SlideShare a Scribd company logo
1 of 1
Download to read offline
Are	
  different	
  alleles	
  of	
  the	
  APETALA1	
  gene	
  responsible	
  for	
  differences	
  in	
  	
  
development	
  among	
  varie6es	
  of	
  Brassica	
  oleracea?	
  	
  
Daniel	
  Dorado	
  and	
  Marilyn	
  Cruz	
  Alvarez	
  	
  
	
  Department	
  of	
  Biological	
  Sciences,	
  Florida	
  Gulf	
  Coast	
  University,	
  	
  
10501	
  FGCU	
  Blvd.	
  South,	
  Fort	
  Myers,	
  Florida	
  	
  
Abstract	
  
	
  
Agriculture	
  is	
  one	
  of	
  the	
  most	
  important	
  developments	
  in	
  human	
  history	
  and	
  understanding	
  
the	
  influences	
  genes	
  have	
  over	
  crops	
  is	
  crucial.	
  Brassica	
  oleracea	
  is	
  an	
  important	
  agricultural	
  
plant	
  species	
  which	
  shows	
  many	
  differences	
  in	
  its	
  varie6es.	
  The	
  two	
  primary	
  varie6es	
  we	
  are	
  
focusing	
   on	
   are	
   cauliflower	
   and	
   Rbo.	
   Rbo	
   is	
   a	
   rapid	
   cycling	
   variety	
   and	
   flowers	
   normally,	
  
while	
  cauliflower	
  (B.	
  oleracea	
  var.	
  botry5s)	
  shows	
  an	
  arrest	
  in	
  flowering	
  development	
  and	
  
forms	
  an	
  edible	
  curd.	
  	
  
Currently	
   we	
   are	
   aNemp6ng	
   to	
   see	
   which	
   genes	
   are	
   responsible	
   for	
   the	
   developmental	
  
differences	
   between	
   cauliflower	
   and	
   Rbo.	
   Ini6ally	
   we	
   had	
   crossed	
   cauliflower	
   and	
   Rbo	
   to	
  
obtain	
   F1	
   and	
   F2	
   genera6ons.	
   The	
   F2	
   genera6on	
   resulted	
   in	
   segrega6ng	
   phenotypes	
   for	
  
traits	
  such	
  as	
  flowering	
  6me	
  and	
  number	
  of	
  flowers	
  produced.	
  The	
  APETALA1	
  (AP1)	
  gene	
  has	
  
been	
  shown	
  to	
  be	
  involved	
  in	
  flowering	
  in	
  many	
  species.	
  Our	
  hypothesis	
  is	
  that	
  differences	
  in	
  
alleles	
  of	
  the	
  AP1	
  gene	
  contribute	
  to	
  the	
  differences	
  in	
  phenotype	
  in	
  B.	
  oleracea.	
   	
  AP1	
  has	
  
three	
  copies	
  in	
  this	
  species,	
  two	
  of	
  which	
  have	
  been	
  shown	
  to	
  be	
  expressed:	
  AP1a	
  and	
  AP1c.	
  	
  
To	
  test	
  our	
  hypothesis	
  we	
  are	
  determining	
  the	
  genotype	
  for	
  the	
  AP1a	
  and	
  AP1c	
  alleles	
  of	
  the	
  
F2	
  plants	
  and	
  studying	
  any	
  correla6on	
  between	
  genotypic	
  and	
  phenotypic	
  differences.	
  To	
  
carry	
  out	
  this	
  analysis	
  we	
  first	
  need	
  to	
  determine	
  the	
  AP1	
  alleles	
  present	
  in	
  the	
  cauliflower	
  
and	
   Rbo	
   parents.	
   We	
   are	
   cloning	
   AP1a	
   and	
   AP1c	
   from	
   both	
   varie6es	
   by	
   using	
   PCR	
   and	
  
primers	
  corresponding	
  to	
  sequences	
  that	
  are	
  highly	
  conserved	
  in	
  the	
  AP1	
  gene.	
  Contrary	
  to	
  
previously	
  published	
  results,	
  we	
  found	
  that	
  the	
  deduced	
  amino	
  acid	
  sequence	
  corresponding	
  
to	
  the	
  first	
  exon	
  of	
  the	
  AP1c	
  gene	
  from	
  cauliflower	
  is	
  iden6cal	
  to	
  that	
  deduced	
  from	
  the	
  
broccoli	
   and	
   kale	
   genes,	
   sugges6ng	
   that	
   AP1	
   may	
   not	
   be	
   responsible	
   for	
   the	
   phenotypic	
  
differences	
  as	
  hypothesized.	
  	
  	
  
Introduc.on	
  
	
  
Brassica	
   oleracea	
   is	
   a	
   species	
   in	
   the	
   Brassica	
   genus.	
   Brassica	
   varie6es	
   include	
   Brussels	
  
sprouts,	
   cabbage,	
   cauliflower,	
   broccoli,	
   kale,	
   kohlrabi,	
   and	
   Rbo	
   (a	
   non	
   agricultural	
   rapid	
  
cycling	
  variety).	
  In	
  cauliflower	
  and	
  broccoli	
   	
  there	
  is	
  prolifera6on	
  of	
  cells	
  at	
  the	
  6p	
  of	
  the	
  
shoot	
  and	
  developmental	
  arrest	
  that	
  produces	
  a	
  head.	
  In	
  cauliflower	
  these	
  cells	
  are	
  arrested	
  
during	
  flower	
  development,	
  while	
  in	
  broccoli	
  the	
  arrest	
  takes	
  place	
  aYer	
  flower	
  forma6on.	
  
There	
  is	
  much	
  specula6on	
  as	
  to	
  what	
  molecular	
  differences	
  contribute	
  to	
  the	
  arrest	
  in	
  flower	
  
development	
  and	
  curd	
  forma6on	
  in	
  cauliflower.	
  Studying	
  Arabidopsis	
  thaliana,	
  which	
  is	
  a	
  
model	
  system	
  and	
  belongs	
  to	
  the	
  same	
  family	
  as	
  B.	
  oleracea,	
  has	
  provided	
  some	
  clues	
  as	
  to	
  
possible	
  genes	
  that	
  could	
  influence	
  flowering	
  phenotype.	
  When	
  studying	
  this	
  species	
  it	
  was	
  
found	
  that	
  muta6ons	
  in	
  both	
  the	
  CAULIFLOWER	
  (CAL)	
  and	
  APETALA1	
  (AP1)	
  genes	
  result	
  in	
  a	
  
phenotype	
  similar	
  to	
  that	
  of	
  cauliflower	
  in	
  B.	
  oleracea.	
  
Smith	
  and	
  King	
  (1)	
  studied	
  the	
  effect	
  of	
  muta6ons	
  in	
   	
  CAL	
  and	
  AP1	
  on	
  the	
  phenotype	
  of	
  B.	
  
oleracea.	
   They	
   crossed	
   a	
   Calabrese	
   variety	
   which	
   displays	
   a	
   broccoli	
   phenotype	
   with	
  
cauliflower,	
   resul6ng	
   in	
   an	
   F1	
   genera6on	
   with	
   Calabrese	
   phenotype	
   (figure	
   1).	
   AYer	
   self-­‐
crossing	
  the	
  F1	
  genera6on,	
  the	
  resul6ng	
  F2	
  genera6on	
  consisted	
  of	
  plants	
  with	
  Calabrese	
  
phenotype,	
  intermediate	
  phenotype,	
  and	
  cauliflower	
  phenotype.	
  When	
  the	
  F2	
  plants	
  were	
  
genotyped	
  a	
  correla6on	
  was	
  found	
  between	
  their	
  alleles	
  for	
  the	
  AP1	
  and	
  CAL	
  genes	
  and	
  their	
  
phenotypes.	
  If	
  both	
  AP1	
  and	
  CAL	
  were	
  wild	
  type	
  (AACC)	
  the	
  resul6ng	
  phenotype	
  was	
  like	
  
that	
  of	
  broccoli,	
  if	
  plants	
  were	
  homozygous	
  for	
  the	
  mutant	
  alleles	
  of	
  either	
  gene	
  (aaCC/AAcc)	
  
they	
  had	
  intermediate	
  phenotype,	
  and	
  homozygosity	
   	
  for	
  the	
  mutant	
  alleles	
  for	
  both	
  AP1	
  
and	
  CAL	
  (aacc)	
  resulted	
  in	
  a	
  cauliflower	
  phenotype.	
  Smith	
  and	
  King	
  (1)	
  used	
  a	
  polymorphism	
  
upstream	
   of	
   the	
   start	
   codon	
   to	
   dis6nguish	
   between	
   the	
   AP1	
   alleles	
   from	
   broccoli	
   and	
  
cauliflower	
   but	
   did	
   not	
   show	
   differences	
   in	
   the	
   coding	
   region	
   sequence	
   between	
   these	
  
alleles.	
  	
  
Further	
  research	
  showed	
  that	
  there	
  are	
  three	
  copies	
  of	
  AP1	
  in	
  B.	
  oleracea:	
  	
  AP1a,	
  AP1b	
  and	
  
AP1c	
   (2,	
   3).	
   AP1b	
   has	
   a	
   muta6on	
   that	
   makes	
   it	
   non-­‐func6onal	
   (3).	
   AP1a	
   and	
   AP1c	
   are	
  
expressed	
   during	
   curd	
   development	
   in	
   cauliflower.	
   Therefore	
   one	
   or	
   both	
   copies	
   may	
  
contribute	
   to	
   the	
   differences	
   in	
   flower	
   development	
   seen	
   in	
   this	
   variety.	
   Sequencing	
   has	
  
revealed	
  several	
  differences	
  in	
  AP1a	
  between	
  cauliflower	
  and	
  kale	
  or	
  broccoli	
  (table	
  1)	
  (2,	
  4).	
  	
  
Results	
  	
  
v  No	
  differences	
  in	
  the	
  amino	
  acid	
  sequences	
  in	
  exon	
  1	
  can	
  be	
  observed	
  
between	
  cauliflower	
  AP1a	
  and	
  broccoli	
  or	
  kale	
  AP1a.	
  
v  No	
  differences	
  in	
  the	
  amino	
  acid	
  sequences	
  in	
  exon	
  1	
  can	
  be	
  observed	
  
between	
  cauliflower	
  AP1c	
  and	
  broccoli	
  or	
  kale	
  AP1c.	
  
v  Since	
  the	
  cauliflower	
  cul6var	
  used	
  is	
  a	
  hybrid,	
  it	
  is	
  possible	
  that	
  only	
  one	
  of	
  
the	
  two	
  alleles	
  were	
  cloned.	
  	
  The	
  other	
  allele	
  may	
  s6ll	
  show	
  a	
  sequence	
  
difference	
  with	
  respect	
  to	
  broccoli	
  and	
  kale.	
  However,	
  several	
  clones	
  from	
  
cauliflower	
  showed	
  the	
  same	
  sequence	
  sugges6ng	
  this	
  is	
  not	
  the	
  case.	
  	
  
v  Our	
  results	
  suggest	
  that	
  differences	
  in	
  AP1	
  between	
  cauliflower	
  and	
  broccoli	
  
are	
  not	
  responsible	
  for	
  their	
  phenotypic	
  differences.	
  
v  Future	
  research	
  includes	
  cloning	
  and	
  sequence	
  analysis	
  of	
  exons	
  7	
  and	
  8,	
  
where	
  addi6onal	
  differences	
  were	
  previously	
  observed.	
  
Conclusions	
  
References	
  
Acknowledgements	
  	
  
Methods	
  
	
  
Primers	
  were	
  designed	
  that	
  would	
  allow	
  for	
  amplifica6on	
  of	
  exon	
  1	
  of	
  AP1a,	
  AP1b	
  and	
  AP1c	
  (table	
  2).	
  
These	
  primers	
  were	
  used	
  to	
  amplify	
  the	
  DNA	
  extracted	
  from	
  cauliflower	
  leaves	
  using	
  the	
  following	
  
thermo-­‐cycler	
  program:	
  94°	
  10	
  minutes,	
  30	
  cycles	
  of	
  94°	
  	
  1	
  minute,	
  57°	
  	
  1	
  minute,	
  72°	
  	
  1	
  minute,	
  and	
  
72°	
  	
  for	
  10	
  minutes.	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
Table	
  2.	
  Primers	
  designed	
  to	
  amplify	
  Exon	
  1	
  of	
  AP1a,	
  AP1b	
  and	
  AP1c.	
  
	
  
The	
  products	
  of	
  amplifica6on	
  were	
  separated	
  by	
  agarose	
  gel	
  electrophoresis	
  and	
  amplified	
  fragments	
  
extracted	
   from	
   the	
   gel	
   using	
   QIAEXII	
   	
   (Qiagen).	
   PCR	
   products	
   were	
   cloned	
   into	
   pCR	
   II	
   TOPO	
   and	
  
bacteria	
   transformed	
   with	
   these	
   plasmids.	
   White	
   colonies	
   were	
   selected	
   and	
   bacteria	
   grown	
  
overnight.	
   Plasmids	
   were	
   prepared	
   from	
   the	
   cultures	
   and	
   digested	
   with	
   EcoRI	
   to	
   check	
   that	
   they	
  
contained	
  a	
  PCR	
  insert	
  of	
  the	
  expected	
  size.	
  Plasmids	
  were	
  sent	
  to	
  be	
  sequenced	
  at	
  Cornell	
  University	
  
Life	
  Sciences	
  Core	
  Laboratories	
  Center.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  1.	
  	
  According	
  to	
  Smith	
  and	
  King,	
  muta6ons	
  in	
  the	
  BoCAL	
  and	
  BoAP1a	
  loci	
  explain	
  the	
  curding	
  
phenotype	
  of	
  Brassica	
  oleracea	
  var.	
  botry5s.	
  A=	
  BoAP1a,	
  C=	
  BoCAL.	
  Lower	
  case	
  leNers	
  represent	
  
mutant	
  alleles	
  (1).	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Table	
  1.	
  Four	
  amino	
  acid	
  subs6tu6ons	
  seen	
  in	
  the	
  AP1a	
  protein	
  from	
  cauliflower	
  (4).	
  	
  
	
  
Changes	
  in	
  the	
  sequences	
  of	
  the	
  AP1a	
  and	
  AP1c	
  genes	
  in	
  cauliflower	
  may	
  result	
  in	
  lack	
  of	
  func6on	
  of	
  
the	
  encoded	
  proteins	
  and	
  contribute	
  to	
  the	
  arrest	
  in	
  flowering	
  in	
  cauliflower.	
  Cloning	
  AP1a	
  and	
  AP1c	
  
from	
  Rbo	
  and	
  cauliflower	
  will	
  allow	
  us	
  to	
  see	
  if	
  the	
  sequence	
  differences	
  previously	
  reported	
  are	
  
always	
   present	
   between	
   these	
   varie6es.	
   We	
   will	
   later	
   analyze	
   if	
   there	
   is	
   a	
   correla6on	
   between	
  	
  
sequence	
   differences	
   for	
   AP1	
   and	
   differences	
   in	
   phenotype	
   in	
   the	
   F2	
   popula6on	
   from	
   a	
   cross	
  
between	
  Rbo	
  and	
  cauliflower.	
  
Intron	
  4	
  AP1a	
  Reverse	
   Intron	
  4	
  AP1b	
  Reverse	
  	
   Intron	
  4	
  AP1c	
  Reverse	
  	
  
ataaacgtacca=aca=gactaatcata	
   aaagacacatcacatgatc=aa=ataca	
  gatcagtaaaatgaatc=ataacaacaca	
  
Exon	
  1	
  AP1	
  forward	
  	
   atggggaggggtaggg=c	
   atggggaggggtaggg=c	
   atggggaggggtaggg=c	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  2.	
  Panel	
  A	
  shows	
  the	
  comparison	
  of	
  the	
  deduced	
  amino	
  acid	
  sequences	
  corresponding	
  
to	
  exon	
  1	
  from	
  the	
  cloned	
  cauliflower	
  AP1	
  a	
  fragment	
  	
  and	
  broccoli/kale	
  AP1a.	
  Panel	
  B	
  shows	
  
the	
   comparison	
   of	
   the	
   deduced	
   amino	
   acid	
   sequences	
   corresponding	
   to	
   exon	
   1	
   from	
   the	
  
cloned	
   cauliflower	
   AP1c	
   fragment	
   	
   and	
   broccoli/kale	
   AP1c.	
   The	
   highlighted	
   green	
   regions	
  
show	
  an	
  amino	
  acid	
  difference	
  between	
  AP1a	
  and	
  AP1c.	
  The	
  highlighted	
  yellow	
  region	
  shows	
  
sequence	
   iden6ty	
   where	
   a	
   difference	
   was	
   expected	
   between	
   AP1a	
   in	
   broccoli	
   (N)	
   and	
  
cauliflower	
  (S)	
  (2).	
  
1.  Smith,	
  L.	
  B.	
  and	
  	
  King.	
  G.	
  J.	
  (2000).	
  The	
  distribu6on	
  of	
  BoCal-­‐a	
  alleles	
  in	
  Brassica	
  oleracea	
  is	
  consistent	
  with	
  a	
  
gene6c	
  model	
  for	
  curd	
  development	
  and	
  domes6ca6on	
  of	
  the	
  cauliflower.	
  Molecular	
  Breeding.	
  6,	
  603-­‐613	
  
2.  Smith,	
  L.B.	
  1999.	
  The	
  molecular	
  gene6cs	
  of	
  curd	
  morphology	
  and	
  domes6ca6on	
  of	
  cauliflower	
  (Brassica	
  
oleracea	
  L.	
  var.	
  botry5s	
  L.).	
  Ph.D.	
  thesis,	
  University	
  of	
  Warwick,	
  Coventry,	
  United	
  Kingdom.	
  	
  
3.  Carr,	
  S.M.	
  and	
  Irish.	
  V.F.	
  1997.	
  Floral	
  homeo6c	
  gene	
  expression	
  defines	
  developmental	
  arrest	
  stages	
  in	
  
Brassica	
  oleracea	
  L.	
  vars.	
  botry5s	
  and	
  italica.	
  Planta.	
  201,	
  179-­‐188.	
  
4.  Lowman,	
  	
  A.	
  C.	
  and	
  	
  Purugganan.	
  M.D.	
  1999.	
  Duplica6on	
  of	
  the	
  Brassica	
  oleracea	
  APETALA1	
  floral	
  homeo6c	
  
gene	
  and	
  the	
  evolu6on	
  of	
  the	
  domes6cated	
  cauliflower.	
  J.	
  Heredity.	
  90,	
  514-­‐520.	
  
I	
  would	
  like	
  to	
  thank	
  Dr.	
  Cruz-­‐Alvarez	
  for	
  her	
  guidance	
  and	
  support	
  presen6ng	
  
this	
  research.	
  Also	
  a	
  special	
  thanks	
  to	
  Nina	
  Infantado	
  for	
  always	
  being	
  available	
  
to	
  lend	
  a	
  helping	
  hand.	
  	
  
Exon	
  	
   Posi.on	
  	
   Kale	
  	
   Cauliflower	
  	
  
Exon	
  1	
   16	
   Asparagine	
   Serine	
  	
  
Exon	
  7	
  	
   170	
   Lysine	
   Asparagine	
  
Exon	
  7	
  	
   199	
   Serine	
  	
   Proline	
  	
  
Exon	
  8	
  	
   251	
   Leucine	
  	
   Phenylalanine	
  	
  
A.	
  
B.	
  

More Related Content

What's hot

Adams et al 1977 number of sex alleles
Adams et al 1977 number of sex allelesAdams et al 1977 number of sex alleles
Adams et al 1977 number of sex allelestfrancoy
 
Gutell 037.jba.1994.176.4597
Gutell 037.jba.1994.176.4597Gutell 037.jba.1994.176.4597
Gutell 037.jba.1994.176.4597Robin Gutell
 
Open stax biology(nonmajors) ch07
Open stax biology(nonmajors) ch07Open stax biology(nonmajors) ch07
Open stax biology(nonmajors) ch07Lumen Learning
 
Chapter 1 Bio Intro to Life
Chapter 1 Bio Intro to LifeChapter 1 Bio Intro to Life
Chapter 1 Bio Intro to Lifen_bean1973
 
ABC model of flower development crop repro physio
ABC model of flower development crop repro physioABC model of flower development crop repro physio
ABC model of flower development crop repro physionea killuae
 
Flower morphology and molecular mechanism of flower development
Flower morphology and molecular mechanism of flower developmentFlower morphology and molecular mechanism of flower development
Flower morphology and molecular mechanism of flower developmentPATHEPARAPU HANUMANTHA RAO
 
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...Swee Seong TANG
 
QUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEAT
QUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEATQUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEAT
QUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEATNethravathi Siri
 
10.1016@0042 6822(59)90125-4
10.1016@0042 6822(59)90125-410.1016@0042 6822(59)90125-4
10.1016@0042 6822(59)90125-4Santosh Kathwate
 
ABC model of flower development
ABC model of flower developmentABC model of flower development
ABC model of flower developmentzahra esmaillou
 
Undergraduate Research Grant
Undergraduate Research GrantUndergraduate Research Grant
Undergraduate Research GrantKaitlin Zoccola
 
Allied american university bio 130 module 7
Allied american university bio 130 module 7Allied american university bio 130 module 7
Allied american university bio 130 module 7Christina Walkar
 
Abc model of floral development
Abc model of floral developmentAbc model of floral development
Abc model of floral developmentAtoZBiology
 

What's hot (20)

Adams et al 1977 number of sex alleles
Adams et al 1977 number of sex allelesAdams et al 1977 number of sex alleles
Adams et al 1977 number of sex alleles
 
ubaid afzal
ubaid afzalubaid afzal
ubaid afzal
 
Gutell 037.jba.1994.176.4597
Gutell 037.jba.1994.176.4597Gutell 037.jba.1994.176.4597
Gutell 037.jba.1994.176.4597
 
ex
exex
ex
 
Open stax biology(nonmajors) ch07
Open stax biology(nonmajors) ch07Open stax biology(nonmajors) ch07
Open stax biology(nonmajors) ch07
 
Aia review (1)
Aia review (1)Aia review (1)
Aia review (1)
 
Chapter 1 Bio Intro to Life
Chapter 1 Bio Intro to LifeChapter 1 Bio Intro to Life
Chapter 1 Bio Intro to Life
 
1. ABCDE flower model
1. ABCDE flower model1. ABCDE flower model
1. ABCDE flower model
 
ABC model of flower development crop repro physio
ABC model of flower development crop repro physioABC model of flower development crop repro physio
ABC model of flower development crop repro physio
 
Flower morphology and molecular mechanism of flower development
Flower morphology and molecular mechanism of flower developmentFlower morphology and molecular mechanism of flower development
Flower morphology and molecular mechanism of flower development
 
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrI...
 
QUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEAT
QUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEATQUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEAT
QUANTITATIVE INHERITANCE - KERNEL COLOR IN WHEAT
 
10.1016@0042 6822(59)90125-4
10.1016@0042 6822(59)90125-410.1016@0042 6822(59)90125-4
10.1016@0042 6822(59)90125-4
 
ABC model of flower development
ABC model of flower developmentABC model of flower development
ABC model of flower development
 
Mechanism of flowering
Mechanism of floweringMechanism of flowering
Mechanism of flowering
 
Undergraduate Research Grant
Undergraduate Research GrantUndergraduate Research Grant
Undergraduate Research Grant
 
Allied american university bio 130 module 7
Allied american university bio 130 module 7Allied american university bio 130 module 7
Allied american university bio 130 module 7
 
Grant Proposal 2006
Grant Proposal 2006Grant Proposal 2006
Grant Proposal 2006
 
Abc model of floral development
Abc model of floral developmentAbc model of floral development
Abc model of floral development
 
Flower development
Flower developmentFlower development
Flower development
 

Viewers also liked

EMBL-EBI at Plant and Animal Genome conference
EMBL-EBI at Plant and Animal Genome conference EMBL-EBI at Plant and Animal Genome conference
EMBL-EBI at Plant and Animal Genome conference Denise Carvalho-Silva, PhD
 
Molecular aspects of Reproductiv grwoth and development
Molecular aspects of  Reproductiv grwoth and developmentMolecular aspects of  Reproductiv grwoth and development
Molecular aspects of Reproductiv grwoth and developmentVaibhav Chavan
 
Tissues and types of plant tissues
Tissues and types of plant tissuesTissues and types of plant tissues
Tissues and types of plant tissuesRahul Kumar
 

Viewers also liked (6)

Flowering lesson day 2
Flowering lesson day 2Flowering lesson day 2
Flowering lesson day 2
 
Chloroplast genome engineering
Chloroplast genome engineeringChloroplast genome engineering
Chloroplast genome engineering
 
EMBL-EBI at Plant and Animal Genome conference
EMBL-EBI at Plant and Animal Genome conference EMBL-EBI at Plant and Animal Genome conference
EMBL-EBI at Plant and Animal Genome conference
 
Molecular aspects of Reproductiv grwoth and development
Molecular aspects of  Reproductiv grwoth and developmentMolecular aspects of  Reproductiv grwoth and development
Molecular aspects of Reproductiv grwoth and development
 
Tissues and types of plant tissues
Tissues and types of plant tissuesTissues and types of plant tissues
Tissues and types of plant tissues
 
Plant tissues
Plant  tissuesPlant  tissues
Plant tissues
 

Similar to DansPoster presentation-PDF

MIMG 199 P. acnes Poster Final - Lauren and Rachelle
MIMG 199 P. acnes Poster Final - Lauren and RachelleMIMG 199 P. acnes Poster Final - Lauren and Rachelle
MIMG 199 P. acnes Poster Final - Lauren and RachelleRachelle Ann Gonzales
 
Projects_Completed_2012
Projects_Completed_2012Projects_Completed_2012
Projects_Completed_2012Sameh Ezzat
 
Abstracts Of Presentations At The 2015 APS Annual Meeting
Abstracts Of Presentations At The 2015 APS Annual MeetingAbstracts Of Presentations At The 2015 APS Annual Meeting
Abstracts Of Presentations At The 2015 APS Annual MeetingBecky Goins
 
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...Surya Saha
 
EVE 161 Winter 2018 Class 8
EVE 161 Winter 2018 Class 8EVE 161 Winter 2018 Class 8
EVE 161 Winter 2018 Class 8Jonathan Eisen
 
Nemec ABT 399 Research Report final
Nemec ABT 399 Research Report finalNemec ABT 399 Research Report final
Nemec ABT 399 Research Report finalBrooke Nemec
 
Towards a functional analysis of the major factors involved in the reproducti...
Towards a functional analysis of the major factors involved in the reproducti...Towards a functional analysis of the major factors involved in the reproducti...
Towards a functional analysis of the major factors involved in the reproducti...CIAT
 
Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...
Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...
Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...Audrey Britton
 
Plant Cell-2013-Fàbregas-tpc.113.114462
Plant Cell-2013-Fàbregas-tpc.113.114462Plant Cell-2013-Fàbregas-tpc.113.114462
Plant Cell-2013-Fàbregas-tpc.113.114462Eloi Franco Trepat
 
Development of a core set of single-locus SSR markers for allotetraploid rape...
Development of a core set of single-locus SSR markers for allotetraploid rape...Development of a core set of single-locus SSR markers for allotetraploid rape...
Development of a core set of single-locus SSR markers for allotetraploid rape...Eric Du
 
genomics final paper 3 after peer
genomics final paper 3 after peergenomics final paper 3 after peer
genomics final paper 3 after peerRoshan Kumar
 
Evolution of a Drug Target BACE1
Evolution of a Drug Target BACE1Evolution of a Drug Target BACE1
Evolution of a Drug Target BACE1Chris Southan
 
Quantitative and cytoplasmic inheritance
Quantitative and cytoplasmic inheritanceQuantitative and cytoplasmic inheritance
Quantitative and cytoplasmic inheritanceDrAnilSopanraoWabale
 
s41598-020-71015-9.pdf
s41598-020-71015-9.pdfs41598-020-71015-9.pdf
s41598-020-71015-9.pdfHadgi1
 
Experimental validation, genetic map saturation and gene flow pilot study in ...
Experimental validation, genetic map saturation and gene flow pilot study in ...Experimental validation, genetic map saturation and gene flow pilot study in ...
Experimental validation, genetic map saturation and gene flow pilot study in ...CIAT
 
chloroplast genome ppt.
chloroplast genome ppt.chloroplast genome ppt.
chloroplast genome ppt.dbskkv
 

Similar to DansPoster presentation-PDF (20)

MIMG 199 P. acnes Poster Final - Lauren and Rachelle
MIMG 199 P. acnes Poster Final - Lauren and RachelleMIMG 199 P. acnes Poster Final - Lauren and Rachelle
MIMG 199 P. acnes Poster Final - Lauren and Rachelle
 
Projects_Completed_2012
Projects_Completed_2012Projects_Completed_2012
Projects_Completed_2012
 
Allele mining
Allele miningAllele mining
Allele mining
 
Abstracts Of Presentations At The 2015 APS Annual Meeting
Abstracts Of Presentations At The 2015 APS Annual MeetingAbstracts Of Presentations At The 2015 APS Annual Meeting
Abstracts Of Presentations At The 2015 APS Annual Meeting
 
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
Endosymbiont hunting in the metagenome of Asian citrus psyllid (Diaphorina ci...
 
EVE 161 Winter 2018 Class 8
EVE 161 Winter 2018 Class 8EVE 161 Winter 2018 Class 8
EVE 161 Winter 2018 Class 8
 
Nemec ABT 399 Research Report final
Nemec ABT 399 Research Report finalNemec ABT 399 Research Report final
Nemec ABT 399 Research Report final
 
Towards a functional analysis of the major factors involved in the reproducti...
Towards a functional analysis of the major factors involved in the reproducti...Towards a functional analysis of the major factors involved in the reproducti...
Towards a functional analysis of the major factors involved in the reproducti...
 
Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...
Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...
Assessment Of Genetic Relationships Within Brassica Rapa Subspecies Based On ...
 
Plant Cell-2013-Fàbregas-tpc.113.114462
Plant Cell-2013-Fàbregas-tpc.113.114462Plant Cell-2013-Fàbregas-tpc.113.114462
Plant Cell-2013-Fàbregas-tpc.113.114462
 
paper
paperpaper
paper
 
Development of a core set of single-locus SSR markers for allotetraploid rape...
Development of a core set of single-locus SSR markers for allotetraploid rape...Development of a core set of single-locus SSR markers for allotetraploid rape...
Development of a core set of single-locus SSR markers for allotetraploid rape...
 
genomics final paper 3 after peer
genomics final paper 3 after peergenomics final paper 3 after peer
genomics final paper 3 after peer
 
Evolution of a Drug Target BACE1
Evolution of a Drug Target BACE1Evolution of a Drug Target BACE1
Evolution of a Drug Target BACE1
 
Quantitative and cytoplasmic inheritance
Quantitative and cytoplasmic inheritanceQuantitative and cytoplasmic inheritance
Quantitative and cytoplasmic inheritance
 
s41598-020-71015-9.pdf
s41598-020-71015-9.pdfs41598-020-71015-9.pdf
s41598-020-71015-9.pdf
 
Experimental validation, genetic map saturation and gene flow pilot study in ...
Experimental validation, genetic map saturation and gene flow pilot study in ...Experimental validation, genetic map saturation and gene flow pilot study in ...
Experimental validation, genetic map saturation and gene flow pilot study in ...
 
SRW poster_EJB2
SRW poster_EJB2SRW poster_EJB2
SRW poster_EJB2
 
Biochemistry Poster
Biochemistry PosterBiochemistry Poster
Biochemistry Poster
 
chloroplast genome ppt.
chloroplast genome ppt.chloroplast genome ppt.
chloroplast genome ppt.
 

DansPoster presentation-PDF

  • 1. Are  different  alleles  of  the  APETALA1  gene  responsible  for  differences  in     development  among  varie6es  of  Brassica  oleracea?     Daniel  Dorado  and  Marilyn  Cruz  Alvarez      Department  of  Biological  Sciences,  Florida  Gulf  Coast  University,     10501  FGCU  Blvd.  South,  Fort  Myers,  Florida     Abstract     Agriculture  is  one  of  the  most  important  developments  in  human  history  and  understanding   the  influences  genes  have  over  crops  is  crucial.  Brassica  oleracea  is  an  important  agricultural   plant  species  which  shows  many  differences  in  its  varie6es.  The  two  primary  varie6es  we  are   focusing   on   are   cauliflower   and   Rbo.   Rbo   is   a   rapid   cycling   variety   and   flowers   normally,   while  cauliflower  (B.  oleracea  var.  botry5s)  shows  an  arrest  in  flowering  development  and   forms  an  edible  curd.     Currently   we   are   aNemp6ng   to   see   which   genes   are   responsible   for   the   developmental   differences   between   cauliflower   and   Rbo.   Ini6ally   we   had   crossed   cauliflower   and   Rbo   to   obtain   F1   and   F2   genera6ons.   The   F2   genera6on   resulted   in   segrega6ng   phenotypes   for   traits  such  as  flowering  6me  and  number  of  flowers  produced.  The  APETALA1  (AP1)  gene  has   been  shown  to  be  involved  in  flowering  in  many  species.  Our  hypothesis  is  that  differences  in   alleles  of  the  AP1  gene  contribute  to  the  differences  in  phenotype  in  B.  oleracea.    AP1  has   three  copies  in  this  species,  two  of  which  have  been  shown  to  be  expressed:  AP1a  and  AP1c.     To  test  our  hypothesis  we  are  determining  the  genotype  for  the  AP1a  and  AP1c  alleles  of  the   F2  plants  and  studying  any  correla6on  between  genotypic  and  phenotypic  differences.  To   carry  out  this  analysis  we  first  need  to  determine  the  AP1  alleles  present  in  the  cauliflower   and   Rbo   parents.   We   are   cloning   AP1a   and   AP1c   from   both   varie6es   by   using   PCR   and   primers  corresponding  to  sequences  that  are  highly  conserved  in  the  AP1  gene.  Contrary  to   previously  published  results,  we  found  that  the  deduced  amino  acid  sequence  corresponding   to  the  first  exon  of  the  AP1c  gene  from  cauliflower  is  iden6cal  to  that  deduced  from  the   broccoli   and   kale   genes,   sugges6ng   that   AP1   may   not   be   responsible   for   the   phenotypic   differences  as  hypothesized.       Introduc.on     Brassica   oleracea   is   a   species   in   the   Brassica   genus.   Brassica   varie6es   include   Brussels   sprouts,   cabbage,   cauliflower,   broccoli,   kale,   kohlrabi,   and   Rbo   (a   non   agricultural   rapid   cycling  variety).  In  cauliflower  and  broccoli    there  is  prolifera6on  of  cells  at  the  6p  of  the   shoot  and  developmental  arrest  that  produces  a  head.  In  cauliflower  these  cells  are  arrested   during  flower  development,  while  in  broccoli  the  arrest  takes  place  aYer  flower  forma6on.   There  is  much  specula6on  as  to  what  molecular  differences  contribute  to  the  arrest  in  flower   development  and  curd  forma6on  in  cauliflower.  Studying  Arabidopsis  thaliana,  which  is  a   model  system  and  belongs  to  the  same  family  as  B.  oleracea,  has  provided  some  clues  as  to   possible  genes  that  could  influence  flowering  phenotype.  When  studying  this  species  it  was   found  that  muta6ons  in  both  the  CAULIFLOWER  (CAL)  and  APETALA1  (AP1)  genes  result  in  a   phenotype  similar  to  that  of  cauliflower  in  B.  oleracea.   Smith  and  King  (1)  studied  the  effect  of  muta6ons  in    CAL  and  AP1  on  the  phenotype  of  B.   oleracea.   They   crossed   a   Calabrese   variety   which   displays   a   broccoli   phenotype   with   cauliflower,   resul6ng   in   an   F1   genera6on   with   Calabrese   phenotype   (figure   1).   AYer   self-­‐ crossing  the  F1  genera6on,  the  resul6ng  F2  genera6on  consisted  of  plants  with  Calabrese   phenotype,  intermediate  phenotype,  and  cauliflower  phenotype.  When  the  F2  plants  were   genotyped  a  correla6on  was  found  between  their  alleles  for  the  AP1  and  CAL  genes  and  their   phenotypes.  If  both  AP1  and  CAL  were  wild  type  (AACC)  the  resul6ng  phenotype  was  like   that  of  broccoli,  if  plants  were  homozygous  for  the  mutant  alleles  of  either  gene  (aaCC/AAcc)   they  had  intermediate  phenotype,  and  homozygosity    for  the  mutant  alleles  for  both  AP1   and  CAL  (aacc)  resulted  in  a  cauliflower  phenotype.  Smith  and  King  (1)  used  a  polymorphism   upstream   of   the   start   codon   to   dis6nguish   between   the   AP1   alleles   from   broccoli   and   cauliflower   but   did   not   show   differences   in   the   coding   region   sequence   between   these   alleles.     Further  research  showed  that  there  are  three  copies  of  AP1  in  B.  oleracea:    AP1a,  AP1b  and   AP1c   (2,   3).   AP1b   has   a   muta6on   that   makes   it   non-­‐func6onal   (3).   AP1a   and   AP1c   are   expressed   during   curd   development   in   cauliflower.   Therefore   one   or   both   copies   may   contribute   to   the   differences   in   flower   development   seen   in   this   variety.   Sequencing   has   revealed  several  differences  in  AP1a  between  cauliflower  and  kale  or  broccoli  (table  1)  (2,  4).     Results     v  No  differences  in  the  amino  acid  sequences  in  exon  1  can  be  observed   between  cauliflower  AP1a  and  broccoli  or  kale  AP1a.   v  No  differences  in  the  amino  acid  sequences  in  exon  1  can  be  observed   between  cauliflower  AP1c  and  broccoli  or  kale  AP1c.   v  Since  the  cauliflower  cul6var  used  is  a  hybrid,  it  is  possible  that  only  one  of   the  two  alleles  were  cloned.    The  other  allele  may  s6ll  show  a  sequence   difference  with  respect  to  broccoli  and  kale.  However,  several  clones  from   cauliflower  showed  the  same  sequence  sugges6ng  this  is  not  the  case.     v  Our  results  suggest  that  differences  in  AP1  between  cauliflower  and  broccoli   are  not  responsible  for  their  phenotypic  differences.   v  Future  research  includes  cloning  and  sequence  analysis  of  exons  7  and  8,   where  addi6onal  differences  were  previously  observed.   Conclusions   References   Acknowledgements     Methods     Primers  were  designed  that  would  allow  for  amplifica6on  of  exon  1  of  AP1a,  AP1b  and  AP1c  (table  2).   These  primers  were  used  to  amplify  the  DNA  extracted  from  cauliflower  leaves  using  the  following   thermo-­‐cycler  program:  94°  10  minutes,  30  cycles  of  94°    1  minute,  57°    1  minute,  72°    1  minute,  and   72°    for  10  minutes.                 Table  2.  Primers  designed  to  amplify  Exon  1  of  AP1a,  AP1b  and  AP1c.     The  products  of  amplifica6on  were  separated  by  agarose  gel  electrophoresis  and  amplified  fragments   extracted   from   the   gel   using   QIAEXII     (Qiagen).   PCR   products   were   cloned   into   pCR   II   TOPO   and   bacteria   transformed   with   these   plasmids.   White   colonies   were   selected   and   bacteria   grown   overnight.   Plasmids   were   prepared   from   the   cultures   and   digested   with   EcoRI   to   check   that   they   contained  a  PCR  insert  of  the  expected  size.  Plasmids  were  sent  to  be  sequenced  at  Cornell  University   Life  Sciences  Core  Laboratories  Center.                                   Figure  1.    According  to  Smith  and  King,  muta6ons  in  the  BoCAL  and  BoAP1a  loci  explain  the  curding   phenotype  of  Brassica  oleracea  var.  botry5s.  A=  BoAP1a,  C=  BoCAL.  Lower  case  leNers  represent   mutant  alleles  (1).                         Table  1.  Four  amino  acid  subs6tu6ons  seen  in  the  AP1a  protein  from  cauliflower  (4).       Changes  in  the  sequences  of  the  AP1a  and  AP1c  genes  in  cauliflower  may  result  in  lack  of  func6on  of   the  encoded  proteins  and  contribute  to  the  arrest  in  flowering  in  cauliflower.  Cloning  AP1a  and  AP1c   from  Rbo  and  cauliflower  will  allow  us  to  see  if  the  sequence  differences  previously  reported  are   always   present   between   these   varie6es.   We   will   later   analyze   if   there   is   a   correla6on   between     sequence   differences   for   AP1   and   differences   in   phenotype   in   the   F2   popula6on   from   a   cross   between  Rbo  and  cauliflower.   Intron  4  AP1a  Reverse   Intron  4  AP1b  Reverse     Intron  4  AP1c  Reverse     ataaacgtacca=aca=gactaatcata   aaagacacatcacatgatc=aa=ataca  gatcagtaaaatgaatc=ataacaacaca   Exon  1  AP1  forward     atggggaggggtaggg=c   atggggaggggtaggg=c   atggggaggggtaggg=c                                       Figure  2.  Panel  A  shows  the  comparison  of  the  deduced  amino  acid  sequences  corresponding   to  exon  1  from  the  cloned  cauliflower  AP1  a  fragment    and  broccoli/kale  AP1a.  Panel  B  shows   the   comparison   of   the   deduced   amino   acid   sequences   corresponding   to   exon   1   from   the   cloned   cauliflower   AP1c   fragment     and   broccoli/kale   AP1c.   The   highlighted   green   regions   show  an  amino  acid  difference  between  AP1a  and  AP1c.  The  highlighted  yellow  region  shows   sequence   iden6ty   where   a   difference   was   expected   between   AP1a   in   broccoli   (N)   and   cauliflower  (S)  (2).   1.  Smith,  L.  B.  and    King.  G.  J.  (2000).  The  distribu6on  of  BoCal-­‐a  alleles  in  Brassica  oleracea  is  consistent  with  a   gene6c  model  for  curd  development  and  domes6ca6on  of  the  cauliflower.  Molecular  Breeding.  6,  603-­‐613   2.  Smith,  L.B.  1999.  The  molecular  gene6cs  of  curd  morphology  and  domes6ca6on  of  cauliflower  (Brassica   oleracea  L.  var.  botry5s  L.).  Ph.D.  thesis,  University  of  Warwick,  Coventry,  United  Kingdom.     3.  Carr,  S.M.  and  Irish.  V.F.  1997.  Floral  homeo6c  gene  expression  defines  developmental  arrest  stages  in   Brassica  oleracea  L.  vars.  botry5s  and  italica.  Planta.  201,  179-­‐188.   4.  Lowman,    A.  C.  and    Purugganan.  M.D.  1999.  Duplica6on  of  the  Brassica  oleracea  APETALA1  floral  homeo6c   gene  and  the  evolu6on  of  the  domes6cated  cauliflower.  J.  Heredity.  90,  514-­‐520.   I  would  like  to  thank  Dr.  Cruz-­‐Alvarez  for  her  guidance  and  support  presen6ng   this  research.  Also  a  special  thanks  to  Nina  Infantado  for  always  being  available   to  lend  a  helping  hand.     Exon     Posi.on     Kale     Cauliflower     Exon  1   16   Asparagine   Serine     Exon  7     170   Lysine   Asparagine   Exon  7     199   Serine     Proline     Exon  8     251   Leucine     Phenylalanine     A.   B.