SlideShare a Scribd company logo
1 of 81
Download to read offline
 
	
  
	
  
Advanced	
  Financial	
  Models	
  
	
  
under	
  construc2on	
  
	
  
Learning	
  Objec-ves	
  	
  
¨  Lognormal	
  Distribu-ons	
  	
  
¨  Rela-ons	
  between	
  	
  
¤  Normal	
  &	
  lognormal	
  
n  Pdfs	
  
n  Sta-s-cs	
  
¤  Simple	
  and	
  natural	
  log	
  rates	
  	
  
2
Hypotheses	
  and	
  Models	
  	
  
¨  Explana-ons	
  of	
  phenomenon	
  
¤  Hypothesis	
  
n  A	
  proposed	
  explana-on	
  for	
  a	
  
phenomena	
  
¤  Law	
  
n  Statement	
  of	
  a	
  cause	
  and	
  effect	
  	
  
without	
  explana-on	
  
n  Newton’s	
  law	
  of	
  gravity	
  	
  
¤  Theory	
  
n  A	
  well-­‐established	
  explana-on	
  for	
  
a	
  phenomenon	
  
n  Einstein’s	
  theory	
  of	
  gravity	
  
¨  A	
  model	
  is	
  a	
  mathema-cal	
  or	
  
physical	
  representa-on	
  of	
  a	
  
phenomenon	
  
¤  The	
  “Bohr	
  atomic	
  model”	
  	
  
¤  Newton’s	
  inverse	
  square	
  law	
  of	
  
gravity	
  
	
  
	
  
¤  Einstein’s	
  Theory	
  of	
  General	
  
Rela-vity	
  	
  	
  	
  
3
2
21
r
mm
GF
⋅
⋅=
SPX	
  Daily	
  Ln	
  Rate	
  Histogram:	
  Zoom	
  
4
SPX	
  Daily	
  Ln	
  Rate	
  Histogram:	
  	
  More	
  Zoom	
  
5
Again this histogram includes daily return rates from 1950
<-4.5% should happen less than once in a thousand years,
but there have been 31 such days since 1950 or about once
every two years
-22.9% day should not have happened (Oct 19, 1987)
SPX	
  Daily	
  Ln	
  Rate:	
  August	
  –	
  December	
  2008	
  
6
SPX	
  Daily	
  Ln	
  Rate:	
  Mean	
  
7
-­‐350%
-­‐250%
-­‐150%
-­‐50%
50%
150%
250%
1/5/51 11/9/57 9/13/64 7/19/71 5/23/78 3/27/85 1/30/92 12/4/98 10/8/05
Annualized	
  mean	
  
22	
  day	
  annualized	
  tailing	
  mean	
  
252	
  day	
  annualized	
  tailing	
  mean	
  
Long	
  term	
  annualized	
  tailing	
  mean	
  
SPX	
  Daily	
  Ln	
  Rate:	
  Mean	
  
8
-­‐80%
-­‐60%
-­‐40%
-­‐20%
0%
20%
40%
60%
80%
1/2/90 3/12/92 5/21/94 7/29/96 10/7/98 12/15/00 2/23/03 5/3/05 7/12/07 9/19/09
Zoom	
  in	
  on	
  Annualized	
  mean	
  
252	
  day	
  annualized	
  tailing	
  mean	
  
Long	
  term	
  annualized	
  tailing	
  mean	
  
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1/3/1950 3/22/1958 6/8/1966 8/25/1974 11/11/1982 1/28/1991 4/16/1999 7/3/2007
SPX	
  Daily	
  Ln	
  Rate:	
  Standard	
  Devia-on	
  	
  
9
Annualized	
  standard	
  devia-ons	
  (‘vola-lity’)	
  
22	
  day	
  annualized	
  trailing	
  vola-lity	
  
252	
  day	
  annualized	
  trailing	
  vola-lity	
  
Long	
  term	
  annualized	
  trailing	
  vola-lity	
  	
  
0%
5%
10%
15%
20%
25%
30%
1/2/1990 9/28/1992 6/25/1995 3/21/1998 12/15/2000 9/11/2003 6/7/2006
SPX	
  Daily	
  Ln	
  Rate:	
  Standard	
  Devia-on	
  	
  
10
Zoom	
  in	
  on	
  Annualized	
  standard	
  devia-ons	
  (‘vola-lity’)	
  
252	
  day	
  annualized	
  trailing	
  vola-lity	
  
Long	
  term	
  annualized	
  trailing	
  vola-lity	
  	
  
SPX	
  Daily	
  Ln	
  Rate:	
  Autocorrela-on	
  Cluster	
  
11
SPX	
  Daily	
  Ln	
  Rate:	
  Autocorrelogram	
  	
  
12
Natural	
  log	
  daily	
  return	
  rates	
  for	
  SPX,	
  v	
  	
  
1950	
  –	
  2011	
  
15471	
  days	
  
	
  
Rates	
  do	
  look	
  rather	
  uncorrelated	
  	
  	
  
SPX	
  Daily	
  Ln	
  Rate:	
  Autocorrelogram	
  	
  
13
Natural	
  log	
  daily	
  de-­‐trended	
  squares	
  of	
  return	
  rates	
  
(variance)	
  	
  for	
  SPX,	
  (v-­‐u)2	
  
1950	
  –	
  2011	
  	
  15471	
  days	
  	
  
There	
  is	
  some	
  posi-ve	
  autocorrela-on	
  (persistence)	
  	
  
Might	
  even	
  be	
  greater	
  persistence	
  over	
  shorter	
  periods	
  
SPX	
  Daily	
  Ln	
  Rate:	
  Histogram	
  of	
  Annualized	
  
Daily	
  Variance	
  
14
Histogram	
  of	
  Annualized	
  Daily	
  Variance	
  
SPX:	
  Annual	
  Accumula-on	
  of	
  Daily	
  Returns	
  
15
10,000	
  annual	
  sums	
  of	
  252	
  day	
  
(1	
  year)	
  con-guous	
  return	
  rates	
  
randomly	
  selected	
  from	
  1950	
  to	
  
2011	
  
	
  
This	
  histogram	
  doesn’t	
  look	
  
normal	
  at	
  all	
  as	
  the	
  addi-ve	
  CLT	
  
would	
  indicate	
  	
  
So	
  the	
  rates	
  are	
  not	
  IID/	
  FV	
  
SPX:	
  Ln	
  Rate	
  Q-­‐Q	
  Plot	
  
16
A	
  Q-­‐Q	
  plot	
  compares	
  the	
  
measured	
  rates	
  to	
  ideal	
  normal	
  
rates	
  from	
  measured	
  mean	
  and	
  
variance	
  
Natural	
  Log	
  Rate	
  –	
  More	
  Tests	
  
¨  Jarque	
  Bera	
  normality	
  test	
  	
  
¤  JB	
  is	
  a	
  Chi	
  Squared	
  sta-s-c	
  with	
  2	
  dof	
  	
  
¤  Normality	
  via	
  chi	
  squared	
  considera-on	
  of	
  s	
  
skew,	
  S,	
  and	
  kurtosis,	
  K,	
  the	
  3rd	
  and	
  4th	
  	
  
moments	
  of	
  distribu-on	
  which	
  measure	
  	
  
asymmetry	
  	
  
17
440,657	
  	
  	
  	
  	
  
4
3)(29.0600
1.05621
6
15471
	
  	
  	
  	
  	
  
4
3)(K
S
6
n
JB
2
2
2
2
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
+−=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛ −
+=
JB	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(χ2	
  
statistic)	
  
If	
  normality	
  is	
  
rejected,	
  what	
  is	
  
the	
  probability	
  of	
  a	
  
rejection	
  error	
  
0.0000 100.00%
4.6051 10.00%
5.9914 5.00%
9.2103 1.00%
10.0000 0.67%
15.0000 0.06%
20.0000 0.00%
25.0000 0.00%
30.0000 0.00%
35.0000 0.00%
40.0000 0.00%
45.0000 0.00%
50.0000 0.00%
So	
  there	
  is	
  ~0%	
  probability	
  of	
  incorrectly	
  rejec-ng	
  the	
  normal	
  hypothesis	
  
Natural	
  Log	
  Rate	
  –	
  Tests	
  For	
  Normality	
  	
  
18
Stock	
  Return	
  Rate	
  Summary	
  
¨  Historical	
  stock	
  return	
  rates,	
  r	
  and	
  v,	
  are	
  characterized	
  by	
  	
  
¤  Leptokurtosis	
  
n  Fat	
  or	
  heavy	
  tails:	
  more	
  extreme	
  events	
  than	
  ‘normal’	
  
n  More	
  return	
  rates	
  near	
  the	
  mean	
  than	
  ‘normal’	
  
¤  Nega-ve	
  skew	
  
n  More	
  extreme	
  downside	
  events	
  than	
  upside	
  	
  
¨  Dependence	
  in	
  return	
  rate	
  vola-lity	
  	
  
¤  Rate	
  vola-lity	
  clustering,	
  short	
  term	
  persistence	
  then	
  reversion	
  to	
  mean	
  
¨  Less	
  frequent	
  sampling	
  e.g.,	
  weekly	
  and	
  monthly	
  would	
  show	
  some	
  
smoothing,	
  but	
  s-ll	
  not	
  normal	
  	
  
¤  However,	
  quarterly	
  or	
  annual	
  sampling	
  would	
  ignore	
  important	
  rate	
  of	
  
return	
  informa-on	
  	
  
19
Lognormal	
  Pdf	
  
20
The	
  lognormal	
  pdf	
  is	
  
asymmetric,	
  is	
  not	
  nega-ve,	
  
over	
  -me	
  the	
  mean,	
  mode,	
  
and	
  median	
  drii	
  further	
  
apart,	
  and	
  the	
  distribu-on	
  
skews	
  more	
  posi-vely.	
  	
  
	
  
	
  	
  
Lognormal	
  Pdf	
  
21	
  
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
0.018
Mode	
  
	
  	
  
Median	
  	
  
	
  
Mean	
  (expected)	
  	
  
22
( )
( )
∞>>
⋅⋅
=
−
⋅
−
−
	
  	
  x	
  	
  	
  0
e
π2σx
1
σ	
  μ,	
  |x	
  f
1s,uNL~r
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
σ2
μ)(lnx
x
2
2
2
( )
( )
∞>>∞
⋅
= ⋅
−
−
x	
  	
  -­‐
e
π2σ
1
σ	
  μ,	
  |x	
  f
s,uN~v
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
σ2
μ)(x
x
2
2
2
u	
  is	
  mean,	
  median,	
  and	
  mode	
  
	
  
The	
  parameters	
  is	
  the	
  normal	
  pdf	
  
above	
  are	
  also	
  the	
  sta-s-cs	
  –	
  the	
  
mean	
  and	
  	
  variance	
  
The	
  mean,	
  mode,	
  and	
  median	
  are	
  
all	
  different	
  	
  
	
  
The	
  parameters	
  is	
  the	
  lognormal	
  
pdf	
  are	
  the	
  same	
  as	
  for	
  the	
  normal	
  
pdf,	
  but	
  they	
  are	
  not	
  the	
  sta-s-cs,	
  
not	
  the	
  mean	
  or	
  variance	
  	
  
 	
  
¨  Why	
  simple	
  returns	
  can’t	
  really	
  be	
  normal	
  
¤  Simple	
  returns	
  are	
  compounded	
  over	
  -me	
  increments,	
  but	
  
normal	
  random	
  variables	
  are	
  mul-plied	
  
¤  (1+r)n	
  
¤  u·∙n	
  
23
( )r1lnv +=
	
  ...
3
r
2
r
r)r1ln(v
)1x(	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ...
3
x
2
x
x)x1ln(
32
32
−+−=+=
−≠−+−=+
Variance	
  of	
  Simple	
  and	
  Log	
  Returns	
  
24
[ ] [ ]
[ ] [ ]
( )
( )
( )
[ ]( ) ( )
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1er1E	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
xExE	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
dr1VarrVar
2
2
2
2
2
22
22
222
s2
s
2
2
s
u
s2
s
u2
ssu2
s2us2u2
2
2
s
u
2
s2
u2
22
2
−⋅+=
−⋅
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛
=
−⋅=
−=
−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−=
−=
=+=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+⋅
+⋅
+⋅+⋅
+
⋅
+⋅
[ ]( ) ( )
( ) ( )
( )
( )
( )
1)s	
  	
  	
  1,(a	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  sd
1ed
d1e
d1lns
1)(a	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  a1
a1
d
1lns
1ea1	
  	
  	
  	
  	
  	
  	
  
1er1E	
  	
  d	
  
22
s2
2s
22
2
2
2
2
s2
s22
2
2
2
2
<<<<≈≈
−≈
+≈
+≈
<<≈+
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
+=
−⋅+=
−⋅+=
( )
[ ]
[ ]
[ ]
[ ] 2
2
22
s2u22
2
s
u
2
sk
uk
k
2
v
e	
  	
  	
  	
  xE
e	
  	
  	
  	
  	
  	
  xE
	
  	
  	
  	
  	
  	
  	
  	
  	
  e	
  	
  xE	
  
su,NL~	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  er1X
⋅+⋅
+
⋅
+⋅
=
=
=
=+=
Variance	
  of	
  Simple	
  and	
  Log	
  Returns	
  
25
Future	
  Value	
  Factor:	
  1+r	
  =	
  ev
[ ] ( )	
  1eer1var
22
ssu2
−⋅=+ +⋅
[ ]
*
2
u2
s
u
eer1E ≡=+
+
[ ] u
er1M =+
26
( ) ( )
[ ]
[ ] [ ]
[ ] ( )[ ]
[ ] ondistributi	
  normal	
  log	
  for	
  Median	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  er1MM[x]
	
  	
  	
  	
  	
  ondistributi	
  lognormal	
  for	
  moment	
  2	
  	
  	
  	
  er1E	
  xE
ondistributi	
  normal	
  log	
  for	
  (mean)	
  moment	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  er1E	
  xE
ondistributi	
  normal	
  log	
  for	
  moment	
  k	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exE	
  
	
  	
  	
  	
  su,NL~	
  	
  	
  	
  er1
u
nds2u222
st2
s
u
th2
sk
uk
k
2v
2
2
22
=+=
=+=
=+=
=
=+
⋅+⋅
+
⋅
+⋅
Central	
  Limit	
  Theorem	
  	
  
27
( )
( )2n
n
n
1i
i
n
1i
i0n
s,uN~
n
y
u
n
y
n
v
vSln)Sln()Sln(
→=
=Δ=−
∑
∑
=
=
( )
1)x,x(NL~r
g1f)r(1
fr1
S
S
n
1
n
n
1
n
1i
i
n
n
1i
i
0
n
−
+→=⎥
⎦
⎤
⎢
⎣
⎡
+
≡+=
∏
∏
=
=
Assume	
  that	
  n	
  is	
  large	
  and	
  r	
  and	
  v	
  are	
  IID/FV	
  	
  
28	
  
( ) ( )
( )
∑∏
∑∏
∑∏
==
==
==
=⎥
⎦
⎤
⎢
⎣
⎡
+=⎥
⎦
⎤
⎢
⎣
⎡
+=⎥
⎦
⎤
⎢
⎣
⎡
+
n
1i
i
n
1i
v
n
1i
i
n
1i
v
n
1i
i
n
1i
i
veln
r1lneln
r1lnr1ln
i
i
n21
i
vvv
0
n
1i
v
0n
n210
n
1i
i0n
e	
  ...e	
  e	
  S	
  	
  	
  	
  	
  	
  	
  
eS	
  	
  S
)r(1....)r(1)r(1	
  S	
  	
  	
  	
  	
  	
  
)r(1S	
  	
  S
⋅⋅⋅⋅=
⋅=
+⋅⋅+⋅+⋅=
+⋅=
∏
∏
=
=
( ) ( )
( )
( ) ( )
( ) n210
n
1i
i0n
n210
n
1i
i0n
v...vvSln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
vSln	
  	
  Sln
)rln(1....)rln(1)rln(1Sln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
)rln(1Sln	
  	
  Sln
++++=
+=
+++++++=
++=
∑
∑
=
=
Mean	
  Natural	
  Log	
  Return	
  Rates	
  
29
Example:	
  v	
  is	
  distributed	
  
uniformly	
  from	
  -­‐10%	
  to	
  
+20%	
  
	
  
Average	
  of	
  sums	
  of	
  vi	
  are	
  
normal	
  (sum	
  of	
  n	
  rates)	
  	
  
	
  
	
  
( )2
n
1i
i
s,uN~
n
v∑=
Simple	
  Future	
  Value	
  Factors	
  	
  
30
Example:	
  r	
  is	
  distributed	
  
uniformly	
  from	
  -­‐10%	
  to	
  +20%	
  
)x,x(NL~)r(1f
n
1
n
1i
i
n
1
n ⎥
⎦
⎤
⎢
⎣
⎡
+= ∏=
Simple	
  Future	
  Value	
  Factors	
  	
  
31
( ) )x,x(NL~r1f
n
1i
in ∏=
+=
Example:	
  r	
  is	
  distributed	
  uniformly	
  from	
  -­‐10%	
  to	
  +20%	
  
	
  f	
  is	
  distributed	
  lognormal	
  
We	
  did	
  plot	
  a	
  histogram	
  of	
  natural	
  return	
  rates,	
  v,	
  for	
  the	
  SPX.	
  	
  It	
  did	
  have	
  the	
  
general	
  appearance	
  of	
  normality.	
  	
  But	
  a	
  Levy	
  stable	
  seems	
  like	
  a	
  bemer	
  fit,	
  but	
  
has	
  disadvantages.	
  	
  	
  However,	
  the	
  typical	
  assump-on	
  in	
  finance	
  is	
  that	
  v	
  is	
  
normally	
  distributed	
  which	
  has	
  a	
  number	
  of	
  advantages.	
  
	
  
	
  
	
  
One	
  advantage	
  is	
  that	
  the	
  loca-on	
  sta-s-cs	
  are	
  iden-cal	
  –	
  mode,	
  median,	
  and	
  
mean	
  –	
  it’s	
  a	
  symmetric	
  	
  
32
	
  v)r1(ln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  e)r1(
	
  v)r1(ln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  e)r1(
v
ii
v
i
i
=+=+
=+=+
For	
  stocks	
  or	
  other	
  financial	
  assets,	
  so	
  far	
  there	
  has	
  been	
  no	
  assump-on	
  on	
  
the	
  distribu-ons	
  of	
  v	
  and	
  r	
  other	
  than	
  being	
  IID/FV	
  
	
  
But	
  the	
  rela-onship	
  between	
  r	
  and	
  v	
  has	
  been	
  defined	
  as	
  	
  
( ) ( )2
s,uN~r1lnv +=
33
( ) ( )
( ) ( ) ( )
( ) ( ) 1s,uNL1e~r
s,uNLe~r1
s,uN~r1lnv
2s,uN
2s,uN
2
2
2
−≡−
≡+
+=
Another	
  advantage	
  is	
  the	
  normal	
  distribu-on	
  scale	
  linearly	
  in	
  -me.	
  	
  The	
  mean	
  
driis	
  to	
  the	
  right	
  while	
  the	
  variance	
  increases.	
  	
  
( )2
sn,unN~vn ⋅⋅⋅
Another	
  advantage	
  is	
  the	
  normal	
  distribu-on	
  scale	
  linearly	
  in	
  -me.	
  	
  The	
  mean	
  
driis	
  to	
  the	
  right	
  while	
  the	
  variance	
  increases.	
  	
  	
  Yet	
  another	
  advantage	
  is	
  the	
  
rela-on	
  between	
  the	
  normal	
  and	
  lognormal	
  distribu-ons	
  is	
  similar	
  to	
  the	
  
rela-on	
  between	
  the	
  na-ral	
  log	
  rate	
  and	
  simple	
  rate	
  	
  
Therefore	
  the	
  simple	
  rate,	
  r,	
  is	
  lognormal	
  under	
  assump-on	
  that	
  the	
  natural	
  
log	
  rate	
  is	
  lognormal	
  
34	
  
35	
  
Natural	
  Log	
  Rate	
  Autocorrelogram	
  	
  
36
Natural	
  log	
  daily	
  absolute	
  return	
  rates	
  for	
  SPX,	
  |v|	
  
Daily	
  range	
  	
  	
  
1950	
  –	
  2011	
  
15471	
  days	
  
Common	
  PDFs	
  in	
  Finance	
  	
  
¨  Gaussian	
  /	
  Normal	
  
¤  IID	
  /	
  FV,	
  two	
  parameters	
  	
  
¤  CLT	
  for	
  sums	
  of	
  IID/FV	
  random	
  
variables	
  
¤  Special	
  case	
  Levy	
  stable	
  and	
  ellip-c	
  
distribu-ons	
  	
  
	
  
¨  Ellip-c	
  	
  
¤  IID	
  /	
  FV,	
  two	
  parameters	
  	
  
¤  unimodal,	
  no	
  skew,	
  no	
  kurtosis	
  other	
  
than	
  Gaussian	
  case	
  
¤  Linear	
  correla-on	
  defines	
  linear	
  
dependence	
  
¤  Used	
  in	
  MPT	
  and	
  CAPM	
  
¤  Includes	
  	
  Gauss,	
  Cauchy,	
  t-­‐distr,	
  
Laplace,	
  symmetric	
  Levy	
  Stable	
  	
  
¨  Lognormal	
  
¤  IID	
  /	
  FV	
  
¤  CLT	
  for	
  products	
  of	
  IID/FV	
  random	
  
variables	
  
¤  Posi-ve	
  	
  
¤  Mode,	
  median,	
  mean	
  non-­‐coincident	
  
	
  
¨  Levy	
  stable	
  
¤  IID,	
  not	
  generally	
  FV,	
  4	
  parameters	
  	
  
¤  Unimodal,	
  skew,	
  kurtosis	
  other	
  than	
  
Gaussian	
  case	
  
¤  Central	
  limit	
  theorem	
  for	
  IID	
  and	
  stable	
  
but	
  not	
  FV	
  random	
  variables	
  converges	
  
to	
  a	
  Levy	
  stable	
  distribu-on	
  	
  
¤  Includes	
  Gaussian,	
  Cauchy,	
  Levy	
  
37
More	
  on	
  Covar	
  &	
  Corre	
  
38
[ ] [ ] [ ] [ ]
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
yExEyxEy,xCov ⋅−⋅=
Monthly	
  Idealized	
  PDFs	
  From	
  SPX	
  History	
  	
  
39
ln(1+r)	
  =	
  v	
  
Normally	
  
distributed	
  	
  
N(u,s2)	
  	
  	
  
	
  
u	
  and	
  s2	
  are	
  
normal	
  pdf	
  
parameters	
  and	
  
sta-s-cs	
  -­‐	
  mean	
  
and	
  variance	
  	
  
(1+r)=	
  ev	
  	
  Lognormally	
  
distributed	
  	
  	
  NL(u,s2)	
  
	
  	
  
Same	
  pdf	
  parameters,	
  
but	
  different	
  mean	
  and	
  
variance	
  	
  	
  	
  
Monthly	
  Idealized	
  PDFs	
  From	
  SPX	
  History	
  	
  
40
Future	
  value	
  
factor,	
  (1+r)	
  =	
  ev	
  
lei	
  shiied	
  by	
  -­‐1,	
  r	
  	
  	
  
Return	
  Rate	
  PDFs:	
  	
  Sta-s-cs	
  Increase	
  With	
  Time	
  
41	
  
-­‐75% -­‐50% -­‐25% 0% 25% 50% 75% 100% 125% 150% 175% 200% 225% 250% 275% 300%
Natural	
  log	
  rates	
  
(v)	
  are	
  assumed	
  
normal.	
  	
  The	
  mean	
  
and	
  variance	
  of	
  a	
  
normal	
  distribu-on	
  
scale	
  linear	
  in	
  -me	
  	
  
The	
  future	
  value	
  factors	
  (1+r)	
  are	
  
assumed	
  log	
  normally	
  distributed.	
  	
  
The	
  mean	
  and	
  variance	
  do	
  not	
  scale	
  
linearly	
  in	
  -me.	
  
42	
  
Future	
  Value	
  Factor:	
  1+r	
  =	
  ev
[ ] ( )	
  1eer1var
22
ssu2
−⋅=+ +⋅
[ ]
*
2
u2
s
u
eer1E ≡=+
+
[ ] u
er1M =+
43	
  
[ ] [ ] [ ] [ ]
( )
( )
( )
[ ]( ) ( )
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1er1E	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ondistributi	
  normal	
  logof	
  	
  Variance	
  	
  	
  	
  1ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ee	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
xExEr1VarrVar
2
2
2
2
2
22
22
222
s2
s
2
2
s
u
s2
s
u2
ssu2
s2us2u2
2
2
s
u
2
s2
u2
22
−⋅+=
−⋅
⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛
=
−⋅=
−=
−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−=
−=+=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+⋅
+⋅
+⋅+⋅
+
⋅
+⋅
44
-­‐1.25 -­‐1.00 -­‐0.75 -­‐0.50 -­‐0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Idealized	
  PDFs	
  for	
  36	
  Months	
  	
  
45	
  
Forecast	
  36	
  month	
  
natural	
  log	
  rate	
  of	
  
return	
  
	
  
normally	
  distributed	
  	
  
N(36·∙u,	
  36·∙s2)	
  	
  	
  
Forecast	
  36	
  
month	
  future	
  
value	
  factor	
  
	
  
lognormally	
  
distributed	
  	
  
Forecast	
  36	
  month	
  simple	
  rate	
  of	
  return	
  	
  
	
  
lognormally	
  distributed	
  	
  
Lognormal	
  Distribu-on	
  
46
( ) ( )
[ ]
[ ] [ ]
[ ] ( )[ ]
[ ] ondistributi	
  normal	
  log	
  for	
  Median	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  er1MM[x]
	
  	
  	
  	
  	
  ondistributi	
  lognormal	
  for	
  moment	
  2	
  	
  	
  	
  er1E	
  xE
ondistributi	
  normal	
  log	
  for	
  (mean)	
  moment	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  er1E	
  xE
ondistributi	
  normal	
  log	
  for	
  moment	
  k	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exE	
  
	
  	
  	
  	
  su,NL~	
  	
  	
  	
  er1
u
nds2u222
st2
s
u
th2
sk
uk
k
2v
2
2
22
=+=
=+=
=+=
=
=+
⋅+⋅
+
⋅
+⋅
( ) ( )
( )
( ) ( )
( ) n210
n
1i
i0n
n210
n
1i
i0n
v...vvSln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
vSln	
  	
  Sln
)rln(1....)rln(1)rln(1Sln	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
)rln(1Sln	
  	
  Sln
++++=
+=
+++++++=
++=
∑
∑
=
=
	
  	
  
S
SS
r
)r1(SS
rate	
  return	
  Simple
1i
1ii
i
i1ii
−
−
−
−
=
+⋅=
( ) ( )
)r1ln(	
  	
  	
  	
  	
  
SlnSln
S
S
lnv
eSS
rate	
  return	
  log	
  Natural
i
1ii
1i
i
i
v
1ii
i
+=
−=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
⋅=
−
−
−
Lognormal	
  Distribu-on	
  
47
( ) ( )
[ ]
[ ] [ ]
[ ] ( )[ ]
[ ] ondistributi	
  normal	
  log	
  for	
  Median	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  er1MM[x]
	
  	
  	
  	
  	
  ondistributi	
  lognormal	
  for	
  moment	
  2	
  	
  	
  	
  er1E	
  xE
ondistributi	
  normal	
  log	
  for	
  (mean)	
  moment	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  er1E	
  xE
ondistributi	
  normal	
  log	
  for	
  moment	
  k	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exE	
  
	
  	
  	
  	
  su,NL~	
  	
  	
  	
  er1
u
nds2u222
st2
s
u
th2
sk
uk
k
2v
2
2
22
=+=
=+=
=+=
=
=+
⋅+⋅
+
⋅
+⋅
GARCH	
  Time	
  Series	
  	
  
¨  Similar	
  to	
  historic	
  vola-lity	
  	
  
¤  Simple	
  condi-onal	
  dependence	
  in	
  the	
  second	
  moment	
  (vola-lity)	
  	
  
n  Vola-lity	
  clustering	
  	
  or	
  persistence	
  	
  
¨  The	
  GARCH	
  vola-lity	
  has	
  three	
  contribu-ons	
  
¤  Long	
  term	
  average	
  vola-lity,	
  s2,	
  so	
  there’s	
  a	
  reversion	
  of	
  the	
  mean	
  
¤  Short	
  term	
  dependence	
  on	
  recent	
  square	
  of	
  return	
  rate,	
  v2	
  	
  	
  
¤  Short	
  term	
  dependence	
  on	
  recent	
  Garch	
  vola-lity,	
  h	
  
¨  To	
  Do	
  
n  Is	
  there	
  a	
  probability	
  distribu-on?	
  Maybe	
  not	
  	
  	
  
n  Plot	
  the	
  resul-ng	
  rates	
  and	
  look	
  for	
  fat	
  tails	
  	
  
n  So	
  it	
  looks	
  good	
  historically,	
  but	
  how	
  can	
  it	
  be	
  used	
  in	
  decision	
  making	
  ?	
  	
  
48
GARCH	
  Time	
  Series	
  
¨  The	
  GARCH(1,1)	
  vola-lity	
  model	
  with	
  the	
  natural	
  log	
  rate	
  process	
  
model	
  vola-lity	
  has	
  three	
  contribu-ons	
  
49
( )
0βλ,α,
1βαγ
β	
  ,α	
  ,γ	
  	
  	
  :weights
hβvαsβα1	
  	
  	
  	
  
hβvαsγh
zh	
  uv	
  
1i
2
1i
2
1i
2
1i
2
i
iii
>
=++
⋅+⋅+⋅−−=
⋅+⋅+⋅=
⋅+=
−−
−−
The	
  	
  Gaussian	
  rate	
  process	
  is	
  	
  
vi	
  =	
  u	
  +	
  s	
  ·∙zi	
  
	
  
s	
  is	
  the	
  (tradi-onal)	
  long	
  term	
  
average	
  standard	
  devia-on	
  
z	
  is	
  the	
  standard	
  normal	
  random	
  
variable	
  
h	
  is	
  the	
  Garch	
  variance	
  	
  
v	
  is	
  the	
  nat	
  log	
  return	
  rates	
  	
  
	
  
Example:	
  
α = .85 , β = .1 , γ = .05
GARCH	
  Time	
  Series	
  
50
Single	
  simulated	
  GARCH(1,1)	
  vola-lity	
  
for	
  15,461	
  days	
  	
  
GARCH	
  Time	
  Series	
  
51
GARCH	
  Time	
  Series	
  
52
Adendum:	
  Nat	
  Log	
  &	
  Exp	
  
53	
  
( )
( ) ( )
y+xyxyxyx
32
32
x
)xln(
e	
  =	
  e	
  e	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )(e	
  =	
  e
	
  	
  ...
3
1x
2
1x
1x)xln(
)1x(	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ...
3
x
2
x
x)x1ln(
x
1
)xln(
dx
d
)yln()xln(
y
x
ln
)yln()xln()yxln(
x)eln(
)0x(	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  xe
⋅
−
−
+
−
−−=
−≠−+−=+
=
−=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=⋅
=
>=
⋅
Addendum	
  
54	
  
Rate
Periodic	
  
mean	
  
Annual	
  
mean
Periodic	
  
standard	
  
deviation
Annual	
  
standard	
  
deviation
a α
g γ
vi u µ s σ
d	
  =	
  Var(r)	
  =	
  Var(1+r)
ri d δ
Addendum	
  
55	
  
	
  	
  	
  	
  dwσdt
2
σ
μ	
  	
  	
  	
  	
  	
  	
  dln(S)
2
*
⋅+⋅⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=( )
( )
Tσ
Tσ.5r
K
S
ln
d
Tσ
Tσ.5r
K
S
ln
d
2*0
2
2*0
1
⋅
⋅⋅−+⎟
⎠
⎞
⎜
⎝
⎛
=
⋅
⋅⋅++⎟
⎠
⎞
⎜
⎝
⎛
=
[ ] ( )	
  1eer1var
22
ssu22
−⋅=+=δ +⋅
[ ]
*
2
u2
s
u
eer1E ≡=+
+
( ) ( )
[ ]
[ ]
tsz
1ii
s,0N
1i
i
v
1ii
2
i
i1i-­‐i
eSS
e~
S
S
eSS
s,0N~v
	
  vSln	
  	
  Sln
2
i
Δ⋅⋅
−
−
−
⋅=
⋅=
+=
tsz
i
i
tsz
i1ii
i
)rln(1v
ii
ii
i
ii
er
)r(1e
)r(1SS
)r(1ee
tszv
)rln(1	
  	
  	
  	
  v	
  
Δ⋅⋅
Δ⋅⋅
−
+
=
+=
+⋅=
+==
Δ⋅⋅=
+=
Addendum	
  	
  
56	
  
( )
[ ] [ ]
( )
( ) ( )
−+−=+
+
Δ⋅⋅
+
Δ⋅⋅
+Δ⋅⋅+==
−+−=+
++++=
=⋅δ⋅+
=+≡δ
⋅δ⋅+⋅=
⋅δ⋅==
Δ⋅⋅
Δ⋅⋅
3
r
2
r
r)r1ln(
...
6
tsz
2
tsz
tsz1ee
3
x
2
x
x)x1ln(
6
x
2
x
x1e
e	
  ΔtZ1
rSDr)(1SD
	
  ΔtZ1SS
ΔtZ?r
3
i
2
i
ii
3
i
2
i
i
tszv
32
32
x
tsz
i
itt
ii
ii
1-­‐ii
Not	
  yet	
  ready	
  to	
  related	
  normal	
  and	
  
lognormal	
  distribu-ons.	
  	
  Need	
  
lognormal	
  sta-s-cs	
  and	
  Ito’s	
  Lemma	
  
Normal	
  
	
  Natural	
  log	
  rates	
  
	
  Natural	
  log	
  prices	
  
Lognormal	
  
	
  Simple	
  rates	
  
	
  Future	
  value	
  factors	
  
	
  Prices	
  
Levy	
  Stable	
  Distribu-on	
  
¤  Bemer	
  fits	
  historical	
  rates	
  of	
  return	
  
n  Can	
  model	
  Leptokurtosis	
  and	
  skew	
  
n  Constant	
  parameters	
  
n  Generalized	
  Central	
  Limit	
  Theorem	
  	
  
n  Normal	
  distribu-on	
  is	
  a	
  special	
  case	
  	
  
n  Problems	
  included	
  
n  Infinite	
  variance	
  	
  
n  Variance	
  cant	
  be	
  used	
  as	
  a	
  measure	
  of	
  risk	
  or	
  vola-lity	
  	
  
n  CAPM,	
  MPT,	
  B-­‐S	
  	
  
n  PDF	
  models	
  not	
  applicable	
  	
  
n  Generally	
  no	
  analy-c	
  representa-on	
  	
  
¤  To	
  Do	
  	
  
n  Fit	
  data	
  to	
  a	
  distribu-on	
  and	
  graph	
  	
  
n  Why	
  does	
  FMH	
  without	
  IID	
  invoke	
  this	
  model	
  	
  
n  How	
  does	
  it	
  relate	
  to	
  power	
  law	
  model	
  (Has	
  an	
  α	
  >	
  2	
  ?)	
  	
  
57
Levy	
  Stable	
  Distribu-ons	
  	
  
58
[ ]
( )
( ) parameter	
  location	
  ,μ
parameter	
  scale	
  0,c
parameter	
  skewness	
  1,1β
parameter	
  stability	
  (0,2]α
Parameters
∞∞−∈
∞∈
−∈
∈
undefined	
  otherwise2,α	
  when	
  0	
  :kurtosis	
  excess
undefined	
  otherwise2,α	
  when	
  0:skew
infinite	
  otherwise2,α	
  when	
  c2	
  	
  :variance
undefined	
  otherwise	
  1,α	
  whenμ	
  	
  	
  :mean
2
=
=
=⋅
>
Levy	
  Stable	
  Distribu-ons	
  	
  
¨  DJIA:	
  α	
  =	
  1.5958	
  β	
  =	
  -­‐.0995	
  µ	
  =	
  .0002	
  σ	
  =	
  .0056	
  	
  
¤  (5/26/1896	
  –	
  1/16/2004	
  daily)	
  
¨  SPX	
  =	
  α	
  =	
  1.6735	
  β	
  =	
  .1064	
  µ	
  =	
  -­‐.0002	
  σ	
  =	
  .0049	
  	
  	
  
¤  (3/1/1950	
  –	
  5/27.2005	
  daily)	
  
	
  
	
  
	
  
	
  
	
  
¨  Only	
  three	
  sets	
  of	
  parameters	
  result	
  in	
  closed	
  form	
  	
  	
  
¤  Gaussian	
  
n  Actually	
  two	
  of	
  the	
  four	
  parameters	
  are	
  zero	
  (?)	
  or	
  reduced	
  to	
  different	
  2	
  ?	
  	
  
n  Finite	
  variance	
  	
  
¤  Levy	
  
¤  Cauchy	
  
59
[ ]
( )
( ) parameter	
  location	
  ,μ
parameter	
  scale	
  0,c
parameter	
  skewness	
  1,1β
parameter	
  stability	
  (0,2]α
Parameters
∞∞−∈
∞∈
−∈
∈
Power	
  Law	
  	
  
60
Power	
  Law	
  Method	
  
¨  Coopera-on,	
  herding,	
  cri-cality	
  	
  
¤  How	
  Nature	
  Works	
  –	
  Bak	
  
¤  Ubiquity	
  –	
  Buchanan	
  	
  
¨  The	
  ubiquity	
  of	
  scale-­‐free	
  behavior	
  
and	
  self-­‐organiza-on	
  in	
  Nature	
  led	
  
Bak,	
  Tang	
  and	
  Wiesenfeld	
  (BTW)	
  to	
  
coin	
  the	
  term	
  Self-­‐Organized	
  
Cri-cality	
  (SOC)	
  to	
  explain	
  the	
  
emergence	
  of	
  complexity	
  in	
  
dynamical	
  systems	
  with	
  many	
  
interac-ng	
  degrees	
  of	
  freedom	
  
without	
  the	
  presence	
  of	
  any	
  external	
  
agent	
  ;	
  SOC	
  was	
  devised	
  to	
  be	
  a	
  sort	
  
of	
  supergeneral	
  theory	
  of	
  complexity.	
  
61
Power	
  Law	
  	
  
¨  Confusion	
  based	
  on	
  Fractal	
  Market	
  Hypothesis:	
  	
  Is	
  it	
  stable	
  or	
  power	
  law??	
  
¨  Hurst	
  soiware	
  shows	
  a	
  random	
  series	
  to	
  be	
  persistent	
  ??	
  	
  
¨  Hurst	
  exponent	
  
¤  0.5	
  is	
  Brownian	
  	
  t1/2	
  	
  	
  	
  √t	
  
¤  0	
  <	
  H	
  <	
  0.5	
  :	
  an--­‐persistent,	
  mean	
  rever-ng	
  	
  
¤  .5	
  <	
  H	
  ≤	
  1.0	
  	
  :	
  persistent	
  	
  
¨  Stability	
  parameter	
  
¤  α	
  =	
  1	
  /	
  H,	
  	
  example	
  Gaussian:	
  α =	
  2,	
  H	
  =	
  .5	
  
¨  Correla-on	
  (?)	
  	
  C	
  =	
  22H-­‐1	
  –	
  1	
  	
  
¨  Example	
  
¤  SPX:	
  3/1/1950	
  –	
  5/27/2005	
  daily	
  
n  	
  	
  α	
  =	
  1.6735	
  β	
  =	
  .1064	
  µ	
  =	
  -­‐.0002	
  σ	
  =	
  .0049	
  	
  
n  	
  H	
  =	
  .5976	
  	
  	
  	
  C=	
  .1448	
  
¤  SPX:	
  	
  1/3/1950	
  –	
  6/24/2011	
  	
  daily	
  	
  
n  H=	
  .562	
  	
  α=	
  1.779	
  	
  	
  	
  C=	
  .090	
  
62
Reference:	
  Nat	
  Log	
  &	
  Exp	
  
63	
  
)1x(	
  ...
3
x
2
x
x)x1ln(
x
1
)xln(
dx
d
)yln()xln(
y
x
ln
)yln()xln()yxln(
x)eln(
)0x(	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  xe
32
x
)xln(
−≠−+−=+
=
−=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=⋅
=
>= ( )
( ) ( )
++++=
⋅
−
−
+
−
−−=
⋅
6
x
2
x
x1e
e	
  =	
  e	
  e	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )(e	
  =	
  e
	
  	
  ...
3
1x
2
1x
1x)xln(
32
x
y+xyxyxyx
32
Rate
Periodic	
  
mean	
  
Annual	
  
mean
Annual	
  
standard	
  
deviation
Period	
  
standard	
  
deviation
Rate	
  
pdf
a α
g γ
vi u µ s σ Normal
d	
  =	
  SD(r)	
  =	
  SD(1+r)
ri d δ Log	
  
normal
Related	
  Concepts	
  	
  
¨  Expected	
  Rate	
  of	
  Return	
  On	
  Equity	
  
¤  CAPM	
  requires	
  that	
  the	
  return	
  rate	
  is	
  normally	
  distributed	
  with	
  a	
  trend	
  	
  
¤  Ordinary	
  least	
  squares	
  
	
  
	
  
	
  
	
  
¨  Theore-cal	
  basis	
  for	
  r	
  being	
  an	
  independent	
  random	
  variable	
  
¤  Efficient	
  Market	
  Hypothesis	
  
¨  Theore-cal	
  basis	
  for	
  r	
  being	
  an	
  independent	
  random	
  variable	
  with	
  a	
  trend	
  
¤  Ra-onal	
  Market	
  Hypothesis	
  	
  	
  	
  
64
( ) ( )
( )
( )FMFEE
iE1ii
E1ii
rrβr	
  k	
  	
  r
	
  	
  zsr1SS
	
  	
  	
  	
  	
  	
  	
  	
  	
  r1SSE
−⋅+==
⋅++⋅=
+⋅=
−
−
Geometric	
  Brownian	
  Mo-on	
  
65
( ) ( )
[ ]
[ ]
tsz
1ii
s,0N
1i
i
v
1ii
2
i
i1i-­‐i
eSS
e~
S
S
eSS
s,0N~v
	
  vSln	
  	
  Sln
2
i
Δ⋅⋅
−
−
−
⋅=
⋅=
+=
tsz
i
i
tsz
i1ii
i
)rln(1v
ii
ii
i
ii
er
)r(1e
)r(1SS
)r(1ee
tszv
)rln(1	
  	
  	
  	
  v	
  
Δ⋅⋅
Δ⋅⋅
−
+
=
+=
+⋅=
+==
Δ⋅⋅=
+=
	
  	
  	
  	
  dwσdt
2
σ
μ	
  	
  	
  	
  	
  	
  	
  dln(S)
2
*
⋅+⋅⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=( )
( )
Tσ
Tσ.5r
K
S
ln
d
Tσ
Tσ.5r
K
S
ln
d
2*0
2
2*0
1
⋅
⋅⋅−+⎟
⎠
⎞
⎜
⎝
⎛
=
⋅
⋅⋅++⎟
⎠
⎞
⎜
⎝
⎛
=
[ ] ( )	
  1eer1var
22
ssu22
−⋅=+=δ +⋅
[ ]
*
2
u2
s
u
eer1E ≡=+
+
Geometric	
  Brownian	
  Mo-on	
  
66
( )
[ ] [ ]
( )
( ) ( ) ...
6
tsz
2
tsz
tsz1ee
3
x
2
x
x)x1ln(
6
x
2
x
x1e
e	
  ΔtZ1
rSDr)(1SD
	
  ΔtZ1SS
ΔtZ?r
3
i
2
i
i
tszv
32
32
x
tsz
i
itt
ii
ii
1-­‐ii
+
Δ⋅⋅
+
Δ⋅⋅
+Δ⋅⋅+==
−+−=+
++++=
=⋅δ⋅+
=+≡δ
⋅δ⋅+⋅=
⋅δ⋅==
Δ⋅⋅
Δ⋅⋅
Not	
  yet	
  ready	
  to	
  related	
  normal	
  and	
  
lognormal	
  distribu-ons.	
  	
  Need	
  
lognormal	
  sta-s-cs	
  and	
  Ito’s	
  Lemma	
  
Normal	
  
	
  Natural	
  log	
  rates	
  
	
  Natural	
  log	
  prices	
  
Lognormal	
  
	
  Simple	
  rates	
  
	
  Future	
  value	
  factors	
  
	
  Prices	
  
u,	
  s	
  	
  	
  	
  µ, σ	

r,	
  d	
  	
  	
  	
  α, δ	

g,	
  	
  	
  	
  	
  	
  	
  γ,
Alterna-ves	
  	
  
¨  Fat	
  Tail	
  Models	
  	
  
¤  Power	
  law	
  not	
  exponen-al	
  tails	
  	
  
¤  Leptokurtosis,	
  finite	
  variance	
  ?	
  	
  
¤  Examples	
  	
  
n  Student	
  t	
  –	
  no	
  skew	
  	
  
n  Levy	
  stable	
  –	
  skew	
  	
  
¨  Non	
  IID	
  Models	
  –	
  non-­‐sta-onary	
  process	
  	
  
¤  Correla-on	
  in	
  rate	
  vola-lity,	
  but	
  not	
  in	
  rate,	
  so	
  s-ll	
  ‘unpredictable’	
  	
  
ARCH	
  models	
  	
  
¤  Used	
  with	
  normal	
  or	
  other	
  distribu-on	
  
67
Addendum	
  
68
( ) ( )
( ) ( ) ( )SlnSlnSln-­‐Sln
eSS
Δtσz	
  	
  	
  	
  Δt
2
σ
μ	
  	
  	
  	
  1SS
Δtσz	
  	
  	
  	
  ΔtμSlnSln
1-­‐ii
it
2
ii
i1-­‐ii
i1-­‐ii
tt
Δtσz	
  	
  Δt
2
σ
μ
1tt
t
2
tt
ttt
Δ≠Δ=
=
⎥
⎦
⎤
⎢
⎣
⎡
⋅⋅+⋅⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
++⋅=
⋅⋅+⋅+=
⋅⋅+⋅⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
⋅−
( ) ( ) nszunSlnSln 1i-­‐1-­‐ni ⋅⋅+⋅+=+
( ) ( )
[ ]
[ ]
tsztu
1ii
s,uN
1i
i
v
1ii
2
i
i1i-­‐i
eSS
e~
S
S
eSS
s,uN~v
	
  vSln	
  	
  Sln
2
i
Δ⋅⋅+⋅
−
−
−
⋅=
⋅=
+=
69
[ ]
[ ]
[ ]
[ ]2
εii1i-­‐i
2
εii1i-­‐i
1i-­‐i
2
εii1i-­‐i
s0,N~ε	
  	
  	
  	
  	
  	
  εSS
s0,IID~ε	
  	
  	
  	
  	
  	
  εSS
SSE	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
s0,~ε	
  	
  	
  	
  	
  	
  εSS
+=
+=
=
+=
( ) ( )
[ ]
( ) ( )
( )[ ] ( )
Δtσz	
  
tt
tt
1i-­‐1-­‐ni
i
1ii
1ii
SlnSlnE
tszSlnSln
1,0N~z	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
nszSlnSln
⋅⋅
+
=
Δ⋅⋅+=
⋅⋅+=
−
−
Generally
Rate
Periodic	
  
mean	
  
Annual	
  
mean
Annual	
  
standard	
  
deviation
Period	
  
standard	
  
deviation
Rate	
  
pdf
a α
g γ
v u µ s σ Normal
d	
  =	
  SD(r)	
  =	
  SD(1+r)
r d δ Log	
  
normal
70
[ ]
[ ]
tΔBzSS
	
  tΔB	
  	
  ,0N~ε	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
tttΔ	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  tΔ	
  	
  ,0N~ε	
  	
  	
  	
  	
  	
  εSS
i1-­‐ii
i
ii1-­‐ii
ttt
2
t
1i-­‐itttt
⋅⋅+=
⋅
−=+=
[ ]
[ ]
mszum
1i1mi
sm,umN
m
1i
v
2
m
1i
i
i
2
i
eSS
e~e
sm,umN~v
	
  	
  increment	
  d,multiperio
⋅⋅+⋅
−−+
⋅⋅
=
=
⋅=
⋅⋅
∏
∑
[ ] [ ]
it
1i
i
1ii
eS	
  	
  	
  	
  	
  
eSS
tzt
,N~sm,umN~
t
tzt
tt
tt
22
t
µ
Δ⋅σ⋅+Δ⋅µ
⋅=
⋅=
Δ⋅σ⋅+Δ⋅µ=µ
σµ⋅⋅µ
−
−
( )
ΔtσzΔtμ
S
S
ΔtσzΔtμ1SS
t
*
i
*
tt 1-­‐ii
⋅⋅+⋅=
Δ
⋅⋅+⋅+⋅=
ΔtzΔw
tttΔ
SSSΔ
1i-­‐i
tt 1-­‐ii
⋅=
−=
−=
71
( )
1)r(1g
1fg
)r(1f
f
S
S
)r(1	
  	
  
S
S
n
1
n
1i
in
n
1
nn
n
1i
in
n
0
n
n
1i
i
0
n
−⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=
−=
+=
=
+=
∏
∏
∏
=
=
=
n
s
u
)r(1lns
v
S
S
ln
n
n
n
1i
in
n
1i
i
0
n
=
+=
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∑
∑
=
=
Levy	
  Stable	
  Distribu-ons	
  	
  
72
Levy	
  Stable	
  Distribu-ons	
  	
  
73
74
Power	
  Law	
  	
  
¨  Power	
  law	
  with	
  rescaled	
  range	
  	
  
¨  Many	
  natural	
  phenomena	
  modeled	
  	
  
with	
  power	
  law	
  
¨  Nonlinear	
  feedback	
  	
  
¨  Hurst	
  exponent	
  is	
  the	
  slope	
  	
  
¨  Fractal	
  and	
  self	
  similar	
  	
  
¨  Complexity	
  	
  
¨  How	
  can	
  it	
  be	
  used	
  in	
  decision	
  	
  
making?	
  	
  
¨  The	
  rescaled	
  range	
  follows	
  a	
  	
  
power	
  law	
  
75
76
[ ]
[ ]
tΔBzSS
	
  tΔB	
  	
  ,0N~ε	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
tttΔ	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  tΔ	
  	
  ,0N~ε	
  	
  	
  	
  	
  	
  εSS
i1-­‐ii
i
ii1-­‐ii
ttt
2
t
1i-­‐itttt
⋅⋅+=
⋅
−=+=
Rate based process is Geometric
Brownian Motion
(GBM)
[ ]
[ ]
mszum
1i1mi
sm,umN
m
1i
v
2
m
1i
i
i
2
i
eSS
e~e
sm,umN~v
	
  	
  increment	
  d,multiperio
⋅⋅+⋅
−−+
⋅⋅
=
=
⋅=
⋅⋅
∏
∑[ ] [ ]
it
1i
i
1ii
eS	
  	
  	
  	
  	
  
eSS
tzt
,N~sm,umN~
t
tzt
tt
tt
22
t
µ
Δ⋅σ⋅+Δ⋅µ
⋅=
⋅=
Δ⋅σ⋅+Δ⋅µ=µ
σµ⋅⋅µ
−
−
( )
ΔtσzΔtμ
S
S
ΔtσzΔtμ1SS
t
*
i
*
tt 1-­‐ii
⋅⋅+⋅=
Δ
⋅⋅+⋅+⋅=
ΔtzΔw
tttΔ
SSSΔ
1i-­‐i
tt 1-­‐ii
⋅=
−=
−=
Appendix:	
  Exponen-als	
  and	
  Natural	
  Logs	
  	
  
77
( )
( )
dx
dy
y
1
dx
ln(y)d
e
dx
dy
dx
ed y
y
⋅=
⋅=
+++++=
⎟
⎠
⎞
⎜
⎝
⎛
+=
∞→
!4
x
!3
x
!2
x
x1e
n
1
1lime
432
x
n
n
xlndx
X
1
e
a
1
dxe xaxa
=
⋅=
∫
∫
⋅⋅
Appendix:	
  Exponen-als	
  and	
  Natural	
  Logs	
  	
  
78
Price	
  as	
  a	
  Stochas-c	
  Diff	
  Eqn	
  	
  
79
( )
( )1eSSd
1eSS
eSSS
e
S
SS
e
S
S
eSS
dwtd
tzt
t
tzt
tt
tzt
t
t
tzt
t
t
tzt
tt
i
1i
i
1i1i
i
1i
1i
i
1i
i
i
1ii
−⋅=
−⋅=Δ
⋅=+Δ
=
+Δ
=
⋅=
⋅σ+⋅µ
Δ⋅σ⋅+Δ⋅µ
Δ⋅σ⋅+Δ⋅µ
Δ⋅σ⋅+Δ⋅µ
Δ⋅σ⋅+Δ⋅µ
Δ⋅σ⋅+Δ⋅µ
−
−−
−
−
−
−
( )SfF =
80
( )[ ] ( )[ ] ...	
  1eS
S
F
2
1
1eS
S
F
dt
t
F
dF
...	
  dS
S
F
2
1
dS
S
F
dt
t
F
dF
2dwtd
2
2
dwtd
2
2
2
+−⋅
∂
∂
⋅+−⋅
∂
∂
+
∂
∂
=
+
∂
∂
⋅+
∂
∂
+
∂
∂
=
⋅σ+⋅µ⋅σ+⋅µ
( )
( )
( )
dx
dy
y
1
dx
dy
y
1
dx
ln(y)d
e
dx
yd
	
  
dx
ed
e
dx
dy
dx
ed
2
y
2
2
2
y2
y
y
⋅=⋅=
⋅=
⋅=
dx
dS
S
1
dx
dS
S
1
dx
	
  d
dx
dS
S
1
dx
ln(S)	
  d
2
⋅−=⎟
⎠
⎞
⎜
⎝
⎛
⋅
⋅=
( )
n
0
nu
0
tμ
0t
*
*
n*
nnu
n
0
nu
0
)a1(SeSeS]E[S
)a1ln(u
)a1ln(n
n
1
u
)a1(lnnu
)a1(e
)a1(SeS
**
*
*
+⋅=⋅=⋅=
+=
+⋅⋅=
+=⋅
+=
+⋅=⋅
⋅⋅
⋅
⋅
¨  Actually,	
  they	
  [power	
  laws]	
  aren’t	
  special	
  at	
  all.	
  They	
  can	
  arise	
  as	
  natural	
  consequences	
  of	
  
aggrega-on	
  of	
  high	
  variance	
  data.	
  You	
  know	
  from	
  sta-s-cs	
  that	
  the	
  Central	
  Limit	
  Theorem	
  
says	
  distribu-ons	
  of	
  data	
  with	
  limited	
  variability	
  tend	
  to	
  follow	
  the	
  Normal	
  (bell-­‐shaped,	
  or	
  
Gaussian)	
  curve.	
  There	
  is	
  a	
  less	
  well-­‐known	
  version	
  of	
  the	
  theorem	
  that	
  shows	
  aggrega-on	
  
of	
  high	
  (or	
  infinite)	
  variance	
  data	
  leads	
  to	
  power	
  laws.	
  Thus,	
  the	
  bell	
  curve	
  is	
  normal	
  for	
  low-­‐
variance	
  data	
  and	
  the	
  power	
  law	
  curve	
  is	
  normal	
  for	
  high-­‐variance	
  data.	
  In	
  many	
  cases,	
  I	
  
don’t	
  think	
  anything	
  deeper	
  than	
  that	
  is	
  going	
  on.	
  
81

More Related Content

Similar to Advanced financial models

Tables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docxTables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docx
mattinsonjanel
 
Statistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normalStatistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normal
Selvin Hadi
 

Similar to Advanced financial models (20)

Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Mpt pdf
Mpt pdfMpt pdf
Mpt pdf
 
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
 
Forecast2007
Forecast2007Forecast2007
Forecast2007
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
 
extreme times in finance heston model.ppt
extreme times in finance heston model.pptextreme times in finance heston model.ppt
extreme times in finance heston model.ppt
 
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
The Queue Length of a GI M 1 Queue with Set Up Period and Bernoulli Working V...
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
Lec11 logistic regression
Lec11 logistic regressionLec11 logistic regression
Lec11 logistic regression
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Tables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docxTables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docx
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
Econometric lec3.ppt
Econometric  lec3.pptEconometric  lec3.ppt
Econometric lec3.ppt
 
Statistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normalStatistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normal
 

More from David Keck (20)

Topic0 g
Topic0 gTopic0 g
Topic0 g
 
Topic0 f
Topic0 fTopic0 f
Topic0 f
 
Topic0 e
Topic0 eTopic0 e
Topic0 e
 
Topic0 d
Topic0 dTopic0 d
Topic0 d
 
Topic0 c
Topic0 cTopic0 c
Topic0 c
 
Topic0 b
Topic0 bTopic0 b
Topic0 b
 
Topic0 a
Topic0 aTopic0 a
Topic0 a
 
Market hypotheses 2016
Market hypotheses 2016Market hypotheses 2016
Market hypotheses 2016
 
Mpt2016 pdf
Mpt2016 pdfMpt2016 pdf
Mpt2016 pdf
 
Decision making criteria
Decision making criteriaDecision making criteria
Decision making criteria
 
Capm pdf
Capm pdfCapm pdf
Capm pdf
 
Equity venture capital part 1
Equity venture capital part 1Equity venture capital part 1
Equity venture capital part 1
 
Introduction2016
Introduction2016Introduction2016
Introduction2016
 
Valuation part 1
Valuation part 1Valuation part 1
Valuation part 1
 
Capital part 1
Capital part 1Capital part 1
Capital part 1
 
Capital part 2
Capital part 2Capital part 2
Capital part 2
 
Bonds part 3
Bonds part 3Bonds part 3
Bonds part 3
 
Bonds part 2
Bonds part 2Bonds part 2
Bonds part 2
 
Bonds part 1
Bonds part 1Bonds part 1
Bonds part 1
 
Rates part 2
Rates part 2Rates part 2
Rates part 2
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 

Advanced financial models

  • 1.       Advanced  Financial  Models     under  construc2on    
  • 2. Learning  Objec-ves     ¨  Lognormal  Distribu-ons     ¨  Rela-ons  between     ¤  Normal  &  lognormal   n  Pdfs   n  Sta-s-cs   ¤  Simple  and  natural  log  rates     2
  • 3. Hypotheses  and  Models     ¨  Explana-ons  of  phenomenon   ¤  Hypothesis   n  A  proposed  explana-on  for  a   phenomena   ¤  Law   n  Statement  of  a  cause  and  effect     without  explana-on   n  Newton’s  law  of  gravity     ¤  Theory   n  A  well-­‐established  explana-on  for   a  phenomenon   n  Einstein’s  theory  of  gravity   ¨  A  model  is  a  mathema-cal  or   physical  representa-on  of  a   phenomenon   ¤  The  “Bohr  atomic  model”     ¤  Newton’s  inverse  square  law  of   gravity       ¤  Einstein’s  Theory  of  General   Rela-vity         3 2 21 r mm GF ⋅ ⋅=
  • 4. SPX  Daily  Ln  Rate  Histogram:  Zoom   4
  • 5. SPX  Daily  Ln  Rate  Histogram:    More  Zoom   5 Again this histogram includes daily return rates from 1950 <-4.5% should happen less than once in a thousand years, but there have been 31 such days since 1950 or about once every two years -22.9% day should not have happened (Oct 19, 1987)
  • 6. SPX  Daily  Ln  Rate:  August  –  December  2008   6
  • 7. SPX  Daily  Ln  Rate:  Mean   7 -­‐350% -­‐250% -­‐150% -­‐50% 50% 150% 250% 1/5/51 11/9/57 9/13/64 7/19/71 5/23/78 3/27/85 1/30/92 12/4/98 10/8/05 Annualized  mean   22  day  annualized  tailing  mean   252  day  annualized  tailing  mean   Long  term  annualized  tailing  mean  
  • 8. SPX  Daily  Ln  Rate:  Mean   8 -­‐80% -­‐60% -­‐40% -­‐20% 0% 20% 40% 60% 80% 1/2/90 3/12/92 5/21/94 7/29/96 10/7/98 12/15/00 2/23/03 5/3/05 7/12/07 9/19/09 Zoom  in  on  Annualized  mean   252  day  annualized  tailing  mean   Long  term  annualized  tailing  mean  
  • 9. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1/3/1950 3/22/1958 6/8/1966 8/25/1974 11/11/1982 1/28/1991 4/16/1999 7/3/2007 SPX  Daily  Ln  Rate:  Standard  Devia-on     9 Annualized  standard  devia-ons  (‘vola-lity’)   22  day  annualized  trailing  vola-lity   252  day  annualized  trailing  vola-lity   Long  term  annualized  trailing  vola-lity    
  • 10. 0% 5% 10% 15% 20% 25% 30% 1/2/1990 9/28/1992 6/25/1995 3/21/1998 12/15/2000 9/11/2003 6/7/2006 SPX  Daily  Ln  Rate:  Standard  Devia-on     10 Zoom  in  on  Annualized  standard  devia-ons  (‘vola-lity’)   252  day  annualized  trailing  vola-lity   Long  term  annualized  trailing  vola-lity    
  • 11. SPX  Daily  Ln  Rate:  Autocorrela-on  Cluster   11
  • 12. SPX  Daily  Ln  Rate:  Autocorrelogram     12 Natural  log  daily  return  rates  for  SPX,  v     1950  –  2011   15471  days     Rates  do  look  rather  uncorrelated      
  • 13. SPX  Daily  Ln  Rate:  Autocorrelogram     13 Natural  log  daily  de-­‐trended  squares  of  return  rates   (variance)    for  SPX,  (v-­‐u)2   1950  –  2011    15471  days     There  is  some  posi-ve  autocorrela-on  (persistence)     Might  even  be  greater  persistence  over  shorter  periods  
  • 14. SPX  Daily  Ln  Rate:  Histogram  of  Annualized   Daily  Variance   14 Histogram  of  Annualized  Daily  Variance  
  • 15. SPX:  Annual  Accumula-on  of  Daily  Returns   15 10,000  annual  sums  of  252  day   (1  year)  con-guous  return  rates   randomly  selected  from  1950  to   2011     This  histogram  doesn’t  look   normal  at  all  as  the  addi-ve  CLT   would  indicate     So  the  rates  are  not  IID/  FV  
  • 16. SPX:  Ln  Rate  Q-­‐Q  Plot   16 A  Q-­‐Q  plot  compares  the   measured  rates  to  ideal  normal   rates  from  measured  mean  and   variance  
  • 17. Natural  Log  Rate  –  More  Tests   ¨  Jarque  Bera  normality  test     ¤  JB  is  a  Chi  Squared  sta-s-c  with  2  dof     ¤  Normality  via  chi  squared  considera-on  of  s   skew,  S,  and  kurtosis,  K,  the  3rd  and  4th     moments  of  distribu-on  which  measure     asymmetry     17 440,657           4 3)(29.0600 1.05621 6 15471           4 3)(K S 6 n JB 2 2 2 2 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − +−= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − += JB                       (χ2   statistic)   If  normality  is   rejected,  what  is   the  probability  of  a   rejection  error   0.0000 100.00% 4.6051 10.00% 5.9914 5.00% 9.2103 1.00% 10.0000 0.67% 15.0000 0.06% 20.0000 0.00% 25.0000 0.00% 30.0000 0.00% 35.0000 0.00% 40.0000 0.00% 45.0000 0.00% 50.0000 0.00% So  there  is  ~0%  probability  of  incorrectly  rejec-ng  the  normal  hypothesis  
  • 18. Natural  Log  Rate  –  Tests  For  Normality     18
  • 19. Stock  Return  Rate  Summary   ¨  Historical  stock  return  rates,  r  and  v,  are  characterized  by     ¤  Leptokurtosis   n  Fat  or  heavy  tails:  more  extreme  events  than  ‘normal’   n  More  return  rates  near  the  mean  than  ‘normal’   ¤  Nega-ve  skew   n  More  extreme  downside  events  than  upside     ¨  Dependence  in  return  rate  vola-lity     ¤  Rate  vola-lity  clustering,  short  term  persistence  then  reversion  to  mean   ¨  Less  frequent  sampling  e.g.,  weekly  and  monthly  would  show  some   smoothing,  but  s-ll  not  normal     ¤  However,  quarterly  or  annual  sampling  would  ignore  important  rate  of   return  informa-on     19
  • 20. Lognormal  Pdf   20 The  lognormal  pdf  is   asymmetric,  is  not  nega-ve,   over  -me  the  mean,  mode,   and  median  drii  further   apart,  and  the  distribu-on   skews  more  posi-vely.          
  • 21. Lognormal  Pdf   21   0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 Mode       Median       Mean  (expected)    
  • 22. 22 ( ) ( ) ∞>> ⋅⋅ = − ⋅ − −    x      0 e π2σx 1 σ  μ,  |x  f 1s,uNL~r                       σ2 μ)(lnx x 2 2 2 ( ) ( ) ∞>>∞ ⋅ = ⋅ − − x    -­‐ e π2σ 1 σ  μ,  |x  f s,uN~v                       σ2 μ)(x x 2 2 2 u  is  mean,  median,  and  mode     The  parameters  is  the  normal  pdf   above  are  also  the  sta-s-cs  –  the   mean  and    variance   The  mean,  mode,  and  median  are   all  different       The  parameters  is  the  lognormal   pdf  are  the  same  as  for  the  normal   pdf,  but  they  are  not  the  sta-s-cs,   not  the  mean  or  variance    
  • 23.     ¨  Why  simple  returns  can’t  really  be  normal   ¤  Simple  returns  are  compounded  over  -me  increments,  but   normal  random  variables  are  mul-plied   ¤  (1+r)n   ¤  u·∙n   23 ( )r1lnv +=  ... 3 r 2 r r)r1ln(v )1x(                                                ... 3 x 2 x x)x1ln( 32 32 −+−=+= −≠−+−=+
  • 24. Variance  of  Simple  and  Log  Returns   24 [ ] [ ] [ ] [ ] ( ) ( ) ( ) [ ]( ) ( )                                                                                                                                           1er1E                       1ee                         1ee                           1ee                         ee                         ee                       xExE                       dr1VarrVar 2 2 2 2 2 22 22 222 s2 s 2 2 s u s2 s u2 ssu2 s2us2u2 2 2 s u 2 s2 u2 22 2 −⋅+= −⋅ ⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜ ⎝ ⎛ = −⋅= −= −= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −= −= =+= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ +⋅ +⋅ +⋅+⋅ + ⋅ +⋅ [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) 1)s      1,(a                                  sd 1ed d1e d1lns 1)(a                          1    a1 a1 d 1lns 1ea1               1er1E    d   22 s2 2s 22 2 2 2 2 s2 s22 2 2 2 2 <<<<≈≈ −≈ +≈ +≈ <<≈+ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + += −⋅+= −⋅+= ( ) [ ] [ ] [ ] [ ] 2 2 22 s2u22 2 s u 2 sk uk k 2 v e        xE e            xE                  e    xE   su,NL~                      er1X ⋅+⋅ + ⋅ +⋅ = = = =+=
  • 25. Variance  of  Simple  and  Log  Returns   25 Future  Value  Factor:  1+r  =  ev [ ] ( )  1eer1var 22 ssu2 −⋅=+ +⋅ [ ] * 2 u2 s u eer1E ≡=+ + [ ] u er1M =+
  • 26. 26 ( ) ( ) [ ] [ ] [ ] [ ] ( )[ ] [ ] ondistributi  normal  log  for  Median                            er1MM[x]          ondistributi  lognormal  for  moment  2        er1E  xE ondistributi  normal  log  for  (mean)  moment  1                          er1E  xE ondistributi  normal  log  for  moment  k                                            exE          su,NL~        er1 u nds2u222 st2 s u th2 sk uk k 2v 2 2 22 =+= =+= =+= = =+ ⋅+⋅ + ⋅ +⋅
  • 27. Central  Limit  Theorem     27 ( ) ( )2n n n 1i i n 1i i0n s,uN~ n y u n y n v vSln)Sln()Sln( →= =Δ=− ∑ ∑ = = ( ) 1)x,x(NL~r g1f)r(1 fr1 S S n 1 n n 1 n 1i i n n 1i i 0 n − +→=⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + ≡+= ∏ ∏ = = Assume  that  n  is  large  and  r  and  v  are  IID/FV    
  • 28. 28   ( ) ( ) ( ) ∑∏ ∑∏ ∑∏ == == == =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +=⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +=⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + n 1i i n 1i v n 1i i n 1i v n 1i i n 1i i veln r1lneln r1lnr1ln i i n21 i vvv 0 n 1i v 0n n210 n 1i i0n e  ...e  e  S               eS    S )r(1....)r(1)r(1  S             )r(1S    S ⋅⋅⋅⋅= ⋅= +⋅⋅+⋅+⋅= +⋅= ∏ ∏ = = ( ) ( ) ( ) ( ) ( ) ( ) n210 n 1i i0n n210 n 1i i0n v...vvSln                     vSln    Sln )rln(1....)rln(1)rln(1Sln                       )rln(1Sln    Sln ++++= += +++++++= ++= ∑ ∑ = =
  • 29. Mean  Natural  Log  Return  Rates   29 Example:  v  is  distributed   uniformly  from  -­‐10%  to   +20%     Average  of  sums  of  vi  are   normal  (sum  of  n  rates)         ( )2 n 1i i s,uN~ n v∑=
  • 30. Simple  Future  Value  Factors     30 Example:  r  is  distributed   uniformly  from  -­‐10%  to  +20%   )x,x(NL~)r(1f n 1 n 1i i n 1 n ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ += ∏=
  • 31. Simple  Future  Value  Factors     31 ( ) )x,x(NL~r1f n 1i in ∏= += Example:  r  is  distributed  uniformly  from  -­‐10%  to  +20%    f  is  distributed  lognormal  
  • 32. We  did  plot  a  histogram  of  natural  return  rates,  v,  for  the  SPX.    It  did  have  the   general  appearance  of  normality.    But  a  Levy  stable  seems  like  a  bemer  fit,  but   has  disadvantages.      However,  the  typical  assump-on  in  finance  is  that  v  is   normally  distributed  which  has  a  number  of  advantages.         One  advantage  is  that  the  loca-on  sta-s-cs  are  iden-cal  –  mode,  median,  and   mean  –  it’s  a  symmetric     32  v)r1(ln                      e)r1(  v)r1(ln                    e)r1( v ii v i i =+=+ =+=+ For  stocks  or  other  financial  assets,  so  far  there  has  been  no  assump-on  on   the  distribu-ons  of  v  and  r  other  than  being  IID/FV     But  the  rela-onship  between  r  and  v  has  been  defined  as     ( ) ( )2 s,uN~r1lnv +=
  • 33. 33 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1s,uNL1e~r s,uNLe~r1 s,uN~r1lnv 2s,uN 2s,uN 2 2 2 −≡− ≡+ += Another  advantage  is  the  normal  distribu-on  scale  linearly  in  -me.    The  mean   driis  to  the  right  while  the  variance  increases.     ( )2 sn,unN~vn ⋅⋅⋅ Another  advantage  is  the  normal  distribu-on  scale  linearly  in  -me.    The  mean   driis  to  the  right  while  the  variance  increases.      Yet  another  advantage  is  the   rela-on  between  the  normal  and  lognormal  distribu-ons  is  similar  to  the   rela-on  between  the  na-ral  log  rate  and  simple  rate     Therefore  the  simple  rate,  r,  is  lognormal  under  assump-on  that  the  natural   log  rate  is  lognormal  
  • 34. 34  
  • 35. 35  
  • 36. Natural  Log  Rate  Autocorrelogram     36 Natural  log  daily  absolute  return  rates  for  SPX,  |v|   Daily  range       1950  –  2011   15471  days  
  • 37. Common  PDFs  in  Finance     ¨  Gaussian  /  Normal   ¤  IID  /  FV,  two  parameters     ¤  CLT  for  sums  of  IID/FV  random   variables   ¤  Special  case  Levy  stable  and  ellip-c   distribu-ons       ¨  Ellip-c     ¤  IID  /  FV,  two  parameters     ¤  unimodal,  no  skew,  no  kurtosis  other   than  Gaussian  case   ¤  Linear  correla-on  defines  linear   dependence   ¤  Used  in  MPT  and  CAPM   ¤  Includes    Gauss,  Cauchy,  t-­‐distr,   Laplace,  symmetric  Levy  Stable     ¨  Lognormal   ¤  IID  /  FV   ¤  CLT  for  products  of  IID/FV  random   variables   ¤  Posi-ve     ¤  Mode,  median,  mean  non-­‐coincident     ¨  Levy  stable   ¤  IID,  not  generally  FV,  4  parameters     ¤  Unimodal,  skew,  kurtosis  other  than   Gaussian  case   ¤  Central  limit  theorem  for  IID  and  stable   but  not  FV  random  variables  converges   to  a  Levy  stable  distribu-on     ¤  Includes  Gaussian,  Cauchy,  Levy   37
  • 38. More  on  Covar  &  Corre   38 [ ] [ ] [ ] [ ]                                                     yExEyxEy,xCov ⋅−⋅=
  • 39. Monthly  Idealized  PDFs  From  SPX  History     39 ln(1+r)  =  v   Normally   distributed     N(u,s2)         u  and  s2  are   normal  pdf   parameters  and   sta-s-cs  -­‐  mean   and  variance     (1+r)=  ev    Lognormally   distributed      NL(u,s2)       Same  pdf  parameters,   but  different  mean  and   variance        
  • 40. Monthly  Idealized  PDFs  From  SPX  History     40 Future  value   factor,  (1+r)  =  ev   lei  shiied  by  -­‐1,  r      
  • 41. Return  Rate  PDFs:    Sta-s-cs  Increase  With  Time   41   -­‐75% -­‐50% -­‐25% 0% 25% 50% 75% 100% 125% 150% 175% 200% 225% 250% 275% 300% Natural  log  rates   (v)  are  assumed   normal.    The  mean   and  variance  of  a   normal  distribu-on   scale  linear  in  -me     The  future  value  factors  (1+r)  are   assumed  log  normally  distributed.     The  mean  and  variance  do  not  scale   linearly  in  -me.  
  • 42. 42   Future  Value  Factor:  1+r  =  ev [ ] ( )  1eer1var 22 ssu2 −⋅=+ +⋅ [ ] * 2 u2 s u eer1E ≡=+ + [ ] u er1M =+
  • 43. 43   [ ] [ ] [ ] [ ] ( ) ( ) ( ) [ ]( ) ( )                                                                                                                                             1er1E                       1ee                         1ee                           ondistributi  normal  logof    Variance        1ee                         ee                         ee                       xExEr1VarrVar 2 2 2 2 2 22 22 222 s2 s 2 2 s u s2 s u2 ssu2 s2us2u2 2 2 s u 2 s2 u2 22 −⋅+= −⋅ ⎟⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎜ ⎝ ⎛ = −⋅= −= −= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −= −=+= ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ +⋅ +⋅ +⋅+⋅ + ⋅ +⋅
  • 44. 44
  • 45. -­‐1.25 -­‐1.00 -­‐0.75 -­‐0.50 -­‐0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 Idealized  PDFs  for  36  Months     45   Forecast  36  month   natural  log  rate  of   return     normally  distributed     N(36·∙u,  36·∙s2)       Forecast  36   month  future   value  factor     lognormally   distributed     Forecast  36  month  simple  rate  of  return       lognormally  distributed    
  • 46. Lognormal  Distribu-on   46 ( ) ( ) [ ] [ ] [ ] [ ] ( )[ ] [ ] ondistributi  normal  log  for  Median                            er1MM[x]          ondistributi  lognormal  for  moment  2        er1E  xE ondistributi  normal  log  for  (mean)  moment  1                          er1E  xE ondistributi  normal  log  for  moment  k                                            exE          su,NL~        er1 u nds2u222 st2 s u th2 sk uk k 2v 2 2 22 =+= =+= =+= = =+ ⋅+⋅ + ⋅ +⋅ ( ) ( ) ( ) ( ) ( ) ( ) n210 n 1i i0n n210 n 1i i0n v...vvSln                     vSln    Sln )rln(1....)rln(1)rln(1Sln                       )rln(1Sln    Sln ++++= += +++++++= ++= ∑ ∑ = =     S SS r )r1(SS rate  return  Simple 1i 1ii i i1ii − − − − = +⋅= ( ) ( ) )r1ln(           SlnSln S S lnv eSS rate  return  log  Natural i 1ii 1i i i v 1ii i += −=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = ⋅= − − −
  • 47. Lognormal  Distribu-on   47 ( ) ( ) [ ] [ ] [ ] [ ] ( )[ ] [ ] ondistributi  normal  log  for  Median                            er1MM[x]          ondistributi  lognormal  for  moment  2        er1E  xE ondistributi  normal  log  for  (mean)  moment  1                          er1E  xE ondistributi  normal  log  for  moment  k                                            exE          su,NL~        er1 u nds2u222 st2 s u th2 sk uk k 2v 2 2 22 =+= =+= =+= = =+ ⋅+⋅ + ⋅ +⋅
  • 48. GARCH  Time  Series     ¨  Similar  to  historic  vola-lity     ¤  Simple  condi-onal  dependence  in  the  second  moment  (vola-lity)     n  Vola-lity  clustering    or  persistence     ¨  The  GARCH  vola-lity  has  three  contribu-ons   ¤  Long  term  average  vola-lity,  s2,  so  there’s  a  reversion  of  the  mean   ¤  Short  term  dependence  on  recent  square  of  return  rate,  v2       ¤  Short  term  dependence  on  recent  Garch  vola-lity,  h   ¨  To  Do   n  Is  there  a  probability  distribu-on?  Maybe  not       n  Plot  the  resul-ng  rates  and  look  for  fat  tails     n  So  it  looks  good  historically,  but  how  can  it  be  used  in  decision  making  ?     48
  • 49. GARCH  Time  Series   ¨  The  GARCH(1,1)  vola-lity  model  with  the  natural  log  rate  process   model  vola-lity  has  three  contribu-ons   49 ( ) 0βλ,α, 1βαγ β  ,α  ,γ      :weights hβvαsβα1         hβvαsγh zh  uv   1i 2 1i 2 1i 2 1i 2 i iii > =++ ⋅+⋅+⋅−−= ⋅+⋅+⋅= ⋅+= −− −− The    Gaussian  rate  process  is     vi  =  u  +  s  ·∙zi     s  is  the  (tradi-onal)  long  term   average  standard  devia-on   z  is  the  standard  normal  random   variable   h  is  the  Garch  variance     v  is  the  nat  log  return  rates       Example:   α = .85 , β = .1 , γ = .05
  • 50. GARCH  Time  Series   50 Single  simulated  GARCH(1,1)  vola-lity   for  15,461  days    
  • 53. Adendum:  Nat  Log  &  Exp   53   ( ) ( ) ( ) y+xyxyxyx 32 32 x )xln( e  =  e  e                    )(e  =  e    ... 3 1x 2 1x 1x)xln( )1x(                                                ... 3 x 2 x x)x1ln( x 1 )xln( dx d )yln()xln( y x ln )yln()xln()yxln( x)eln( )0x(                                                                                                              xe ⋅ − − + − −−= −≠−+−=+ = −=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +=⋅ = >= ⋅
  • 54. Addendum   54   Rate Periodic   mean   Annual   mean Periodic   standard   deviation Annual   standard   deviation a α g γ vi u µ s σ d  =  Var(r)  =  Var(1+r) ri d δ
  • 55. Addendum   55          dwσdt 2 σ μ              dln(S) 2 * ⋅+⋅⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=( ) ( ) Tσ Tσ.5r K S ln d Tσ Tσ.5r K S ln d 2*0 2 2*0 1 ⋅ ⋅⋅−+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = ⋅ ⋅⋅++⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = [ ] ( )  1eer1var 22 ssu22 −⋅=+=δ +⋅ [ ] * 2 u2 s u eer1E ≡=+ + ( ) ( ) [ ] [ ] tsz 1ii s,0N 1i i v 1ii 2 i i1i-­‐i eSS e~ S S eSS s,0N~v  vSln    Sln 2 i Δ⋅⋅ − − − ⋅= ⋅= += tsz i i tsz i1ii i )rln(1v ii ii i ii er )r(1e )r(1SS )r(1ee tszv )rln(1        v   Δ⋅⋅ Δ⋅⋅ − + = += +⋅= +== Δ⋅⋅= +=
  • 56. Addendum     56   ( ) [ ] [ ] ( ) ( ) ( ) −+−=+ + Δ⋅⋅ + Δ⋅⋅ +Δ⋅⋅+== −+−=+ ++++= =⋅δ⋅+ =+≡δ ⋅δ⋅+⋅= ⋅δ⋅== Δ⋅⋅ Δ⋅⋅ 3 r 2 r r)r1ln( ... 6 tsz 2 tsz tsz1ee 3 x 2 x x)x1ln( 6 x 2 x x1e e  ΔtZ1 rSDr)(1SD  ΔtZ1SS ΔtZ?r 3 i 2 i ii 3 i 2 i i tszv 32 32 x tsz i itt ii ii 1-­‐ii Not  yet  ready  to  related  normal  and   lognormal  distribu-ons.    Need   lognormal  sta-s-cs  and  Ito’s  Lemma   Normal    Natural  log  rates    Natural  log  prices   Lognormal    Simple  rates    Future  value  factors    Prices  
  • 57. Levy  Stable  Distribu-on   ¤  Bemer  fits  historical  rates  of  return   n  Can  model  Leptokurtosis  and  skew   n  Constant  parameters   n  Generalized  Central  Limit  Theorem     n  Normal  distribu-on  is  a  special  case     n  Problems  included   n  Infinite  variance     n  Variance  cant  be  used  as  a  measure  of  risk  or  vola-lity     n  CAPM,  MPT,  B-­‐S     n  PDF  models  not  applicable     n  Generally  no  analy-c  representa-on     ¤  To  Do     n  Fit  data  to  a  distribu-on  and  graph     n  Why  does  FMH  without  IID  invoke  this  model     n  How  does  it  relate  to  power  law  model  (Has  an  α  >  2  ?)     57
  • 58. Levy  Stable  Distribu-ons     58 [ ] ( ) ( ) parameter  location  ,μ parameter  scale  0,c parameter  skewness  1,1β parameter  stability  (0,2]α Parameters ∞∞−∈ ∞∈ −∈ ∈ undefined  otherwise2,α  when  0  :kurtosis  excess undefined  otherwise2,α  when  0:skew infinite  otherwise2,α  when  c2    :variance undefined  otherwise  1,α  whenμ      :mean 2 = = =⋅ >
  • 59. Levy  Stable  Distribu-ons     ¨  DJIA:  α  =  1.5958  β  =  -­‐.0995  µ  =  .0002  σ  =  .0056     ¤  (5/26/1896  –  1/16/2004  daily)   ¨  SPX  =  α  =  1.6735  β  =  .1064  µ  =  -­‐.0002  σ  =  .0049       ¤  (3/1/1950  –  5/27.2005  daily)             ¨  Only  three  sets  of  parameters  result  in  closed  form       ¤  Gaussian   n  Actually  two  of  the  four  parameters  are  zero  (?)  or  reduced  to  different  2  ?     n  Finite  variance     ¤  Levy   ¤  Cauchy   59 [ ] ( ) ( ) parameter  location  ,μ parameter  scale  0,c parameter  skewness  1,1β parameter  stability  (0,2]α Parameters ∞∞−∈ ∞∈ −∈ ∈
  • 60. Power  Law     60
  • 61. Power  Law  Method   ¨  Coopera-on,  herding,  cri-cality     ¤  How  Nature  Works  –  Bak   ¤  Ubiquity  –  Buchanan     ¨  The  ubiquity  of  scale-­‐free  behavior   and  self-­‐organiza-on  in  Nature  led   Bak,  Tang  and  Wiesenfeld  (BTW)  to   coin  the  term  Self-­‐Organized   Cri-cality  (SOC)  to  explain  the   emergence  of  complexity  in   dynamical  systems  with  many   interac-ng  degrees  of  freedom   without  the  presence  of  any  external   agent  ;  SOC  was  devised  to  be  a  sort   of  supergeneral  theory  of  complexity.   61
  • 62. Power  Law     ¨  Confusion  based  on  Fractal  Market  Hypothesis:    Is  it  stable  or  power  law??   ¨  Hurst  soiware  shows  a  random  series  to  be  persistent  ??     ¨  Hurst  exponent   ¤  0.5  is  Brownian    t1/2        √t   ¤  0  <  H  <  0.5  :  an--­‐persistent,  mean  rever-ng     ¤  .5  <  H  ≤  1.0    :  persistent     ¨  Stability  parameter   ¤  α  =  1  /  H,    example  Gaussian:  α =  2,  H  =  .5   ¨  Correla-on  (?)    C  =  22H-­‐1  –  1     ¨  Example   ¤  SPX:  3/1/1950  –  5/27/2005  daily   n     α  =  1.6735  β  =  .1064  µ  =  -­‐.0002  σ  =  .0049     n   H  =  .5976        C=  .1448   ¤  SPX:    1/3/1950  –  6/24/2011    daily     n  H=  .562    α=  1.779        C=  .090   62
  • 63. Reference:  Nat  Log  &  Exp   63   )1x(  ... 3 x 2 x x)x1ln( x 1 )xln( dx d )yln()xln( y x ln )yln()xln()yxln( x)eln( )0x(                                      xe 32 x )xln( −≠−+−=+ = −=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +=⋅ = >= ( ) ( ) ( ) ++++= ⋅ − − + − −−= ⋅ 6 x 2 x x1e e  =  e  e                    )(e  =  e    ... 3 1x 2 1x 1x)xln( 32 x y+xyxyxyx 32 Rate Periodic   mean   Annual   mean Annual   standard   deviation Period   standard   deviation Rate   pdf a α g γ vi u µ s σ Normal d  =  SD(r)  =  SD(1+r) ri d δ Log   normal
  • 64. Related  Concepts     ¨  Expected  Rate  of  Return  On  Equity   ¤  CAPM  requires  that  the  return  rate  is  normally  distributed  with  a  trend     ¤  Ordinary  least  squares           ¨  Theore-cal  basis  for  r  being  an  independent  random  variable   ¤  Efficient  Market  Hypothesis   ¨  Theore-cal  basis  for  r  being  an  independent  random  variable  with  a  trend   ¤  Ra-onal  Market  Hypothesis         64 ( ) ( ) ( ) ( )FMFEE iE1ii E1ii rrβr  k    r    zsr1SS                  r1SSE −⋅+== ⋅++⋅= +⋅= − −
  • 65. Geometric  Brownian  Mo-on   65 ( ) ( ) [ ] [ ] tsz 1ii s,0N 1i i v 1ii 2 i i1i-­‐i eSS e~ S S eSS s,0N~v  vSln    Sln 2 i Δ⋅⋅ − − − ⋅= ⋅= += tsz i i tsz i1ii i )rln(1v ii ii i ii er )r(1e )r(1SS )r(1ee tszv )rln(1        v   Δ⋅⋅ Δ⋅⋅ − + = += +⋅= +== Δ⋅⋅= +=        dwσdt 2 σ μ              dln(S) 2 * ⋅+⋅⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=( ) ( ) Tσ Tσ.5r K S ln d Tσ Tσ.5r K S ln d 2*0 2 2*0 1 ⋅ ⋅⋅−+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = ⋅ ⋅⋅++⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = [ ] ( )  1eer1var 22 ssu22 −⋅=+=δ +⋅ [ ] * 2 u2 s u eer1E ≡=+ +
  • 66. Geometric  Brownian  Mo-on   66 ( ) [ ] [ ] ( ) ( ) ( ) ... 6 tsz 2 tsz tsz1ee 3 x 2 x x)x1ln( 6 x 2 x x1e e  ΔtZ1 rSDr)(1SD  ΔtZ1SS ΔtZ?r 3 i 2 i i tszv 32 32 x tsz i itt ii ii 1-­‐ii + Δ⋅⋅ + Δ⋅⋅ +Δ⋅⋅+== −+−=+ ++++= =⋅δ⋅+ =+≡δ ⋅δ⋅+⋅= ⋅δ⋅== Δ⋅⋅ Δ⋅⋅ Not  yet  ready  to  related  normal  and   lognormal  distribu-ons.    Need   lognormal  sta-s-cs  and  Ito’s  Lemma   Normal    Natural  log  rates    Natural  log  prices   Lognormal    Simple  rates    Future  value  factors    Prices   u,  s        µ, σ r,  d        α, δ g,              γ,
  • 67. Alterna-ves     ¨  Fat  Tail  Models     ¤  Power  law  not  exponen-al  tails     ¤  Leptokurtosis,  finite  variance  ?     ¤  Examples     n  Student  t  –  no  skew     n  Levy  stable  –  skew     ¨  Non  IID  Models  –  non-­‐sta-onary  process     ¤  Correla-on  in  rate  vola-lity,  but  not  in  rate,  so  s-ll  ‘unpredictable’     ARCH  models     ¤  Used  with  normal  or  other  distribu-on   67
  • 68. Addendum   68 ( ) ( ) ( ) ( ) ( )SlnSlnSln-­‐Sln eSS Δtσz        Δt 2 σ μ        1SS Δtσz        ΔtμSlnSln 1-­‐ii it 2 ii i1-­‐ii i1-­‐ii tt Δtσz    Δt 2 σ μ 1tt t 2 tt ttt Δ≠Δ= = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⋅⋅+⋅⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ++⋅= ⋅⋅+⋅+= ⋅⋅+⋅⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⋅− ( ) ( ) nszunSlnSln 1i-­‐1-­‐ni ⋅⋅+⋅+=+ ( ) ( ) [ ] [ ] tsztu 1ii s,uN 1i i v 1ii 2 i i1i-­‐i eSS e~ S S eSS s,uN~v  vSln    Sln 2 i Δ⋅⋅+⋅ − − − ⋅= ⋅= +=
  • 69. 69 [ ] [ ] [ ] [ ]2 εii1i-­‐i 2 εii1i-­‐i 1i-­‐i 2 εii1i-­‐i s0,N~ε            εSS s0,IID~ε            εSS SSE                                                     s0,~ε            εSS += += = += ( ) ( ) [ ] ( ) ( ) ( )[ ] ( ) Δtσz   tt tt 1i-­‐1-­‐ni i 1ii 1ii SlnSlnE tszSlnSln 1,0N~z                                                       nszSlnSln ⋅⋅ + = Δ⋅⋅+= ⋅⋅+= − − Generally Rate Periodic   mean   Annual   mean Annual   standard   deviation Period   standard   deviation Rate   pdf a α g γ v u µ s σ Normal d  =  SD(r)  =  SD(1+r) r d δ Log   normal
  • 70. 70 [ ] [ ] tΔBzSS  tΔB    ,0N~ε                                                           tttΔ                            tΔ    ,0N~ε            εSS i1-­‐ii i ii1-­‐ii ttt 2 t 1i-­‐itttt ⋅⋅+= ⋅ −=+= [ ] [ ] mszum 1i1mi sm,umN m 1i v 2 m 1i i i 2 i eSS e~e sm,umN~v    increment  d,multiperio ⋅⋅+⋅ −−+ ⋅⋅ = = ⋅= ⋅⋅ ∏ ∑ [ ] [ ] it 1i i 1ii eS           eSS tzt ,N~sm,umN~ t tzt tt tt 22 t µ Δ⋅σ⋅+Δ⋅µ ⋅= ⋅= Δ⋅σ⋅+Δ⋅µ=µ σµ⋅⋅µ − − ( ) ΔtσzΔtμ S S ΔtσzΔtμ1SS t * i * tt 1-­‐ii ⋅⋅+⋅= Δ ⋅⋅+⋅+⋅= ΔtzΔw tttΔ SSSΔ 1i-­‐i tt 1-­‐ii ⋅= −= −=
  • 71. 71 ( ) 1)r(1g 1fg )r(1f f S S )r(1     S S n 1 n 1i in n 1 nn n 1i in n 0 n n 1i i 0 n −⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ += −= += = += ∏ ∏ ∏ = = = n s u )r(1lns v S S ln n n n 1i in n 1i i 0 n = += =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∑ ∑ = =
  • 74. 74
  • 75. Power  Law     ¨  Power  law  with  rescaled  range     ¨  Many  natural  phenomena  modeled     with  power  law   ¨  Nonlinear  feedback     ¨  Hurst  exponent  is  the  slope     ¨  Fractal  and  self  similar     ¨  Complexity     ¨  How  can  it  be  used  in  decision     making?     ¨  The  rescaled  range  follows  a     power  law   75
  • 76. 76 [ ] [ ] tΔBzSS  tΔB    ,0N~ε                                                           tttΔ                            tΔ    ,0N~ε            εSS i1-­‐ii i ii1-­‐ii ttt 2 t 1i-­‐itttt ⋅⋅+= ⋅ −=+= Rate based process is Geometric Brownian Motion (GBM) [ ] [ ] mszum 1i1mi sm,umN m 1i v 2 m 1i i i 2 i eSS e~e sm,umN~v    increment  d,multiperio ⋅⋅+⋅ −−+ ⋅⋅ = = ⋅= ⋅⋅ ∏ ∑[ ] [ ] it 1i i 1ii eS           eSS tzt ,N~sm,umN~ t tzt tt tt 22 t µ Δ⋅σ⋅+Δ⋅µ ⋅= ⋅= Δ⋅σ⋅+Δ⋅µ=µ σµ⋅⋅µ − − ( ) ΔtσzΔtμ S S ΔtσzΔtμ1SS t * i * tt 1-­‐ii ⋅⋅+⋅= Δ ⋅⋅+⋅+⋅= ΔtzΔw tttΔ SSSΔ 1i-­‐i tt 1-­‐ii ⋅= −= −=
  • 77. Appendix:  Exponen-als  and  Natural  Logs     77 ( ) ( ) dx dy y 1 dx ln(y)d e dx dy dx ed y y ⋅= ⋅= +++++= ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ += ∞→ !4 x !3 x !2 x x1e n 1 1lime 432 x n n xlndx X 1 e a 1 dxe xaxa = ⋅= ∫ ∫ ⋅⋅
  • 78. Appendix:  Exponen-als  and  Natural  Logs     78
  • 79. Price  as  a  Stochas-c  Diff  Eqn     79 ( ) ( )1eSSd 1eSS eSSS e S SS e S S eSS dwtd tzt t tzt tt tzt t t tzt t t tzt tt i 1i i 1i1i i 1i 1i i 1i i i 1ii −⋅= −⋅=Δ ⋅=+Δ = +Δ = ⋅= ⋅σ+⋅µ Δ⋅σ⋅+Δ⋅µ Δ⋅σ⋅+Δ⋅µ Δ⋅σ⋅+Δ⋅µ Δ⋅σ⋅+Δ⋅µ Δ⋅σ⋅+Δ⋅µ − −− − − − − ( )SfF =
  • 80. 80 ( )[ ] ( )[ ] ...  1eS S F 2 1 1eS S F dt t F dF ...  dS S F 2 1 dS S F dt t F dF 2dwtd 2 2 dwtd 2 2 2 +−⋅ ∂ ∂ ⋅+−⋅ ∂ ∂ + ∂ ∂ = + ∂ ∂ ⋅+ ∂ ∂ + ∂ ∂ = ⋅σ+⋅µ⋅σ+⋅µ ( ) ( ) ( ) dx dy y 1 dx dy y 1 dx ln(y)d e dx yd   dx ed e dx dy dx ed 2 y 2 2 2 y2 y y ⋅=⋅= ⋅= ⋅= dx dS S 1 dx dS S 1 dx  d dx dS S 1 dx ln(S)  d 2 ⋅−=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⋅ ⋅= ( ) n 0 nu 0 tμ 0t * * n* nnu n 0 nu 0 )a1(SeSeS]E[S )a1ln(u )a1ln(n n 1 u )a1(lnnu )a1(e )a1(SeS ** * * +⋅=⋅=⋅= += +⋅⋅= +=⋅ += +⋅=⋅ ⋅⋅ ⋅ ⋅
  • 81. ¨  Actually,  they  [power  laws]  aren’t  special  at  all.  They  can  arise  as  natural  consequences  of   aggrega-on  of  high  variance  data.  You  know  from  sta-s-cs  that  the  Central  Limit  Theorem   says  distribu-ons  of  data  with  limited  variability  tend  to  follow  the  Normal  (bell-­‐shaped,  or   Gaussian)  curve.  There  is  a  less  well-­‐known  version  of  the  theorem  that  shows  aggrega-on   of  high  (or  infinite)  variance  data  leads  to  power  laws.  Thus,  the  bell  curve  is  normal  for  low-­‐ variance  data  and  the  power  law  curve  is  normal  for  high-­‐variance  data.  In  many  cases,  I   don’t  think  anything  deeper  than  that  is  going  on.   81