SlideShare a Scribd company logo
1 of 8
Download to read offline
Myers	
   1	
  
Christopher	
  Myers	
  
Augsburg	
  College	
  
Genetics	
  Research	
  Project	
  
	
  
Mode	
  of	
  Transmission	
  in	
  GloFish	
  
	
  
Abstract	
  
	
   This	
  study	
  was	
  designed	
  to	
  study	
  the	
  mode	
  of	
  transmission	
  in	
  a	
  mutant	
  type	
  
of	
  Zebrafish	
  known	
  as	
  GloFish.	
  	
  More	
  specifically	
  the	
  green	
  fluorescent	
  protein	
  
(GFP)	
  or	
  glow	
  transgene	
  was	
  observed	
  to	
  determine	
  how	
  it	
  behaves	
  regarding	
  
heritability.	
  	
  We	
  applied	
  a	
  reciprocal	
  cross	
  of	
  male	
  vs.	
  female,	
  mutant	
  type	
  vs.	
  wild	
  
type	
  to	
  produce	
  an	
  F1	
  generation	
  of	
  both	
  crosses	
  to	
  a	
  particular	
  embryonic	
  
developmental	
  stage	
  to	
  examine	
  if	
  the	
  GFP	
  gene	
  is	
  expressed	
  and	
  observable	
  if	
  
present.	
  	
  By	
  this	
  method	
  we	
  were	
  able	
  to	
  determine	
  that	
  the	
  gene	
  was	
  autosomal	
  
dominant	
  and	
  not	
  sex-­‐linked,	
  autosomal	
  recessive,	
  codominant	
  or	
  incompletely	
  
dominant.	
  	
  It	
  was	
  also	
  found	
  that	
  though	
  sex-­‐linkage	
  was	
  not	
  present	
  an	
  apparent	
  
maternal	
  effect	
  was.	
  	
  Though	
  previous	
  studies	
  with	
  these	
  fish	
  have	
  been	
  done	
  at	
  
Augsburg	
  College	
  before,	
  our	
  experiment	
  was	
  novel	
  in	
  the	
  way	
  that	
  it	
  was	
  done	
  to	
  
determine	
  how,	
  and	
  if,	
  sex	
  played	
  a	
  role	
  in	
  the	
  mode	
  of	
  transmission.	
  	
  	
  
	
  
Introduction	
  
	
   Over	
  the	
  past	
  several	
  decades	
  Zebrafish	
  (Danio	
  rerio)	
  have	
  been	
  extensively	
  
studied	
  from	
  several	
  different	
  types	
  of	
  scientists	
  to	
  students	
  both	
  in	
  colleges	
  and	
  
Myers	
   2	
  
high	
  schools	
  around	
  the	
  globe.	
  	
  This	
  is	
  due	
  to	
  the	
  fact	
  that	
  these	
  fish	
  are	
  very	
  
inexpensive,	
  can	
  tolerate	
  a	
  reasonable	
  amount	
  of	
  stress,	
  produce	
  a	
  lot	
  of	
  eggs,	
  
produce	
  these	
  eggs	
  reliably,	
  and	
  allow	
  observers	
  to	
  watch	
  embryo	
  development	
  that	
  
is	
  comparable	
  to	
  other	
  species	
  (Zebrafish	
  FAQs).	
  	
  This	
  embryonic	
  development	
  is	
  
relatively	
  quick	
  and	
  is	
  easily	
  observable	
  under	
  a	
  decent	
  microscope.	
  	
  Because	
  the	
  
embryos	
  can	
  be	
  seen	
  so	
  easily	
  and	
  gene	
  expression	
  occurs	
  quickly	
  these	
  fish	
  have	
  
become	
  ideal	
  research	
  organisms;	
  and	
  though	
  they	
  are	
  vastly	
  different	
  from	
  
humans,	
  and	
  other	
  mammals,	
  their	
  embryonic	
  development	
  is	
  still	
  quite	
  similar	
  to	
  
all	
  vertebrates	
  that	
  seem	
  to	
  follow	
  a	
  developmental	
  program	
  that	
  is	
  evolutionarily	
  
conserved	
  (Kimmel	
  et	
  al.,	
  2012).	
  
	
   Recently	
  the	
  Zebrafish	
  have	
  been	
  genetically	
  altered	
  into	
  several	
  different	
  
strains	
  of	
  fish	
  that	
  will	
  glow	
  different	
  colors	
  due	
  to	
  an	
  inserted	
  transgene.	
  	
  These	
  fish	
  
are	
  known	
  as	
  GloFish	
  and	
  are	
  readily	
  commercially	
  available	
  in	
  the	
  pet	
  market	
  as	
  
well	
  as	
  offer	
  significant	
  viability	
  in	
  
laboratory	
  experiments.	
  	
  Under	
  normal	
  
light	
  these	
  fish	
  appear	
  to	
  be	
  brightly	
  
colored,	
  however,	
  when	
  they	
  absorb	
  
certain	
  wavelengths	
  of	
  light	
  they	
  are	
  able	
  
to	
  fluorescence	
  (glow).	
  	
  Due	
  to	
  their	
  vast	
  
array	
  to	
  explore	
  genetic	
  concepts	
  at	
  the	
  
fundamental	
  level,	
  this	
  organism	
  was	
  
chosen	
  for	
  our	
  experiment	
  in	
  order	
  to	
  look	
  at	
  how	
  this	
  transgene	
  is	
  inherited	
  (Vick	
  
et	
  al.,	
  1995).	
  
Figure	
  1.	
  	
  Different	
  colors	
  of	
  GloFish	
  
http://www.thatpetplace.com/glofish-­‐danios	
  
Myers	
   3	
  
	
   By	
  looking	
  at	
  the	
  main	
  manufacturers	
  and	
  distributor’s	
  of	
  GloFish	
  website	
  
GloFish.com	
  several	
  different	
  types	
  of	
  GloFish	
  have	
  been	
  patented	
  and	
  trademarked.	
  	
  
The	
  different	
  types/colors	
  are	
  bright	
  red,	
  green,	
  orange-­‐yellow,	
  blue,	
  and	
  purple	
  
(Figure	
  1).	
  	
  In	
  this	
  experiment	
  electric	
  green	
  was	
  used,	
  which	
  appear	
  to	
  be	
  yellow	
  
under	
  normal	
  light.	
  	
  The	
  source	
  for	
  the	
  transgene	
  inserted	
  into	
  the	
  green	
  GloFish	
  
comes	
  from	
  the	
  Aequorea	
  victoria	
  jellyfish	
  (GloFish®	
  FAQ).	
  
	
  
Methods	
  
	
   Mutant	
  type	
  GloFish	
  (8)	
  and	
  wild	
  type	
  Zebrafish	
  (6)	
  were	
  obtained	
  by	
  
Professor	
  Beckman	
  from	
  a	
  pet	
  store	
  and	
  initially	
  all	
  placed	
  in	
  a	
  large	
  single	
  tank.	
  	
  
This	
  was	
  done	
  in	
  order	
  to	
  relieve	
  stress	
  on	
  the	
  fish	
  and	
  ease	
  the	
  acclamation	
  
process.	
  	
  The	
  tank	
  was	
  located	
  in	
  an	
  incubator	
  at	
  28.5	
  °C	
  with	
  a	
  light-­‐dark	
  cycle.	
  	
  
Around	
  a	
  week	
  and	
  a	
  half	
  before	
  the	
  fish	
  were	
  mated,	
  both	
  mutant	
  and	
  wild	
  types	
  
were	
  sexed	
  and	
  separated	
  accordingly:	
  all	
  males	
  in	
  one	
  tank	
  and	
  all	
  females	
  in	
  
another.	
  	
  The	
  night	
  before	
  the	
  intended	
  mating,	
  two	
  mating	
  tanks	
  were	
  filled	
  with	
  
50/50	
  mix	
  of	
  water	
  from	
  the	
  tanks	
  in	
  which	
  both	
  the	
  female	
  and	
  male	
  fish	
  were	
  
taken	
  from.	
  	
  The	
  first	
  mating	
  tank	
  included	
  one	
  female	
  GloFish	
  and	
  two	
  male	
  
Zebrafish.	
  	
  The	
  second	
  mating	
  tank	
  included	
  one	
  female	
  Zebrafish	
  and	
  two	
  male	
  
GloFish.	
  	
  These	
  tanks	
  were	
  then	
  placed	
  back	
  into	
  the	
  incubator	
  and	
  the	
  fish	
  were	
  fed	
  
again	
  to	
  make	
  them	
  comfortable.	
  	
  	
  
Eggs	
  were	
  collected	
  the	
  following	
  morning,	
  roughly	
  4	
  hours	
  post	
  fertilization,	
  
from	
  each	
  mating	
  tank	
  via	
  pipettes	
  and	
  microscopes	
  and	
  placed	
  into	
  two	
  labeled	
  
petri	
  plates	
  containing	
  embryo	
  water	
  made	
  up	
  in	
  the	
  lab	
  (Figure	
  2).	
  	
  Any	
  eggs	
  that	
  
Myers	
   4	
  
showed	
  abnormalities	
  were	
  discarded	
  from	
  the	
  samples.	
  	
  The	
  following	
  day	
  the	
  eggs	
  
were	
  examined	
  again	
  for	
  any	
  other	
  abnormalities	
  or	
  developmental	
  problems;	
  any	
  
that	
  were	
  found	
  were	
  discarded.	
  	
  Around	
  50	
  hours	
  post	
  fertilization	
  all	
  of	
  the	
  
healthy	
  embryos	
  were	
  mounted	
  (five	
  embryos	
  per	
  slide)	
  and	
  observed	
  under	
  a	
  
florescence	
  microscope	
  with	
  blue	
  light	
  settings	
  (Figure	
  2).	
  	
  These	
  embryos	
  were	
  
then	
  scored	
  on	
  a	
  positive/negative	
  scale	
  on	
  if	
  the	
  expression	
  of	
  GFP	
  was	
  present	
  by	
  
observable	
  fluorescence.	
  
	
  
Figure	
  2.	
  Example	
  of	
  egg	
  4	
  hours	
  post	
  fertilization	
  and	
  embryo	
  48	
  hours	
  post	
  fertilization.	
  Eggs	
  were	
  
collected	
  4	
  hours	
  post	
  fertilization	
  and	
  embryos	
  were	
  examined	
  for	
  presence	
  of	
  GFP	
  50	
  hours	
  post	
  
fertilization.	
  Photo	
  credit	
  (Kimmel	
  et	
  al.,	
  1995).	
  
	
  
Results	
  and	
  discussion	
  
	
   The	
  female	
  Glofish	
  produced	
  a	
  much	
  larger	
  sample	
  size	
  of	
  39	
  viable	
  eggs	
  
compared	
  to	
  the	
  10	
  viable	
  eggs	
  produced	
  by	
  the	
  female	
  Zebrafish.	
  	
  The	
  female	
  
Zebrafish	
  had	
  many	
  eggs	
  that	
  contained	
  abnormalities	
  and	
  many	
  had	
  to	
  be	
  
discarded	
  of.	
  	
  Out	
  of	
  the	
  39	
  embryos	
  produced	
  by	
  the	
  maternal	
  mutant	
  type	
  GloFish	
  
and	
  paternal	
  wild	
  type	
  Zebrafish	
  all	
  of	
  them	
  expressed	
  the	
  GFP	
  gene.	
  	
  For	
  the	
  
maternal	
  wild	
  type	
  Zebrafish	
  and	
  paternal	
  wild	
  type	
  GloFish	
  4	
  out	
  of	
  the	
  10	
  
expressed	
  the	
  GFP	
  gene	
  (Table	
  1).	
  	
  	
  
	
  
Table	
  1.	
  GFP	
  presence	
  amongst	
  both	
  embryo	
  samples.	
  
	
  
Myers	
   5	
  
It	
  was	
  also	
  observed	
  that	
  in	
  all	
  of	
  the	
  maternal	
  Glofish	
  embryos	
  (39)	
  
fluorescence	
  was	
  observed	
  throughout	
  most	
  of	
  the	
  embryo’s	
  tissues	
  (Figure	
  3),	
  
however,	
  in	
  the	
  maternal	
  Zebrafish	
  embryos	
  (4)	
  fluorescence	
  was	
  observed	
  mainly	
  
along	
  the	
  notochord	
  area	
  (Figure	
  4).	
  	
  	
  
	
  
	
  
Also	
  it	
  should	
  be	
  noted	
  that	
  when	
  looking	
  at	
  the	
  yolk	
  of	
  the	
  eggs	
  all	
  of	
  the	
  maternal	
  
GloFish	
  eggs	
  appeared	
  to	
  express	
  the	
  GFP	
  (Figure	
  5)	
  where	
  none	
  of	
  the	
  maternal	
  
Zebrafish	
  yolks	
  expressed	
  the	
  GFP	
  even	
  though	
  embryos	
  later	
  did	
  express	
  the	
  
transgene.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  3.	
  Embryo	
  of	
  maternal	
  mutant	
  
type	
  GloFish	
  and	
  paternal	
  wild	
  type	
  
Zebrafish.	
  	
  GFP	
  expression	
  in	
  significant	
  
amount	
  of	
  tissue	
  observed.	
  
Figure	
  4.	
  Embryo	
  of	
  maternal	
  wild	
  type	
  
Zebrafish	
  and	
  paternal	
  mutant	
  type	
  GloFish.	
  	
  
GFP	
  expression	
  observed	
  around	
  notochord	
  
area.	
  
Figure	
  5.	
  	
  Maternal	
  GloFish	
  yolk	
  showing	
  GFP	
  expression	
  
before	
  age	
  where	
  GFP	
  should	
  be	
  expressed.	
  
Myers	
   6	
  
From	
  our	
  results	
  we	
  were	
  able	
  to	
  conclude	
  that	
  the	
  mode	
  of	
  transmission	
  for	
  
the	
  transgene	
  of	
  GFP	
  expression	
  was	
  autosomal	
  dominant.	
  	
  This	
  was	
  determined	
  
because	
  if	
  the	
  transgene	
  was	
  autosomal	
  recessive	
  none	
  of	
  the	
  embryos	
  would	
  show	
  
a	
  presence	
  of	
  GFP	
  because	
  none	
  of	
  the	
  wild	
  type	
  would	
  be	
  heterozygous	
  due	
  to	
  the	
  
glow	
  gene	
  being	
  transgenic	
  in	
  nature.	
  	
  But	
  it	
  was,	
  however,	
  able	
  for	
  the	
  GloFish	
  to	
  be	
  
both	
  heterozygous	
  as	
  well	
  as	
  homozygous	
  dominant.	
  	
  In	
  our	
  case	
  of	
  the	
  maternal	
  
GloFish	
  it	
  was	
  almost	
  certain	
  that	
  she	
  was	
  homozygous	
  dominant	
  for	
  the	
  transgene.	
  	
  
In	
  the	
  case	
  of	
  our	
  paternal	
  GloFish,	
  in	
  order	
  to	
  produce	
  4	
  out	
  of	
  10	
  embryos	
  with	
  the	
  
transgene	
  he	
  would	
  have	
  had	
  to	
  have	
  been	
  heterozygous	
  for	
  the	
  transgene.	
  
However,	
  it	
  also	
  appears	
  that	
  there	
  were	
  some	
  types	
  of	
  maternal	
  effects	
  at	
  
play	
  here.	
  	
  This	
  is	
  due	
  mainly	
  to	
  two	
  observations.	
  	
  The	
  first	
  observation	
  being	
  that	
  
all	
  of	
  the	
  eggs	
  of	
  the	
  maternal	
  Glofish	
  contained	
  yolks	
  that	
  appeared	
  very	
  light	
  
green/yellow	
  in	
  regular	
  light	
  as	
  well	
  as	
  fluoresced	
  under	
  blue	
  light	
  only	
  4	
  hours	
  
after	
  fertilization.	
  	
  None	
  of	
  the	
  maternal	
  Zebrafish	
  yolks	
  displayed	
  this	
  
characteristic.	
  Secondly	
  of	
  all	
  the	
  embryos	
  that	
  showed	
  GFP	
  expression	
  the	
  maternal	
  
Glofish	
  embryos	
  seemed	
  to	
  fluoresce	
  in	
  much	
  more	
  of	
  their	
  tissue	
  than	
  that	
  of	
  
maternal	
  Zebrafish.	
  
	
   In	
  order	
  to	
  fully	
  examine	
  this	
  further,	
  next	
  time	
  I	
  would	
  have	
  more	
  than	
  just	
  
one	
  reciprocal	
  cross.	
  	
  If	
  the	
  results	
  showed	
  the	
  same	
  maternal	
  effects	
  across	
  several	
  
matings	
  we	
  would	
  definitely	
  be	
  able	
  to	
  conclude	
  that	
  not	
  only	
  autosomal	
  dominance	
  
is	
  at	
  play,	
  but	
  having	
  a	
  maternal	
  Glofish	
  also	
  significantly	
  alters	
  how	
  GFP	
  is	
  
expressed.	
  	
  Secondly,	
  it	
  would	
  have	
  been	
  nice	
  to	
  let	
  these	
  embryos	
  grow	
  older	
  to	
  see	
  
if	
  the	
  tissues	
  in	
  the	
  4	
  maternal	
  Zebrafish	
  embryos	
  that	
  expressed	
  the	
  transgene	
  
Myers	
   7	
  
eventually	
  caught	
  up	
  with	
  the	
  other	
  39.	
  	
  Lastly	
  looking	
  at	
  an	
  F2	
  generation	
  really	
  
could	
  have	
  solidified	
  what	
  the	
  mode	
  of	
  transmission	
  is.	
  	
  However,	
  for	
  the	
  amount	
  of	
  
time	
  we	
  had	
  and	
  the	
  results	
  we	
  got,	
  I	
  feel	
  confident	
  in	
  our	
  autosomal	
  dominant	
  
conclusion.	
  
	
  
Effort	
  and	
  Contribution	
  
	
   When	
  dealing	
  with	
  live	
  animals	
  we	
  had	
  to	
  keep	
  them	
  alive,	
  keep	
  water	
  in	
  the	
  
tank	
  and	
  make	
  sure	
  the	
  animals	
  ate	
  enough.	
  	
  As	
  a	
  group	
  we	
  worked	
  well	
  with	
  
feeding	
  them.	
  	
  There	
  wasn’t	
  a	
  day	
  when	
  we	
  crossed	
  paths	
  with	
  each	
  other	
  and	
  one	
  
of	
  our	
  group	
  members	
  was	
  checking	
  with	
  the	
  other	
  on	
  feeding	
  times	
  and	
  planning	
  
on	
  who	
  was	
  feeding	
  throughout	
  the	
  week.	
  	
  Even	
  though	
  not	
  everyone	
  participated	
  in	
  
every	
  event	
  of	
  the	
  entire	
  experiment	
  I	
  do	
  feel	
  like	
  it	
  was	
  pretty	
  evenly	
  divided	
  
amongst	
  the	
  group	
  members	
  and	
  we	
  each	
  did	
  a	
  significant	
  part,	
  from	
  keeping	
  water	
  
healthy,	
  feeding,	
  checking	
  on	
  fish,	
  collecting	
  eggs,	
  examining	
  and	
  removing	
  bad	
  eggs,	
  
setting	
  up	
  mating	
  tanks,	
  sexing	
  the	
  fish,	
  taking	
  pictures	
  of	
  eggs,	
  and	
  taking	
  pictures	
  
of	
  a	
  scoring	
  fish.	
  	
  I	
  did	
  miss	
  the	
  scoring	
  part,	
  however,	
  for	
  everything	
  else	
  I	
  was	
  
present	
  and	
  put	
  effort	
  into	
  keeping	
  our	
  fish	
  alive,	
  our	
  embryos	
  healthy	
  and	
  
preparing	
  for	
  mating.	
  
	
  
	
  
	
  
	
  
	
  
Myers	
   8	
  
Works	
  Cited	
  
GloFish®	
  FAQ.	
  (n.d.).	
  Retrieved	
  December	
  13,	
  2014,	
  from	
  
http://www.glofish.com/about/faq/	
  
	
  
Kimmel,	
  C.	
  B.,	
  Ballard,	
  W.	
  W.,	
  Kimmel,	
  R.	
  S.,	
  Ullmann,	
  B.,	
  &	
  Schilling,	
  T.	
  F.	
  (1995).	
  	
  
	
   Stages	
  of	
  Embryonic	
  Development	
  of	
  the	
  Zebrafish.	
  	
  Developmental	
  Dynamics,	
  	
  
	
   203:253-­‐310.	
  
	
  
Vick,	
  B.	
  M.,	
  Pollak,	
  A.,	
  Welsh,	
  C.,	
  &	
  Liang,	
  J.	
  O.	
  (2012).	
  Learning	
  the	
  Scientific	
  Method	
  	
  
	
   Using	
  GloFish.	
  	
  Zebrafish,	
  9(4),	
  226-­‐241.	
  Doi:10.1089/zeb.2012.0758	
  
	
  
Zebrafish	
  FAQs.	
  (n.d.).	
  Retrieved	
  December	
  13,	
  2014,	
  from	
  
http://www.neuro.uoregon.edu/k12/FAQs.html#high	
  school	
  
	
  

More Related Content

What's hot

Sexual Reproduction in Animal (Internal and External Fertilization
Sexual Reproduction in Animal (Internal and External FertilizationSexual Reproduction in Animal (Internal and External Fertilization
Sexual Reproduction in Animal (Internal and External FertilizationPrincess Piñero
 
Reproduction in organism 2014 mohanbio
Reproduction in organism 2014 mohanbioReproduction in organism 2014 mohanbio
Reproduction in organism 2014 mohanbiomohan bio
 
Animal Reproduction
Animal ReproductionAnimal Reproduction
Animal Reproductionazuerseccion
 
Sexual reproduction in vertebrates
Sexual reproduction in vertebratesSexual reproduction in vertebrates
Sexual reproduction in vertebratesBasit00786
 
IBMX part I -rabbit reproduction Theriogenology 2010 (1)
IBMX part I -rabbit reproduction Theriogenology 2010 (1)IBMX part I -rabbit reproduction Theriogenology 2010 (1)
IBMX part I -rabbit reproduction Theriogenology 2010 (1)ELENI FOTOPOULOU
 
LAB REPORT DROSOPHILA MELANOGASTER
LAB REPORT DROSOPHILA MELANOGASTERLAB REPORT DROSOPHILA MELANOGASTER
LAB REPORT DROSOPHILA MELANOGASTERsiti sarah
 
Sexual reproduction
Sexual reproductionSexual reproduction
Sexual reproductionHaseenaGul3
 
CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...
CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...
CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...Shivam Parmar
 
CLASSIFICATION OF ORGANISMS
CLASSIFICATION OF ORGANISMS CLASSIFICATION OF ORGANISMS
CLASSIFICATION OF ORGANISMS SANDEEP PATRE
 
Reproduction in animals
Reproduction in animalsReproduction in animals
Reproduction in animalsskbodh
 
Preseantation on reproduction in animals
Preseantation on reproduction in animalsPreseantation on reproduction in animals
Preseantation on reproduction in animalsAnshulKiroriwal
 
Integrated Science M3 Asexual Reproduction in animals
Integrated Science M3 Asexual Reproduction in animalsIntegrated Science M3 Asexual Reproduction in animals
Integrated Science M3 Asexual Reproduction in animalseLearningJa
 
Lavc f10 lecture 11 primate reproductive strategies
Lavc f10 lecture 11   primate reproductive strategiesLavc f10 lecture 11   primate reproductive strategies
Lavc f10 lecture 11 primate reproductive strategiesLos Angeles Valley College
 
Animal reproduction class presentation (ppt)
Animal reproduction   class presentation (ppt)Animal reproduction   class presentation (ppt)
Animal reproduction class presentation (ppt)antonievan
 

What's hot (20)

Sexual Reproduction in Animal (Internal and External Fertilization
Sexual Reproduction in Animal (Internal and External FertilizationSexual Reproduction in Animal (Internal and External Fertilization
Sexual Reproduction in Animal (Internal and External Fertilization
 
Reproduction in organism 2014 mohanbio
Reproduction in organism 2014 mohanbioReproduction in organism 2014 mohanbio
Reproduction in organism 2014 mohanbio
 
Animal Reproduction
Animal ReproductionAnimal Reproduction
Animal Reproduction
 
Sexual reproduction in vertebrates
Sexual reproduction in vertebratesSexual reproduction in vertebrates
Sexual reproduction in vertebrates
 
IBMX part I -rabbit reproduction Theriogenology 2010 (1)
IBMX part I -rabbit reproduction Theriogenology 2010 (1)IBMX part I -rabbit reproduction Theriogenology 2010 (1)
IBMX part I -rabbit reproduction Theriogenology 2010 (1)
 
transgenic animals
transgenic animalstransgenic animals
transgenic animals
 
LAB REPORT DROSOPHILA MELANOGASTER
LAB REPORT DROSOPHILA MELANOGASTERLAB REPORT DROSOPHILA MELANOGASTER
LAB REPORT DROSOPHILA MELANOGASTER
 
reproduction in organisms in cells division
reproduction in organisms in cells division reproduction in organisms in cells division
reproduction in organisms in cells division
 
Saurabh transgenics
Saurabh transgenicsSaurabh transgenics
Saurabh transgenics
 
Sexual reproduction
Sexual reproductionSexual reproduction
Sexual reproduction
 
CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...
CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...
CBSE Previous Years Questions and Answers, Chapter - 8, How do Organisms Repr...
 
Reproduction in organisms
Reproduction in organismsReproduction in organisms
Reproduction in organisms
 
CLASSIFICATION OF ORGANISMS
CLASSIFICATION OF ORGANISMS CLASSIFICATION OF ORGANISMS
CLASSIFICATION OF ORGANISMS
 
Reproduction in animals
Reproduction in animalsReproduction in animals
Reproduction in animals
 
Preseantation on reproduction in animals
Preseantation on reproduction in animalsPreseantation on reproduction in animals
Preseantation on reproduction in animals
 
Integrated Science M3 Asexual Reproduction in animals
Integrated Science M3 Asexual Reproduction in animalsIntegrated Science M3 Asexual Reproduction in animals
Integrated Science M3 Asexual Reproduction in animals
 
7
77
7
 
Bear
BearBear
Bear
 
Lavc f10 lecture 11 primate reproductive strategies
Lavc f10 lecture 11   primate reproductive strategiesLavc f10 lecture 11   primate reproductive strategies
Lavc f10 lecture 11 primate reproductive strategies
 
Animal reproduction class presentation (ppt)
Animal reproduction   class presentation (ppt)Animal reproduction   class presentation (ppt)
Animal reproduction class presentation (ppt)
 

Similar to Mode of Transmission in GloFish1

Running head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docx
Running head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docxRunning head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docx
Running head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docxjoellemurphey
 
Drosophila Melanogaster Experiment
Drosophila Melanogaster ExperimentDrosophila Melanogaster Experiment
Drosophila Melanogaster ExperimentKate Subramanian
 
46 animal reproduction
46   animal reproduction46   animal reproduction
46 animal reproductionRenee Ariesen
 
Mendelian Ratio Of Wings Essay
Mendelian Ratio Of Wings EssayMendelian Ratio Of Wings Essay
Mendelian Ratio Of Wings EssayBrianna Johnson
 
RelationshipofZebrafishNeuromastbetween2dpfand7dpf
RelationshipofZebrafishNeuromastbetween2dpfand7dpfRelationshipofZebrafishNeuromastbetween2dpfand7dpf
RelationshipofZebrafishNeuromastbetween2dpfand7dpfShermann Alconcel
 
Evolution- Natural Selection.pptnjjhggffffff
Evolution- Natural Selection.pptnjjhggffffffEvolution- Natural Selection.pptnjjhggffffff
Evolution- Natural Selection.pptnjjhggffffffiqbalzubaria290
 
asexual ans sexual reproduction.pptx
asexual ans sexual reproduction.pptxasexual ans sexual reproduction.pptx
asexual ans sexual reproduction.pptxLeslyAnnBangayanBaya
 
Earth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptx
Earth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptxEarth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptx
Earth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptxajkwar
 
Drosophila Melanogaster Dumpy
Drosophila Melanogaster DumpyDrosophila Melanogaster Dumpy
Drosophila Melanogaster DumpyLindsey Jones
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproductionShiggi
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproductionShiggi
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproductionShiggi
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproductionShiggi
 

Similar to Mode of Transmission in GloFish1 (20)

Running head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docx
Running head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docxRunning head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docx
Running head BIOLOGY LAB PROJECT1BIOLOGY LAB PROJECT 4.docx
 
Drosophila Melanogaster Experiment
Drosophila Melanogaster ExperimentDrosophila Melanogaster Experiment
Drosophila Melanogaster Experiment
 
Drosophila Paper
Drosophila PaperDrosophila Paper
Drosophila Paper
 
46 animal reproduction
46   animal reproduction46   animal reproduction
46 animal reproduction
 
Mendelian Ratio Of Wings Essay
Mendelian Ratio Of Wings EssayMendelian Ratio Of Wings Essay
Mendelian Ratio Of Wings Essay
 
Cloning
Cloning  Cloning
Cloning
 
PPT ZF.pptx
PPT ZF.pptxPPT ZF.pptx
PPT ZF.pptx
 
NSA1
NSA1NSA1
NSA1
 
RelationshipofZebrafishNeuromastbetween2dpfand7dpf
RelationshipofZebrafishNeuromastbetween2dpfand7dpfRelationshipofZebrafishNeuromastbetween2dpfand7dpf
RelationshipofZebrafishNeuromastbetween2dpfand7dpf
 
Evolution- Natural Selection.pptnjjhggffffff
Evolution- Natural Selection.pptnjjhggffffffEvolution- Natural Selection.pptnjjhggffffff
Evolution- Natural Selection.pptnjjhggffffff
 
Zebra fish
Zebra fishZebra fish
Zebra fish
 
asexual ans sexual reproduction.pptx
asexual ans sexual reproduction.pptxasexual ans sexual reproduction.pptx
asexual ans sexual reproduction.pptx
 
Earth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptx
Earth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptxEarth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptx
Earth and Life Science-Q2-WK3-ANIMAL-REPRODUCTION.pptx
 
Drosophila Melanogaster Dumpy
Drosophila Melanogaster DumpyDrosophila Melanogaster Dumpy
Drosophila Melanogaster Dumpy
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproduction
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproduction
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproduction
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproduction
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproduction
 
Fish reproduction
Fish reproductionFish reproduction
Fish reproduction
 

Mode of Transmission in GloFish1

  • 1. Myers   1   Christopher  Myers   Augsburg  College   Genetics  Research  Project     Mode  of  Transmission  in  GloFish     Abstract     This  study  was  designed  to  study  the  mode  of  transmission  in  a  mutant  type   of  Zebrafish  known  as  GloFish.    More  specifically  the  green  fluorescent  protein   (GFP)  or  glow  transgene  was  observed  to  determine  how  it  behaves  regarding   heritability.    We  applied  a  reciprocal  cross  of  male  vs.  female,  mutant  type  vs.  wild   type  to  produce  an  F1  generation  of  both  crosses  to  a  particular  embryonic   developmental  stage  to  examine  if  the  GFP  gene  is  expressed  and  observable  if   present.    By  this  method  we  were  able  to  determine  that  the  gene  was  autosomal   dominant  and  not  sex-­‐linked,  autosomal  recessive,  codominant  or  incompletely   dominant.    It  was  also  found  that  though  sex-­‐linkage  was  not  present  an  apparent   maternal  effect  was.    Though  previous  studies  with  these  fish  have  been  done  at   Augsburg  College  before,  our  experiment  was  novel  in  the  way  that  it  was  done  to   determine  how,  and  if,  sex  played  a  role  in  the  mode  of  transmission.         Introduction     Over  the  past  several  decades  Zebrafish  (Danio  rerio)  have  been  extensively   studied  from  several  different  types  of  scientists  to  students  both  in  colleges  and  
  • 2. Myers   2   high  schools  around  the  globe.    This  is  due  to  the  fact  that  these  fish  are  very   inexpensive,  can  tolerate  a  reasonable  amount  of  stress,  produce  a  lot  of  eggs,   produce  these  eggs  reliably,  and  allow  observers  to  watch  embryo  development  that   is  comparable  to  other  species  (Zebrafish  FAQs).    This  embryonic  development  is   relatively  quick  and  is  easily  observable  under  a  decent  microscope.    Because  the   embryos  can  be  seen  so  easily  and  gene  expression  occurs  quickly  these  fish  have   become  ideal  research  organisms;  and  though  they  are  vastly  different  from   humans,  and  other  mammals,  their  embryonic  development  is  still  quite  similar  to   all  vertebrates  that  seem  to  follow  a  developmental  program  that  is  evolutionarily   conserved  (Kimmel  et  al.,  2012).     Recently  the  Zebrafish  have  been  genetically  altered  into  several  different   strains  of  fish  that  will  glow  different  colors  due  to  an  inserted  transgene.    These  fish   are  known  as  GloFish  and  are  readily  commercially  available  in  the  pet  market  as   well  as  offer  significant  viability  in   laboratory  experiments.    Under  normal   light  these  fish  appear  to  be  brightly   colored,  however,  when  they  absorb   certain  wavelengths  of  light  they  are  able   to  fluorescence  (glow).    Due  to  their  vast   array  to  explore  genetic  concepts  at  the   fundamental  level,  this  organism  was   chosen  for  our  experiment  in  order  to  look  at  how  this  transgene  is  inherited  (Vick   et  al.,  1995).   Figure  1.    Different  colors  of  GloFish   http://www.thatpetplace.com/glofish-­‐danios  
  • 3. Myers   3     By  looking  at  the  main  manufacturers  and  distributor’s  of  GloFish  website   GloFish.com  several  different  types  of  GloFish  have  been  patented  and  trademarked.     The  different  types/colors  are  bright  red,  green,  orange-­‐yellow,  blue,  and  purple   (Figure  1).    In  this  experiment  electric  green  was  used,  which  appear  to  be  yellow   under  normal  light.    The  source  for  the  transgene  inserted  into  the  green  GloFish   comes  from  the  Aequorea  victoria  jellyfish  (GloFish®  FAQ).     Methods     Mutant  type  GloFish  (8)  and  wild  type  Zebrafish  (6)  were  obtained  by   Professor  Beckman  from  a  pet  store  and  initially  all  placed  in  a  large  single  tank.     This  was  done  in  order  to  relieve  stress  on  the  fish  and  ease  the  acclamation   process.    The  tank  was  located  in  an  incubator  at  28.5  °C  with  a  light-­‐dark  cycle.     Around  a  week  and  a  half  before  the  fish  were  mated,  both  mutant  and  wild  types   were  sexed  and  separated  accordingly:  all  males  in  one  tank  and  all  females  in   another.    The  night  before  the  intended  mating,  two  mating  tanks  were  filled  with   50/50  mix  of  water  from  the  tanks  in  which  both  the  female  and  male  fish  were   taken  from.    The  first  mating  tank  included  one  female  GloFish  and  two  male   Zebrafish.    The  second  mating  tank  included  one  female  Zebrafish  and  two  male   GloFish.    These  tanks  were  then  placed  back  into  the  incubator  and  the  fish  were  fed   again  to  make  them  comfortable.       Eggs  were  collected  the  following  morning,  roughly  4  hours  post  fertilization,   from  each  mating  tank  via  pipettes  and  microscopes  and  placed  into  two  labeled   petri  plates  containing  embryo  water  made  up  in  the  lab  (Figure  2).    Any  eggs  that  
  • 4. Myers   4   showed  abnormalities  were  discarded  from  the  samples.    The  following  day  the  eggs   were  examined  again  for  any  other  abnormalities  or  developmental  problems;  any   that  were  found  were  discarded.    Around  50  hours  post  fertilization  all  of  the   healthy  embryos  were  mounted  (five  embryos  per  slide)  and  observed  under  a   florescence  microscope  with  blue  light  settings  (Figure  2).    These  embryos  were   then  scored  on  a  positive/negative  scale  on  if  the  expression  of  GFP  was  present  by   observable  fluorescence.     Figure  2.  Example  of  egg  4  hours  post  fertilization  and  embryo  48  hours  post  fertilization.  Eggs  were   collected  4  hours  post  fertilization  and  embryos  were  examined  for  presence  of  GFP  50  hours  post   fertilization.  Photo  credit  (Kimmel  et  al.,  1995).     Results  and  discussion     The  female  Glofish  produced  a  much  larger  sample  size  of  39  viable  eggs   compared  to  the  10  viable  eggs  produced  by  the  female  Zebrafish.    The  female   Zebrafish  had  many  eggs  that  contained  abnormalities  and  many  had  to  be   discarded  of.    Out  of  the  39  embryos  produced  by  the  maternal  mutant  type  GloFish   and  paternal  wild  type  Zebrafish  all  of  them  expressed  the  GFP  gene.    For  the   maternal  wild  type  Zebrafish  and  paternal  wild  type  GloFish  4  out  of  the  10   expressed  the  GFP  gene  (Table  1).         Table  1.  GFP  presence  amongst  both  embryo  samples.    
  • 5. Myers   5   It  was  also  observed  that  in  all  of  the  maternal  Glofish  embryos  (39)   fluorescence  was  observed  throughout  most  of  the  embryo’s  tissues  (Figure  3),   however,  in  the  maternal  Zebrafish  embryos  (4)  fluorescence  was  observed  mainly   along  the  notochord  area  (Figure  4).           Also  it  should  be  noted  that  when  looking  at  the  yolk  of  the  eggs  all  of  the  maternal   GloFish  eggs  appeared  to  express  the  GFP  (Figure  5)  where  none  of  the  maternal   Zebrafish  yolks  expressed  the  GFP  even  though  embryos  later  did  express  the   transgene.                   Figure  3.  Embryo  of  maternal  mutant   type  GloFish  and  paternal  wild  type   Zebrafish.    GFP  expression  in  significant   amount  of  tissue  observed.   Figure  4.  Embryo  of  maternal  wild  type   Zebrafish  and  paternal  mutant  type  GloFish.     GFP  expression  observed  around  notochord   area.   Figure  5.    Maternal  GloFish  yolk  showing  GFP  expression   before  age  where  GFP  should  be  expressed.  
  • 6. Myers   6   From  our  results  we  were  able  to  conclude  that  the  mode  of  transmission  for   the  transgene  of  GFP  expression  was  autosomal  dominant.    This  was  determined   because  if  the  transgene  was  autosomal  recessive  none  of  the  embryos  would  show   a  presence  of  GFP  because  none  of  the  wild  type  would  be  heterozygous  due  to  the   glow  gene  being  transgenic  in  nature.    But  it  was,  however,  able  for  the  GloFish  to  be   both  heterozygous  as  well  as  homozygous  dominant.    In  our  case  of  the  maternal   GloFish  it  was  almost  certain  that  she  was  homozygous  dominant  for  the  transgene.     In  the  case  of  our  paternal  GloFish,  in  order  to  produce  4  out  of  10  embryos  with  the   transgene  he  would  have  had  to  have  been  heterozygous  for  the  transgene.   However,  it  also  appears  that  there  were  some  types  of  maternal  effects  at   play  here.    This  is  due  mainly  to  two  observations.    The  first  observation  being  that   all  of  the  eggs  of  the  maternal  Glofish  contained  yolks  that  appeared  very  light   green/yellow  in  regular  light  as  well  as  fluoresced  under  blue  light  only  4  hours   after  fertilization.    None  of  the  maternal  Zebrafish  yolks  displayed  this   characteristic.  Secondly  of  all  the  embryos  that  showed  GFP  expression  the  maternal   Glofish  embryos  seemed  to  fluoresce  in  much  more  of  their  tissue  than  that  of   maternal  Zebrafish.     In  order  to  fully  examine  this  further,  next  time  I  would  have  more  than  just   one  reciprocal  cross.    If  the  results  showed  the  same  maternal  effects  across  several   matings  we  would  definitely  be  able  to  conclude  that  not  only  autosomal  dominance   is  at  play,  but  having  a  maternal  Glofish  also  significantly  alters  how  GFP  is   expressed.    Secondly,  it  would  have  been  nice  to  let  these  embryos  grow  older  to  see   if  the  tissues  in  the  4  maternal  Zebrafish  embryos  that  expressed  the  transgene  
  • 7. Myers   7   eventually  caught  up  with  the  other  39.    Lastly  looking  at  an  F2  generation  really   could  have  solidified  what  the  mode  of  transmission  is.    However,  for  the  amount  of   time  we  had  and  the  results  we  got,  I  feel  confident  in  our  autosomal  dominant   conclusion.     Effort  and  Contribution     When  dealing  with  live  animals  we  had  to  keep  them  alive,  keep  water  in  the   tank  and  make  sure  the  animals  ate  enough.    As  a  group  we  worked  well  with   feeding  them.    There  wasn’t  a  day  when  we  crossed  paths  with  each  other  and  one   of  our  group  members  was  checking  with  the  other  on  feeding  times  and  planning   on  who  was  feeding  throughout  the  week.    Even  though  not  everyone  participated  in   every  event  of  the  entire  experiment  I  do  feel  like  it  was  pretty  evenly  divided   amongst  the  group  members  and  we  each  did  a  significant  part,  from  keeping  water   healthy,  feeding,  checking  on  fish,  collecting  eggs,  examining  and  removing  bad  eggs,   setting  up  mating  tanks,  sexing  the  fish,  taking  pictures  of  eggs,  and  taking  pictures   of  a  scoring  fish.    I  did  miss  the  scoring  part,  however,  for  everything  else  I  was   present  and  put  effort  into  keeping  our  fish  alive,  our  embryos  healthy  and   preparing  for  mating.            
  • 8. Myers   8   Works  Cited   GloFish®  FAQ.  (n.d.).  Retrieved  December  13,  2014,  from   http://www.glofish.com/about/faq/     Kimmel,  C.  B.,  Ballard,  W.  W.,  Kimmel,  R.  S.,  Ullmann,  B.,  &  Schilling,  T.  F.  (1995).       Stages  of  Embryonic  Development  of  the  Zebrafish.    Developmental  Dynamics,       203:253-­‐310.     Vick,  B.  M.,  Pollak,  A.,  Welsh,  C.,  &  Liang,  J.  O.  (2012).  Learning  the  Scientific  Method       Using  GloFish.    Zebrafish,  9(4),  226-­‐241.  Doi:10.1089/zeb.2012.0758     Zebrafish  FAQs.  (n.d.).  Retrieved  December  13,  2014,  from   http://www.neuro.uoregon.edu/k12/FAQs.html#high  school