can  than  be  used  to  bring  the  oil  to  the   mainland.         Figure  9:  Artistic  impression  of  an  off-­‐shore  wind  farm  (left)  and  a  traditional  oil  platform  (right)           Figure  10:  Carbon  cycle  in  proximity  of  a  syn-­‐gas  platform      
  • 11.   11   There   is   no   reason   to   worry   that   the   syn-­‐gas   platforms   will   extract   all   of   the   carbon  in  the  water  around  the  rig  causing  the  production  to  stop,  nor  that  the   excessive   CO2   extraction   will   make   the   ocean   to   basic   to   sustain   life.   As   previously  mentioned,  the  exchange  rate  between  Atmosphere  and  Idrosphere  is   very  high,  and  hence  is  opinion  of  the  author  that  air  and  ocean  will  always  be  in   equilibrium,   provided   few   simple   precautions   to   maximize   the   carbon   flux   between  water  and  air,  like  nebulize  the  process  water  before  releasing  it  into   the   atmosphere   (Figure   10).   Something   similar   have   been   claimed   by   the   US   Navy’s  researchers.         3.  Gasoline  from  fresh  water  and  air     To  translate  into  reality  what  presented  in  section  1.3,  one  need  to  know  how   much  renewable  energy  from  wind  is  actually  available  to  be  converted  into  syn-­‐ gas.  However,  this  may  be  an  unnecessary  intellectual  exercise,  as  four  different   institutions  other  than  the  US  Navy  have  started  the  production  of  their  own  syn-­‐ gas,  using  a  slightly  different  method  that  makes  use  of  fresh  water  and  air.       First  to  produce  syn-­‐gas  after  the  US  Navy  was  a  British  company  called  Air  Fuel   Synthesis,  that  broke  the  news  on  October  2012;  next  year,  on  November,  it  was   the  time  of  the  Ben-­‐Gurion  University  of  Negev,  in  Israel,  followed  in  November   2014  by  a  German  company  named  Sunfire.  Furthermore,  a  european  research   project  called  Solar  Jet  has  been  launched  in  April  2014,  with  a  slightly  different   focus.      
  • 12.   12     Figure  11:  biogeochemical  carbon  cycle  for  carbon  in  a  civilian  syn-­‐gas  based  economy         Figure  12:  Scheme  of  a  syn-­‐methane  production  plant  (Somnath  et  al.,2010).  In  the  paper  it  is   suggested  that  that  the  water  can  also  be  harvested  from  atmospheric  water  vapor.           3.1  Air  Fuel  Synthesis,  UK,  Oct  2012  
  • 13.   13     Few   months   after   the   US   Navy   flying   a   model   aircraft   using   syn-­‐gas,   a   British   company  called  Air  Fuel  Synthesis  announced  the  production  of  the  first  batch  of   their   own   syn-­‐gas   obtained   by   fresh   water   and   CO2   collected   from   the   atmosphere.     At  the  time,  the  machine  was  powered  by  the  traditional  power  grid,  while  CO2   was   collected   from   the   atmosphere,   which   was   an   inefficient   and   inexpensive   process.  According  to  the  news  in  fact,  the  cost  of  extracting  a  ton  of  CO2  was   roughly  400  pounds.     The  company  announced  that  in  the  future,  renewable  energies  were  going  to   provide  power,  making  their  syn-­‐gas  carbon-­‐neutral  (Figure  13).  In  addition,  to   increase   efficiency,   CO2   was   to   be   harvested   from   industrial   sources,   where   concentration  is  higher.       In  2012,  the  company  was  expecting  to  increase  the  production  to  1  ton  of  petrol   per  day  (roughly  1200  liters)  in  a  couple  of  years,  and  to  complete  a  refinery-­‐ scale  plant  within  15  years.  In  2014,  AFS  was  awarded  a  Regional  Growth  Fund   and  expected  to  start  servicing  customers  in  early  2015.       Figure  13:  Scheme  from  Air  Fuel  Synthesis  illustrating  the  company’s  production  chain         3.2  Sunfire  GmbH,  D,  Nov  2014    
  • 14.   14   The  second  company  producing  syn-­‐gas  using  the  civilian  method  is  a  spin-­‐off  of   Audi,   is   based   in   Dresden   (Germany),   and   is   expected   to   start   commercial   exploitation   of   this   technique   by   2016   by   selling   fuel   for   diesel   engine   at   an   expected  price  of  1-­‐1.5  euro  per  liter.  At  the  end  of  2014,  the  production  capacity   of  the  plant  was  roughly  160  liters  per  day,  with  an  overall  energy  efficiency  of   fuel   creation   using   renewable   energy   of   70   percent.   The   high   efficiency   was   obtained  by  powering  steam  electrolysis  using  the  excess  heat  in  other  processes   of  the  chain.       Figure  13:  Adapted  scheme  from  Sunfire  GmbH  illustrating  the  company’s  production  chain     Sunfire’s  production  chain  is  showed  in  Figure  13.  First  renewable  sources  are   used   to   produce   electricity   (a),   to   power   the   whole   process,   including   the   electrolysis  cell  charged  with  separating  H2O  into  H2  and  O2(b).  The  harvested  H2   is  then  combined  with  CO2  from  industrial  sources  and  converted  into  CO  and   H2O   into   a   first   chemical   reactor   (c).   The   final   step   consists   in   combining   the   produced  CO  with  H2  in  the  Fischer-­‐Tropf  reactor  (d)  to  obtain  syn-­‐gas  (methane   in  Figure  13d)  and  water.  Note  that  the  only  waste  product  of  the  whole  process   is  oxygen.     The  Fisher-­‐Tropf  reactor  was  developed  in  1925  in  Germany,  to  convert  coal  into   a   liquid   hydrocarbon.   In   recent   years,   it   has   been   used   by   different   countries   with  limited  amount  of  oil  to  obtain  gasoline  from  other  kind  of  fuels.  It  is  the   case  of  South  Africa  (coal),  Qatar  (natural  gas)  and  Finland  (biomass).           3.3  Solar  Jet  Project,  EU,  Apr  2014     Optimazation   of   the   overall   efficiency   of   the   previously   described   chain   of   processes  (see  Section  3.2)  is  most  likely  the  goal  of  a  european  research  project   called  Solar  Jet.  
  • 15.   15     The   syn-­‐gas’s   production   chain   as   intended   by   this   project   still   has   a   Fisher-­‐ Tropf   reactor   to   the   end,   but   combines   the   first   three   process,   namely   power   generation   from   a   renewable   source,   hydrogen   production   due   to   electrolysis   and  conversion  of  CO2  into  CO,  into  a  single  step  performed  by  what  is  defined  as   a  ‘Solar  Reactor’,  or  ‘Concentrated  Solar  Energy  Reactor’  (Figure  14).         Figure   14:   Scheme   from   Solar   Jet   illustrating   the   fuel’s   production   chain   as   intended   by   the   project           Figure  15:  Scheme  of  the  concentrated  solar  energy  reactor.  Note  that  input  and  output  are  the   same  as  in  the  Sunfire  production  chain  right  before  the  Fischer-­‐Tropf  reactor  (credit:  Solar  Jet)       Research  on  said  Solar  Reactor  is  the  focus  of  the  project,  which  likely  aims  to   increase  the  overall  efficiency  by  combining  three  different  processes  into  one.  
  • 16.   16     It   is   clear   comparing   Figures   13   and   15,   that   Input   and   output   of   the   concentrated  solar  energy  reactor  are  exactly  the  same  as  in  the  Sunfire  process   line  before  the  Fisher-­‐Tropf  reactor.           4.  Potential  customers  and  Further  applications     In  Figure  16,  the  upper  map  shows  the  oil  production  per  nation,  while  the  lower   map   shows   corresponding   oil   consumption.   The   difference   between   the   two   allows  for  teasing  apart  oil  exporters  and  importers.  In  this  way  it  is  relatively   easy   to   understand   which   countries   may   find   convenient   to   start   extracting   gasoline  from  water.         Figure  16:  Map  of  oil  production  values  for  different  countries  (above)  and  corresponding  map   for  consumption  values  (below).       Countries  that  will  be  interested  in  this  technique  should  be  China  and  India,  so   already   half   of   the   global   population,   then   Japan   and   South   Korea,   the   US   themselves,  and  more  or  less  the  whole  Europe.  By  contrast,  oil  exporters  are  not   going  to  be  particularly  happy  because  they  are  going  to  loose  money.    
  • 17.   17   However,  it  was  noted  many  times  in  the  past  that  the  abundance  of  fossil  fuels   in   a   country’s   soil   often   produces   an   excessively   polarized   economy   and   concentrates  huge  amounts  of  money  in  the  hands  of  few  individuals.  This  allows   for  corruption  to  spread  at  all  levels  of  society,  turning  what  should  have  been  a   blessing   into   its   exact   contrary.   Should   synthetic   fuels   spread   worldwide,   this   would  be  a  serious  incentive  for  oil  exporters  to  diversify  their  economy.  For  this   reason,   it’s   opinion   of   the   author   that   syn-­‐gas   may   in   the   long   term   produce   beneficial  effects  also  in  the  traditional  oil  exporters.         The   technique   can   of   course   be   used   to   synthetize   methane,   so   a   similar   reasoning  can  be  done  for  the  natural  gas  market.  The  problem  is  that  methane  is   a   much   more   powerful   greenhouse   gas   than   carbon   dioxide;   hence   if   CO2   is   harvested  only  to  be  converted  into  CH4  that  is  then  spilled  into  the  atmosphere   along  the  distribution  grid,  the  greenhouse  effect  is  still  going  to  get  worse.     If   this   technique   is   used   to   produce   syn-­‐methane,   great  care   must   be   put   into   minimizing  methane  spill  into  the  atmosphere  to  maintain  the  carbon-­‐neutrality   of  the  process,  although  this  will  have  of  course  a  cost.  The  best  course  of  action   may  actually  be  to  burn  it  on  the  spot  to  produce  electricity.  Same  holds  for  the   unwanted  methane  inevitably  produced  while  trying  to  obtain  syn-­‐gas.     For  countries  heavily  relying  on  methane  to  produce  electricity,  the  best  course   of  action  will  probably  be  to  build  a  syn-­‐methane  plant  beside  each  traditional   thermal  methane  plant.     It  is  the  author’s  opinion  that  by  adding  a  further  step  in  the  process,  it  may  be   possible  to  create  a  synthetic  coal  as  well;  this  may  have  important  implication,   as   coal   was   responsible   for   44   percent   of   the   global   CO2   emissions   in   2012   esteem.  Unfortunately,  coal  is  in  fact  extremely  cheap,  only  48.16$  per  short  ton   in  2015,  making  extremely  difficult  for  a  hypothetical  syn-­‐coal  to  conquer  part  of   the  market.         5.  Conclusions     Syn-­‐gas  produced  using  either  of  the  presented  methods:   1. Solves   the   main   problem   of   renewable   energy,   which   is   usually   very   intermittent  and  unpredictable  due  to  its  dependence  on  meteorological   weather,  and  it  turns  them  into  easy  to  store  and  handle  hydrocarbons.   2. Allows  for  keeping  the  energetic  infrastructure  mostly  unchanged,  unlike   for   example   hydrogen,   that   also   have   other   issues   still   in   need   to   be   addressed.     3. Allows  for  energetic  independence  for  potentially  any  nation,  with  likely   increase  of  worldwide  wellbeing  and  reduction  in  the  global  conflictuality.          
  • 18.   18   Acknowledgement     The   author   wish   to   thank   all   those   whose   support   and   comments   helped   to   improve   the   current   manuscript,   especially   Dietrich   Feist,   Min   Jung   Kwon   and   Friedemann  Reum,  from  MPI-­‐BGC  in  Jena.       References     Lobo, Prem, Donald E. Hagen, and Philip D. Whitefield. "Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer–Tropsch fuels." Environmental science & technology 45.24 (2011): 10744-10749.   Righi, Mattia, et al. "Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect." Environmental science & technology45.8 (2011): 3519-3525.   Roy, Somnath C., et al. "Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons." Acs Nano 4.3 (2010): 1259-1278.     http://www.nrl.navy.mil/media/news-­‐releases/2012/fueling-­‐the-­‐fleet-­‐navy-­‐ looks-­‐to-­‐the-­‐seas     http://www.huffingtonpost.com/2014/04/09/seawater-­‐to-­‐fuel-­‐navy-­‐vessels-­‐ _n_5113822.html     http://www.voanews.com/content/us-­‐navy-­‐lab-­‐turns-­‐seawater-­‐into-­‐ fuel/1919512.html     http://www.vice.com/read/can-­‐we-­‐really-­‐fly-­‐planes-­‐on-­‐seawater     http://www.sunfire.de/en/     http://airfuelsynthesis.com     http://www.geek.com/science/german-­‐company-­‐can-­‐make-­‐gasoline-­‐from-­‐ water-­‐and-­‐airborne-­‐co2-­‐1609987/     http://io9.gizmodo.com/5953227/engineers-­‐create-­‐gasoline-­‐from-­‐air-­‐and-­‐ water-­‐yes-­‐really     http://www.timesofisrael.com/israeli-­‐researchers-­‐develop-­‐revolutionary-­‐ alternative-­‐fuel-­‐process/     https://www.ethz.ch/en/news-­‐and-­‐events/eth-­‐ news/news/2014/04/solarjet.html