SlideShare a Scribd company logo
1 of 3
Download to read offline
Time (min) B%
0.01 12
5 12
17 30
20 30
20.1 12
22 12
Table 1 · HPLC gradient for
sepration of isomers of tetracyclines
Compound Name Precursor Ion Product Ion
Frag.
energy
Collision
Energy
Polarity
Tetracycline
445 410 100 17 +ve
445 427 100 7 +ve
Oxytetracycline
461 443 100 7 +ve
461 426 100 17 +ve
Doxytetracycline
445 428 100 15 +ve
445 154 100 30 +ve
Chlortetracycline
479 444 100 20 +ve
445 462 100 10 +ve
Epi tetracycline
445 410 100 17 +ve
445 427 100 15 +ve
Epi oxy tetracycline
461 443 100 7 +ve
461 426 100 43 +ve
Epichlortetracycline
479 462 100 13 +ve
479 444 100 28 +ve
Table 2 · Following Precursor and product ions with fragmentor and collision energy were set
Method Development and Validation of Tetracycline Antibiotics and their Epimers in Marine Products as
per the EU Guidelines
By Virendra Vora*, Mukesh Kumar Raikwar and Vikas Bhardvaj
June 2013
The authors are Specialists at the Department of Pesticide Residue, Reliable Analytical Laboratories Pvt Ltd, in Bhiwandi, Thane, India
*Corresponding Author → See also:
«Study of Contamination Level of Pesticide Residues in Grapes (Vitis vinifera) in Maharashtra»
«Assessment and Method Validation of Chlormequat Chloride (CCC) in Food (Fruit, Vegetable & Grain) by Liquid Chromatography Mass
Spectrometry»
Abstract
To develop and validate method for tetracycline antibiotics and their epimers in marine products as per EU commission (2007/657/EC). Now a day it
becomes necessary to detect tetracycline as well as their epimers at EUMRL level with high confidence so that effort was made to separate and
detect tetracyclines (tetracycline, oxytetracycline, doxytetracyclinea and chlortetracycline) and their epimers (epitetracycline, epichlortetracycline and
epioxytetracycline). Here isomers have the same molecular weight and somewhat chemical nature too so that long run time was used to get separate
peaks. For sample extraction Mcvalline buffer was used and then extract was purified by passing through a C18 solid phase extraction (SPE) column.
The prepared samples were analyzed on LC/MSMS. Tetracycline antibiotic residues in marine products were analyzed. The recovery rates of seven
tetracyclines in sample preparation ranged from 77.03 % to 89.95 % in fortified blanks; the coefficient variation were between 0.35 % and 2.89 %.
The Decision limits (CCα) were 102.93 to 104.23 ng/g and Detection Capability (CCβ) was 105.78 to 108.26 ng/g. Youden approach was used to
determine ruggedness and it was within limit.
Introduction
Antibiotics are used worldwide to control bacterial infection and promote healthy marine production. Because tetracyclines are broad spectrum antibiotics so that
they are widely used. However, it is very undesirable to have them in the marine products (like fish, shrimp and crap) supply. FDA’s regulations for tetracyclines
including oxytetracycline, doxytetracycline and chlortetracycline are set to provide for an acceptable daily intake (ADI) and for setting a tolerance for residues in
marine. The ADI for total residues of these compounds as per EU countries is 100 micrograms per kilogram of body weight per day. With the establishment of a
tolerance of 100 ppb for the sum of residues of tetracycline, a tolerance of 100 ppb for each of the seven tetracyclines is also accepted.
Tetracyclines are commonly used in aquaculture to prevent certain diseases in marine products. However, residue of these antibiotics can be carried over to humans
and get enriched to a high level that could harm human health. The common requirements are that the total residue of tetracyclines is < 100 ng/g for marine
products to be consumed safely by humans. The existing LCMS method and microbial method for tetracyclines measurements in marine products are not
satisfactory (does not include separation of epimers by retention time). Plus, the microbial method can only measure the total tetracyclines present, not being able to
distinguish among different tetracyclines. The need for a new procedure with a consistent recovery rate, better specificity, selectivity and higher precisions has been
pushed further by EU commission in marine products that means-importing countries will not accept any products that fail to meet the above requirements (1, 2, 3 &
4).
Material and Method
All reagents and solvents were HPLC or analytical grade. Tetracycline and their epimer standards were purchased from
Erhenstopher. Stock solution (1 mg/mL) was prepared in methanol and kept in the deep freezer (-20 °C). Working solutions were
prepared using the stock solution diluted with a methanol. The working solutions were prepared daily. The SPE cartridges were
Agilent SampliQ OPT 3 mL, 60 mg. Mcllavaine buffer was prepared by 222 ml of Disodium hydrogen phosphate and 278 ml 0.1 M
Citric acid monohydrate in 500ml measuring cylinder. 18.6 gram Na2EDTA was added to dissolv in 100 ml mixture of Mcllvaine
solution and volume was makeup to the marks. The analysis was performed on an RRLC (rapid resolution liquid chromatography)
Agilent 1200 HPLC with mass spectrometer (Agilent triple quadrapole 6460). The analytical column was an Agilent Eclipse - C18 5
μm, 150 mm × 4.6 mm id. Flow rate was set at 0.5 mL/min, Column temperature was 30 °C and Injection volume was 10 μL.
Simple mobile phase comprised of A: 0.1 % formic acid in water and B: Acetonitrile was used.
Following MS parameteters were set for tetracycline analysis nitrogen gas temperature was set at 330, gas flow was 6 lit./min,
Nebulizer pressure was 40 psi, capillary and Nozzele voltage was set at 3500
and 500 V.
Sample Preparation
A 200 g sample of shrimp was homogenized with a tissue disintegrator, placed in
a clean, sealed container, and stored in a freezer below -20 °C. A 1 g
homogeneous sample (accurate to 0.01 g) was placed into a 50 mL
polypropylene centrifuge tube with 20 mL 0.1 M Na2EDTA-Mcllvaine buffer
solution and vortex mixed for 1 min. The sample was then centrifuged at a rotate
speed of 5000 rpm for 5 minutes (below 15 °C). The supernatant was removed
and saved in a clean tube. The extraction was repeated twice with 20 mL and 10
mL successively. The combined supernatant fluid was brought to 50 mL with
buffer, mixed well, centrifuged at a rotate speed of 7000 rpm for 10 min (below
15 °C), and filtered with fast filter paper.
SPE Purification: The procedure used for the SPE extraction is as follow. Agilent
SampliQ OPT cartridges were preconditioned with 5 mL water and then 5 mL of
methanol. A 10 mL extract was passed through the SampliQ OPT cartridge at a
speed of 1 mL/min. After the sample effused completely, the cartridge was
washed with 3 mL of water. The entire effluent was discarded. The cartridge was
dried under negative pressure below 2.0 kPa for 3 minutes. Finally, the cartridge was eluted with 10 mL of 10 mM oxalic acid in methanol. The eluent was collected
and dried under nitrogen below 40 °C. The resulting residue was dissolved and made to a constant volume of 0.5 mL using the methanol. Then the residue was
analyzed on LCMS.
Results and Discussion
Method Development and Validation of Tetracyc... 1 5/19/2015 8:56 AM
1 of 3 http://www.eco-web.com/edi/03336-03.html 5/19/2015 8:56 AM
Figure 1 · Chromatogram of Tetracycline and their Epimers
Figure 2 · Linearity of Epitetracyline and Tetracycline rangine from 25 to 250 µg/kg
Validation was performed as per the commission decision dated on 12th August 2002 by
implementing Council Directive 96/23/EC who are concerning with the performance of
analytical methods and the interpretation of results. It is necessary to ensure the quality
and comparability of the analytical results generated by laboratories approved for official
residue control. This should be achieved by using quality assurance systems and
specifically by applying of methods validated according to common procedures and
performance criteria and by ensuring traceability to common standards or standards
commonly agreed upon.As per EU commission following parameters should be included
in validation procedure.
Selectivity: To qualify this parameter peaks were separated at different retention time as
shown in fig. 1 and further it was assured by using three product ions one known as a
quantifier ion and other two as a qualifier ions (Tab. 2).
Specificity of method was checked by analyzing twentyrelevant blank (matrix) samples and straight base line was observed. This says that this method has not any
potentially interfering substance in matrix or any other part of method. Recovery, Trueness, Repeatability, Decision limit (CCα), Detection capability (CCβ) and
Ruggedness were performed and calculated as per the EC guidelines (Tab 3). Following results were obtained and which were within the limits of EU commission
acceptable criteria.
Table 3 · Validation results for Linearity, Recovery, Trueness, Repeatability, CCα and CCβ
Antibiotics
Range in
µg/kg
(r²)
%
Trueness
%
CV
%
Recovery
CCα
(µg/kg)
CCβ
(µg/kg)
Tetracycline 10 - 300 >0.99
104.03
95.95
103.14
2.51
1.77
1.05
82.55
89.53
87.05
104.03 105.78
Oxytetracycline 10 - 300 >0.99
100.23
95.90
96.13
1.91
1.27
2.98
89.91
88.04
90.00
103.78 105.91
Doxytetracycline 10 - 300 >0.99
103.43
94.69
102.77
2.66
0.96
1.16
78.22
80.09
84.92
104.49 108.26
Chlortetracycline 10 - 300 >0.99
93.77
93.83
102.88
2.82
2.23
2.02
80.78
88.56
81.35
102.93 105.94
Epitetracycline 10 - 300 >0.99
104.02
98.07
100.23
1.74
0.74
1.29
77.03
89.45
84.19
103.83 106.82
Epioxytetracycline 10 - 300 >0.99
98.33
99.56
96.40
0.93
0.35
1.06
77.94
81.42
83.94
103.76 107.38
Epichlortetracycline 10 - 300 >0.99
103.39
93.39
99.51
2.46
0.57
1.06
79.12
87.76
88.50
104.23 106.50
Following equation was used for the determination of CC α and CCβ at MRL value.
CCβ: CCα+1.64*SD of 20 fortified blanks at CCα
CCα: MRL+1.64*SD of 20 fortified blanks at MRL
As per EU commission CCα and CCβ individually should not exceed
5% of MRL and CCα respectively. Calibration curve was plotted
between the upper and lower range and r² was found greater than
0.99 for all compounds (Fig 2). Coefficient variation of method was
less than 2.82 % with batter recovery ranging from 77 % to 89 %.
Trueness for each compound was greater than 93 % and lesser than
104 % for which acceptance criteria is 90 % to 110 %. Youden
approach was used to determine the ruggedness of method, in which
obtained results in different condition were calculated statistically. As
per this approach statistically obtained Standard deviation should not
be higher than the intraday SD (Tab 4).
Table 4 · Ruggedness calculation for tetracycline as per youden approach
Parameters Fac 1 Fac 2 Fac 3 Fac 4 Fac 5 Fac 6 Fac 7 Fac 8
pH of mobile phase A A A A a a a a
Gradient B B b b B B b b
Column Temp C c C c C c C c
Flow Rate D D d d d d D D
Room Temp E e E e e E e E
Sheath Gas Temp F f f F F f f F
Light G g g G g G G g
Results
A1 (ppb) 98.39 97.02 96.52 100.73 100.25 96.02 99.86 99.46
A2 (ppb) 96.17 98.85 99.09 96.93 99.54 101.67 101.40 99.95
Avg. (ppb) 97.28 97.93 97.80 98.82 99.89 98.84 100.63 99.70
+ (X) Σ/4 - (Y) Σ/4 D ( X – Y) D²
A 97.9623 a 99.7699 -1.8076 3.267
B 98.4895 b 99.2427 -0.7532 0.567
C 98.9035 c 98.8287 0.0749 0.005
D 98.8891 d 98.8431 0.0460 0.002
E 98.4093 e 99.3228 -0.9135 0.834
Method Development and Validation of Tetracyc... 2 5/19/2015 8:56 AM
2 of 3 http://www.eco-web.com/edi/03336-03.html 5/19/2015 8:56 AM
F 98.9271 f 98.8051 0.1220 0.014
G 98.8965 g 98.8357 0.0608 0.003
Intraday SD 1.69 SD 1.1934
Capital alphabet shows that parameter was modified and lower alphabets shows that parameter was not changed.
Conclusions
Tetracyclines have their epimers which are similar in chemical nature. This method shows a simple way to detect and monitor the isomers with high confidence using
the highly selective LC/MS/MS technology and improved chromatography making the results more reliable to the EU Commission.
As this method is fully validated and all parameters comply with the requirement of EU commission, the method can be used for the analysis of EIC samples in
marine products.
References
Rail Khismatoullin, Rafavel Kuzyaev, Yaroslav Lyapunov, Elena Elovikova. Apiacta,2003, 38, 246-248.1.
Alippi A.D, Albo G.N, Leniz D, Rivera I, Zanelli M L. Roca A E, Journal of Apicultural Research, 1999, 38, 149-158.2.
James D.Macneil, Valerie K. Martz, J. AOAC, 1996, 79, 405-417.3.
Pang Guofang, Cao Yanzhong, Fan Chunlin, Zhang Jinjie, Li Xuemin, Li Zengyin, Jia4.
Guangqun, Apiculture of China, 2003, 54, 25-29.5.
***
Copyright © 2013, ECO Services International
Method Development and Validation of Tetracyc... 3 5/19/2015 8:56 AM
3 of 3 http://www.eco-web.com/edi/03336-03.html 5/19/2015 8:56 AM

More Related Content

What's hot

Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Agriculture Journal IJOEAR
 
The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...
The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...
The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...Agriculture Journal IJOEAR
 
High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...
High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...
High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...Shimadzu Scientific Instruments
 
Project proposal for modification of carbone nanotube (cn ts) with metal nan...
Project proposal for modification of  carbone nanotube (cn ts) with metal nan...Project proposal for modification of  carbone nanotube (cn ts) with metal nan...
Project proposal for modification of carbone nanotube (cn ts) with metal nan...Awad Albalwi
 
04. ijpar 13 403_103-106 sowkar
04. ijpar 13 403_103-106 sowkar04. ijpar 13 403_103-106 sowkar
04. ijpar 13 403_103-106 sowkarSriramNagarajan15
 
Development and Validation of Uv-Spectrophotometric Method for Estimation of ...
Development and Validation of Uv-Spectrophotometric Method for Estimation of ...Development and Validation of Uv-Spectrophotometric Method for Estimation of ...
Development and Validation of Uv-Spectrophotometric Method for Estimation of ...pharmaindexing
 
Case Study: Nylon Syringe Filter E&L
Case Study: Nylon Syringe Filter E&LCase Study: Nylon Syringe Filter E&L
Case Study: Nylon Syringe Filter E&LJordi Labs
 
Polymer Deformulation of a Medical Device case study
Polymer Deformulation of a Medical Device case studyPolymer Deformulation of a Medical Device case study
Polymer Deformulation of a Medical Device case studyJordi Labs
 
Development and Validation of RP – HPLC Method for the estimation of Oxycloza...
Development and Validation of RP – HPLC Method for the estimation of Oxycloza...Development and Validation of RP – HPLC Method for the estimation of Oxycloza...
Development and Validation of RP – HPLC Method for the estimation of Oxycloza...pharmaindexing
 
In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...
In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...
In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...Ratnakaram Venkata Nadh
 
Rasp 1 93 rapid andsimplemethod
Rasp 1   93 rapid andsimplemethodRasp 1   93 rapid andsimplemethod
Rasp 1 93 rapid andsimplemethodmovvamounika
 
housman_mini_4_5 foot PPT poster template 50 percent
housman_mini_4_5 foot PPT poster template 50 percenthousman_mini_4_5 foot PPT poster template 50 percent
housman_mini_4_5 foot PPT poster template 50 percentJonathan Oyler
 
VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...
VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...
VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...Manik Ghosh
 
PattersonEWRI2014 (1)
PattersonEWRI2014 (1)PattersonEWRI2014 (1)
PattersonEWRI2014 (1)John Maziuk
 
USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016Kim Gamble
 
USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016Mark Hayward
 
020203 ps0096
020203 ps0096020203 ps0096
020203 ps0096Jing Zang
 
Vitamin K poster_2013
Vitamin K poster_2013Vitamin K poster_2013
Vitamin K poster_2013David Garby
 

What's hot (20)

afstudeeropdracht
afstudeeropdrachtafstudeeropdracht
afstudeeropdracht
 
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
Analysis of Herbicide Atrazine and Its Degradation Products in Agricultural S...
 
The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...
The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...
The Evaluation of Organochlorine Pesticide Residues in The Blood and Urine Sa...
 
1 s2.0-s1570023203002794-main
1 s2.0-s1570023203002794-main1 s2.0-s1570023203002794-main
1 s2.0-s1570023203002794-main
 
High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...
High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...
High-sensitivity analysis of pesticides in dried hops cones and hops pellets ...
 
Project proposal for modification of carbone nanotube (cn ts) with metal nan...
Project proposal for modification of  carbone nanotube (cn ts) with metal nan...Project proposal for modification of  carbone nanotube (cn ts) with metal nan...
Project proposal for modification of carbone nanotube (cn ts) with metal nan...
 
04. ijpar 13 403_103-106 sowkar
04. ijpar 13 403_103-106 sowkar04. ijpar 13 403_103-106 sowkar
04. ijpar 13 403_103-106 sowkar
 
Development and Validation of Uv-Spectrophotometric Method for Estimation of ...
Development and Validation of Uv-Spectrophotometric Method for Estimation of ...Development and Validation of Uv-Spectrophotometric Method for Estimation of ...
Development and Validation of Uv-Spectrophotometric Method for Estimation of ...
 
Case Study: Nylon Syringe Filter E&L
Case Study: Nylon Syringe Filter E&LCase Study: Nylon Syringe Filter E&L
Case Study: Nylon Syringe Filter E&L
 
Polymer Deformulation of a Medical Device case study
Polymer Deformulation of a Medical Device case studyPolymer Deformulation of a Medical Device case study
Polymer Deformulation of a Medical Device case study
 
Development and Validation of RP – HPLC Method for the estimation of Oxycloza...
Development and Validation of RP – HPLC Method for the estimation of Oxycloza...Development and Validation of RP – HPLC Method for the estimation of Oxycloza...
Development and Validation of RP – HPLC Method for the estimation of Oxycloza...
 
In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...
In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...
In-Vivo Evaluation of Rifampicin Loaded Nanospheres: Biodistribution and Myco...
 
Rasp 1 93 rapid andsimplemethod
Rasp 1   93 rapid andsimplemethodRasp 1   93 rapid andsimplemethod
Rasp 1 93 rapid andsimplemethod
 
housman_mini_4_5 foot PPT poster template 50 percent
housman_mini_4_5 foot PPT poster template 50 percenthousman_mini_4_5 foot PPT poster template 50 percent
housman_mini_4_5 foot PPT poster template 50 percent
 
VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...
VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...
VALIDATED LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY METHOD FOR DETERMINA...
 
PattersonEWRI2014 (1)
PattersonEWRI2014 (1)PattersonEWRI2014 (1)
PattersonEWRI2014 (1)
 
USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016
 
USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016USDA Lehotay ITSP QuEChERS Chromatographia-2016
USDA Lehotay ITSP QuEChERS Chromatographia-2016
 
020203 ps0096
020203 ps0096020203 ps0096
020203 ps0096
 
Vitamin K poster_2013
Vitamin K poster_2013Vitamin K poster_2013
Vitamin K poster_2013
 

Similar to Method Development and Validation of Tetracycline Antibiotics and their Epimers in Marine Products as per the EU Guidelines - V. Vora, M. K. Raikwar and V. Bhardvaj

LC-MS/MS analysis of emerging food contaminants
LC-MS/MS analysis of emerging food contaminantsLC-MS/MS analysis of emerging food contaminants
LC-MS/MS analysis of emerging food contaminantsSCIEX
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...iosrphr_editor
 
Multi-residue pesticide analysis of food samples using acetonitrile extractio...
Multi-residue pesticide analysis of food samples using acetonitrile extractio...Multi-residue pesticide analysis of food samples using acetonitrile extractio...
Multi-residue pesticide analysis of food samples using acetonitrile extractio...Kate?ina Svobodov
 
advance phytochemical analysis.pptx
advance phytochemical analysis.pptxadvance phytochemical analysis.pptx
advance phytochemical analysis.pptxPratikKapse8
 
UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...
UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...
UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...iosrjce
 
FORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptx
FORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptxFORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptx
FORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptxshivalisingla5
 
Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)
Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)
Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)BRNSSPublicationHubI
 
Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...
Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...
Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...Diganta Dey
 
Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...
Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...
Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...Mujtaba Qureshi
 
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...SriramNagarajan19
 
Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...IJSIT Editor
 
54.Isolation and purification of cellulase from Aspergillus terreus
54.Isolation and purification of cellulase from Aspergillus terreus54.Isolation and purification of cellulase from Aspergillus terreus
54.Isolation and purification of cellulase from Aspergillus terreusAnnadurai B
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...iosrphr_editor
 
D BHARATH KUMAR MPA III SEM Proposal Presentation.ppt
D BHARATH KUMAR MPA III SEM Proposal Presentation.pptD BHARATH KUMAR MPA III SEM Proposal Presentation.ppt
D BHARATH KUMAR MPA III SEM Proposal Presentation.pptVenkatesh Mantha
 
Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...
Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...
Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...PerkinElmer, Inc.
 
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...
 RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC... RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC...
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...Ajay mandagiri
 

Similar to Method Development and Validation of Tetracycline Antibiotics and their Epimers in Marine Products as per the EU Guidelines - V. Vora, M. K. Raikwar and V. Bhardvaj (20)

LC-MS/MS analysis of emerging food contaminants
LC-MS/MS analysis of emerging food contaminantsLC-MS/MS analysis of emerging food contaminants
LC-MS/MS analysis of emerging food contaminants
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
 
Multi-residue pesticide analysis of food samples using acetonitrile extractio...
Multi-residue pesticide analysis of food samples using acetonitrile extractio...Multi-residue pesticide analysis of food samples using acetonitrile extractio...
Multi-residue pesticide analysis of food samples using acetonitrile extractio...
 
advance phytochemical analysis.pptx
advance phytochemical analysis.pptxadvance phytochemical analysis.pptx
advance phytochemical analysis.pptx
 
Determination of 3-chloropropanediol in soy sauce samples by liquid phase ext...
Determination of 3-chloropropanediol in soy sauce samples by liquid phase ext...Determination of 3-chloropropanediol in soy sauce samples by liquid phase ext...
Determination of 3-chloropropanediol in soy sauce samples by liquid phase ext...
 
UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...
UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...
UV Mutagenesis Enhanced Biotransformation Efficiency of Rutin to Isoquercitri...
 
FORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptx
FORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptxFORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptx
FORMULATION AND EVALUATION OF ATORVASTATIN CALCIUM NIOSOMES.pptx
 
Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)
Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)
Characterization of β-Glucan from Oyster Mushroom (Pleurotus pulmonarius)
 
Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...
Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...
Clinical isolates of urinary tract infection and candidiasis inhibited by T. ...
 
JOURNAL CLUB PRESENTATION (20L81S0710-PA)
JOURNAL CLUB PRESENTATION (20L81S0710-PA)JOURNAL CLUB PRESENTATION (20L81S0710-PA)
JOURNAL CLUB PRESENTATION (20L81S0710-PA)
 
Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...
Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...
Induced Expression of CYP1A by Triclosan in Zebra Fish to measure toxicologic...
 
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
 
Analytical toxicology
Analytical toxicologyAnalytical toxicology
Analytical toxicology
 
Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...Development and validation of hplc method for determination of theophylline a...
Development and validation of hplc method for determination of theophylline a...
 
Rodriguez- HPLC-DAD.pdf
Rodriguez- HPLC-DAD.pdfRodriguez- HPLC-DAD.pdf
Rodriguez- HPLC-DAD.pdf
 
54.Isolation and purification of cellulase from Aspergillus terreus
54.Isolation and purification of cellulase from Aspergillus terreus54.Isolation and purification of cellulase from Aspergillus terreus
54.Isolation and purification of cellulase from Aspergillus terreus
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
 
D BHARATH KUMAR MPA III SEM Proposal Presentation.ppt
D BHARATH KUMAR MPA III SEM Proposal Presentation.pptD BHARATH KUMAR MPA III SEM Proposal Presentation.ppt
D BHARATH KUMAR MPA III SEM Proposal Presentation.ppt
 
Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...
Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...
Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinEl...
 
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...
 RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC... RP_HPLC METHOD   FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND  ITS  PHARMAC...
RP_HPLC METHOD FOR   ESTIMATION  OF BUPROPION HCL IN BULKAND ITS  PHARMAC...
 

More from Dr. Mukesh Raikwar

More from Dr. Mukesh Raikwar (9)

endosulfan in fodder maize
endosulfan in fodder maizeendosulfan in fodder maize
endosulfan in fodder maize
 
Pesticides Article - Mukesh
Pesticides Article - MukeshPesticides Article - Mukesh
Pesticides Article - Mukesh
 
Toxic
ToxicToxic
Toxic
 
www.eco-web.com_edi_03336.html
www.eco-web.com_edi_03336.htmlwww.eco-web.com_edi_03336.html
www.eco-web.com_edi_03336.html
 
Photolysis of alphacypermethrin as thin film
Photolysis of alphacypermethrin as thin filmPhotolysis of alphacypermethrin as thin film
Photolysis of alphacypermethrin as thin film
 
Residuces in milk and production - Mukesh
Residuces in milk and production -  MukeshResiduces in milk and production -  Mukesh
Residuces in milk and production - Mukesh
 
milk- Mukesh
milk- Mukeshmilk- Mukesh
milk- Mukesh
 
animal feed
animal feedanimal feed
animal feed
 
alphamethrin mukesh research paper
alphamethrin mukesh research paperalphamethrin mukesh research paper
alphamethrin mukesh research paper
 

Method Development and Validation of Tetracycline Antibiotics and their Epimers in Marine Products as per the EU Guidelines - V. Vora, M. K. Raikwar and V. Bhardvaj

  • 1. Time (min) B% 0.01 12 5 12 17 30 20 30 20.1 12 22 12 Table 1 · HPLC gradient for sepration of isomers of tetracyclines Compound Name Precursor Ion Product Ion Frag. energy Collision Energy Polarity Tetracycline 445 410 100 17 +ve 445 427 100 7 +ve Oxytetracycline 461 443 100 7 +ve 461 426 100 17 +ve Doxytetracycline 445 428 100 15 +ve 445 154 100 30 +ve Chlortetracycline 479 444 100 20 +ve 445 462 100 10 +ve Epi tetracycline 445 410 100 17 +ve 445 427 100 15 +ve Epi oxy tetracycline 461 443 100 7 +ve 461 426 100 43 +ve Epichlortetracycline 479 462 100 13 +ve 479 444 100 28 +ve Table 2 · Following Precursor and product ions with fragmentor and collision energy were set Method Development and Validation of Tetracycline Antibiotics and their Epimers in Marine Products as per the EU Guidelines By Virendra Vora*, Mukesh Kumar Raikwar and Vikas Bhardvaj June 2013 The authors are Specialists at the Department of Pesticide Residue, Reliable Analytical Laboratories Pvt Ltd, in Bhiwandi, Thane, India *Corresponding Author → See also: «Study of Contamination Level of Pesticide Residues in Grapes (Vitis vinifera) in Maharashtra» «Assessment and Method Validation of Chlormequat Chloride (CCC) in Food (Fruit, Vegetable & Grain) by Liquid Chromatography Mass Spectrometry» Abstract To develop and validate method for tetracycline antibiotics and their epimers in marine products as per EU commission (2007/657/EC). Now a day it becomes necessary to detect tetracycline as well as their epimers at EUMRL level with high confidence so that effort was made to separate and detect tetracyclines (tetracycline, oxytetracycline, doxytetracyclinea and chlortetracycline) and their epimers (epitetracycline, epichlortetracycline and epioxytetracycline). Here isomers have the same molecular weight and somewhat chemical nature too so that long run time was used to get separate peaks. For sample extraction Mcvalline buffer was used and then extract was purified by passing through a C18 solid phase extraction (SPE) column. The prepared samples were analyzed on LC/MSMS. Tetracycline antibiotic residues in marine products were analyzed. The recovery rates of seven tetracyclines in sample preparation ranged from 77.03 % to 89.95 % in fortified blanks; the coefficient variation were between 0.35 % and 2.89 %. The Decision limits (CCα) were 102.93 to 104.23 ng/g and Detection Capability (CCβ) was 105.78 to 108.26 ng/g. Youden approach was used to determine ruggedness and it was within limit. Introduction Antibiotics are used worldwide to control bacterial infection and promote healthy marine production. Because tetracyclines are broad spectrum antibiotics so that they are widely used. However, it is very undesirable to have them in the marine products (like fish, shrimp and crap) supply. FDA’s regulations for tetracyclines including oxytetracycline, doxytetracycline and chlortetracycline are set to provide for an acceptable daily intake (ADI) and for setting a tolerance for residues in marine. The ADI for total residues of these compounds as per EU countries is 100 micrograms per kilogram of body weight per day. With the establishment of a tolerance of 100 ppb for the sum of residues of tetracycline, a tolerance of 100 ppb for each of the seven tetracyclines is also accepted. Tetracyclines are commonly used in aquaculture to prevent certain diseases in marine products. However, residue of these antibiotics can be carried over to humans and get enriched to a high level that could harm human health. The common requirements are that the total residue of tetracyclines is < 100 ng/g for marine products to be consumed safely by humans. The existing LCMS method and microbial method for tetracyclines measurements in marine products are not satisfactory (does not include separation of epimers by retention time). Plus, the microbial method can only measure the total tetracyclines present, not being able to distinguish among different tetracyclines. The need for a new procedure with a consistent recovery rate, better specificity, selectivity and higher precisions has been pushed further by EU commission in marine products that means-importing countries will not accept any products that fail to meet the above requirements (1, 2, 3 & 4). Material and Method All reagents and solvents were HPLC or analytical grade. Tetracycline and their epimer standards were purchased from Erhenstopher. Stock solution (1 mg/mL) was prepared in methanol and kept in the deep freezer (-20 °C). Working solutions were prepared using the stock solution diluted with a methanol. The working solutions were prepared daily. The SPE cartridges were Agilent SampliQ OPT 3 mL, 60 mg. Mcllavaine buffer was prepared by 222 ml of Disodium hydrogen phosphate and 278 ml 0.1 M Citric acid monohydrate in 500ml measuring cylinder. 18.6 gram Na2EDTA was added to dissolv in 100 ml mixture of Mcllvaine solution and volume was makeup to the marks. The analysis was performed on an RRLC (rapid resolution liquid chromatography) Agilent 1200 HPLC with mass spectrometer (Agilent triple quadrapole 6460). The analytical column was an Agilent Eclipse - C18 5 μm, 150 mm × 4.6 mm id. Flow rate was set at 0.5 mL/min, Column temperature was 30 °C and Injection volume was 10 μL. Simple mobile phase comprised of A: 0.1 % formic acid in water and B: Acetonitrile was used. Following MS parameteters were set for tetracycline analysis nitrogen gas temperature was set at 330, gas flow was 6 lit./min, Nebulizer pressure was 40 psi, capillary and Nozzele voltage was set at 3500 and 500 V. Sample Preparation A 200 g sample of shrimp was homogenized with a tissue disintegrator, placed in a clean, sealed container, and stored in a freezer below -20 °C. A 1 g homogeneous sample (accurate to 0.01 g) was placed into a 50 mL polypropylene centrifuge tube with 20 mL 0.1 M Na2EDTA-Mcllvaine buffer solution and vortex mixed for 1 min. The sample was then centrifuged at a rotate speed of 5000 rpm for 5 minutes (below 15 °C). The supernatant was removed and saved in a clean tube. The extraction was repeated twice with 20 mL and 10 mL successively. The combined supernatant fluid was brought to 50 mL with buffer, mixed well, centrifuged at a rotate speed of 7000 rpm for 10 min (below 15 °C), and filtered with fast filter paper. SPE Purification: The procedure used for the SPE extraction is as follow. Agilent SampliQ OPT cartridges were preconditioned with 5 mL water and then 5 mL of methanol. A 10 mL extract was passed through the SampliQ OPT cartridge at a speed of 1 mL/min. After the sample effused completely, the cartridge was washed with 3 mL of water. The entire effluent was discarded. The cartridge was dried under negative pressure below 2.0 kPa for 3 minutes. Finally, the cartridge was eluted with 10 mL of 10 mM oxalic acid in methanol. The eluent was collected and dried under nitrogen below 40 °C. The resulting residue was dissolved and made to a constant volume of 0.5 mL using the methanol. Then the residue was analyzed on LCMS. Results and Discussion Method Development and Validation of Tetracyc... 1 5/19/2015 8:56 AM 1 of 3 http://www.eco-web.com/edi/03336-03.html 5/19/2015 8:56 AM
  • 2. Figure 1 · Chromatogram of Tetracycline and their Epimers Figure 2 · Linearity of Epitetracyline and Tetracycline rangine from 25 to 250 µg/kg Validation was performed as per the commission decision dated on 12th August 2002 by implementing Council Directive 96/23/EC who are concerning with the performance of analytical methods and the interpretation of results. It is necessary to ensure the quality and comparability of the analytical results generated by laboratories approved for official residue control. This should be achieved by using quality assurance systems and specifically by applying of methods validated according to common procedures and performance criteria and by ensuring traceability to common standards or standards commonly agreed upon.As per EU commission following parameters should be included in validation procedure. Selectivity: To qualify this parameter peaks were separated at different retention time as shown in fig. 1 and further it was assured by using three product ions one known as a quantifier ion and other two as a qualifier ions (Tab. 2). Specificity of method was checked by analyzing twentyrelevant blank (matrix) samples and straight base line was observed. This says that this method has not any potentially interfering substance in matrix or any other part of method. Recovery, Trueness, Repeatability, Decision limit (CCα), Detection capability (CCβ) and Ruggedness were performed and calculated as per the EC guidelines (Tab 3). Following results were obtained and which were within the limits of EU commission acceptable criteria. Table 3 · Validation results for Linearity, Recovery, Trueness, Repeatability, CCα and CCβ Antibiotics Range in µg/kg (r²) % Trueness % CV % Recovery CCα (µg/kg) CCβ (µg/kg) Tetracycline 10 - 300 >0.99 104.03 95.95 103.14 2.51 1.77 1.05 82.55 89.53 87.05 104.03 105.78 Oxytetracycline 10 - 300 >0.99 100.23 95.90 96.13 1.91 1.27 2.98 89.91 88.04 90.00 103.78 105.91 Doxytetracycline 10 - 300 >0.99 103.43 94.69 102.77 2.66 0.96 1.16 78.22 80.09 84.92 104.49 108.26 Chlortetracycline 10 - 300 >0.99 93.77 93.83 102.88 2.82 2.23 2.02 80.78 88.56 81.35 102.93 105.94 Epitetracycline 10 - 300 >0.99 104.02 98.07 100.23 1.74 0.74 1.29 77.03 89.45 84.19 103.83 106.82 Epioxytetracycline 10 - 300 >0.99 98.33 99.56 96.40 0.93 0.35 1.06 77.94 81.42 83.94 103.76 107.38 Epichlortetracycline 10 - 300 >0.99 103.39 93.39 99.51 2.46 0.57 1.06 79.12 87.76 88.50 104.23 106.50 Following equation was used for the determination of CC α and CCβ at MRL value. CCβ: CCα+1.64*SD of 20 fortified blanks at CCα CCα: MRL+1.64*SD of 20 fortified blanks at MRL As per EU commission CCα and CCβ individually should not exceed 5% of MRL and CCα respectively. Calibration curve was plotted between the upper and lower range and r² was found greater than 0.99 for all compounds (Fig 2). Coefficient variation of method was less than 2.82 % with batter recovery ranging from 77 % to 89 %. Trueness for each compound was greater than 93 % and lesser than 104 % for which acceptance criteria is 90 % to 110 %. Youden approach was used to determine the ruggedness of method, in which obtained results in different condition were calculated statistically. As per this approach statistically obtained Standard deviation should not be higher than the intraday SD (Tab 4). Table 4 · Ruggedness calculation for tetracycline as per youden approach Parameters Fac 1 Fac 2 Fac 3 Fac 4 Fac 5 Fac 6 Fac 7 Fac 8 pH of mobile phase A A A A a a a a Gradient B B b b B B b b Column Temp C c C c C c C c Flow Rate D D d d d d D D Room Temp E e E e e E e E Sheath Gas Temp F f f F F f f F Light G g g G g G G g Results A1 (ppb) 98.39 97.02 96.52 100.73 100.25 96.02 99.86 99.46 A2 (ppb) 96.17 98.85 99.09 96.93 99.54 101.67 101.40 99.95 Avg. (ppb) 97.28 97.93 97.80 98.82 99.89 98.84 100.63 99.70 + (X) Σ/4 - (Y) Σ/4 D ( X – Y) D² A 97.9623 a 99.7699 -1.8076 3.267 B 98.4895 b 99.2427 -0.7532 0.567 C 98.9035 c 98.8287 0.0749 0.005 D 98.8891 d 98.8431 0.0460 0.002 E 98.4093 e 99.3228 -0.9135 0.834 Method Development and Validation of Tetracyc... 2 5/19/2015 8:56 AM 2 of 3 http://www.eco-web.com/edi/03336-03.html 5/19/2015 8:56 AM
  • 3. F 98.9271 f 98.8051 0.1220 0.014 G 98.8965 g 98.8357 0.0608 0.003 Intraday SD 1.69 SD 1.1934 Capital alphabet shows that parameter was modified and lower alphabets shows that parameter was not changed. Conclusions Tetracyclines have their epimers which are similar in chemical nature. This method shows a simple way to detect and monitor the isomers with high confidence using the highly selective LC/MS/MS technology and improved chromatography making the results more reliable to the EU Commission. As this method is fully validated and all parameters comply with the requirement of EU commission, the method can be used for the analysis of EIC samples in marine products. References Rail Khismatoullin, Rafavel Kuzyaev, Yaroslav Lyapunov, Elena Elovikova. Apiacta,2003, 38, 246-248.1. Alippi A.D, Albo G.N, Leniz D, Rivera I, Zanelli M L. Roca A E, Journal of Apicultural Research, 1999, 38, 149-158.2. James D.Macneil, Valerie K. Martz, J. AOAC, 1996, 79, 405-417.3. Pang Guofang, Cao Yanzhong, Fan Chunlin, Zhang Jinjie, Li Xuemin, Li Zengyin, Jia4. Guangqun, Apiculture of China, 2003, 54, 25-29.5. *** Copyright © 2013, ECO Services International Method Development and Validation of Tetracyc... 3 5/19/2015 8:56 AM 3 of 3 http://www.eco-web.com/edi/03336-03.html 5/19/2015 8:56 AM