SlideShare a Scribd company logo
1 of 16
Quantum Mechanical
Modeling of Organic-Oxide
Surface Complexation
Reactions
UNDERGRADUATE SENIOR THESIS
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING
UNIVERSITY OF CONNECTICUT
BRIANNA DATTI
Organic pollutants in the environment are a
growing concern.
Agriculture
Industry
Pharmaceutical
We can expand on current models to increase the
understanding of adsorption of contaminants in
the environment.
(Kung & McBride, 1989)
The model utilizes quantum mechanics to predict
binding energies of adsorption.
∆𝐺 = 𝑓(Ebinding, Enonbinding)
Schrödinger equation: 𝐸𝛹 = Ĥ𝛹
∆ 𝑟 𝐺°
(298𝐾) = (𝜀0+𝐺𝑐𝑜𝑟𝑟) 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − (𝜀0+𝐺𝑐𝑜𝑟𝑟) 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠
∆𝐺° = −𝑅𝑇𝑙𝑛(𝐾)
The adsorption of organic acids to iron oxide was
investigated.
Figure 1. Adsorption of organic acids to iron oxide. The following are the organic acids: (A) meta-hydroxybenzoic acid; (B)
ortho-hydroxybenzoic acid; (C) Carboxybenzoic acid; (D) Methylbenzoic acid; (E) Methoxybenzoic acid; (F) Malonic acid;
(G) Lactic acid; (H) Phthalic acid; (I) Aminobenzoic acid; (J) Nitrobenzoic acid; (K) Bisulfide benzoic acid.
Results: Thermodynamic favorability of adsorption
Compound ΔrG°(298K) (KJ/mol) ΔrH°(298K) (KJ/mol)
Para-hydroxybenzoic acid -40.7038 -40.0609
Carboxybenzoic acid -47.5986 -47.5227
Methylbenzoic acid -42.3473 -41.9869
Meta- hydroxybenzoic acid -41.6365 -41.391
Ortho- hydroxybenzoic acid -40.9961 -40.7976
Nitrobenzoic acid -53.2728 -53.3361
Aminobenzoic acid -39.8923 -39.3759
Methoxybenzoic acid -40.281 -39.9421
Bisulfide-benzoic acid -45.8215 -45.6282
Malonic acid -413.5957 -413.2736
Lactic acid -42.0809 -42.2158
Phthalic acid -57.5008 -57.1641
Para-hydroxybenzoic acid with
bidentate binuclear iron oxide
-48.0664 -45.0541
Para-hydroxybenzoic acid with
bidentate mononuclear iron oxide
125.2468 127.0777
The existence of para-hydroxybenzoic acid
adsorbed to bidentate mononuclear iron oxide has
been debated.
Bidentate mononuclear
VS
Bidentate binuclear
Adsorption strength is correlated to Hammet
constants, but has little correlation to pKa values.
R² = 0.853
0
10
20
30
40
50
60
-1 -0.5 0 0.5 1
|ΔG|
Hammet Constant
R² = 0.1251
0
10
20
30
40
50
60
70
0 5 10 15
|ΔG|
pKa
05001000150020002500300035004000
Intensity
Wavenumber (cm-1)
Meta-hydroxybenzoic acid
Ortho-hydroxybenzoic acid
Para-hydroxybenzoic acid
Theoretical spectra indicate bonding geometries
and allow comparisons to experimental data.
05001000150020002500300035004000
Intensity
Wavenumber (cm-1)
Bisulfide-benzoic acid
Nitrobenzoic acid
Aminobenzoic acid
Methylbenzoic
acid
Methoxybenzoic
acid
Carboxybenzoic
acid
05001000150020002500300035004000
Intensity
Wavenumber (cm-1)
Bidentate mononuclear
iron oxide Bidentate binuclear iron oxide
Theoretical spectra indicate bonding geometries
and allow comparisons to experimental data.
05001000150020002500300035004000
Intensity
Wavenumber (cm-1)
Phthalic acid
Lactic acid
Malonic acid
Shift in spectra peaks from aqueous to adsorbed
structures represent inner-sphere complexes.
05001000150020002500300035004000
Intensity
Wavenumber (cm-1)
Ortho-hydroxybenzoic acid
Meta-hydroxybenzoic acid
Para-hydroxybenzoic acid
Aqueous Structures
05001000150020002500300035004000
Intensity
Wavenumber (cm-1)
Meta-hydroxybenzoic acid
Ortho-hydroxybenzoic acid
Para-hydroxybenzoic acid
Adsorbed Structures
Combining quantum mechanical modeling, as
presented, with molecular dynamics simulations will
provide a greater scope of knowledge concerning
contaminant fate.
Molecular Dynamics Simulation:
para-hydroxybenzoic acid
Inner-Sphere complexation:
∆𝐺𝑠𝑜𝑟𝑏 ≅ 6.5
𝑘𝑐𝑎𝑙
𝑚𝑜𝑙
= 27.2
𝐾𝐽
𝑚𝑜𝑙
Conclusions
• Thermodynamic favorability of the investigated organic acids sorption to iron oxides
o Except para-hydroxybenzoic acid adsorbed to bidentate mononuclear iron oxide
• Adsorption increases with increasing Hammet constants; electron withdrawing group
substituents having the greatest sorption
• Quantum mechanical modeling results validated by comparison of theoretical spectra
to experimental IR spectra
o Theoretical spectra indicate presence of inner-sphere and outer-sphere complexes,
with inner-sphere complexes being dominant for para substituted benzoic acids
• Combining quantum mechanical modeling and molecular dynamics simulations can
expand the study of adsorption to a whole new class of chemicals
Acknowledgments
Major Advisor: Dr. Chad Johnston
Fellow Thesis Students:
• Grant Bedard
• Luke McNaboe
• Stefanie Shea
Questions?
References
Kung, K. H., McBride, M. B. (1989). Adsorption of Para-substituted Benzoates on Iron Oxides. Soil Science Society of
America Journal, (53), 1673-1678.
Ochterski, J. W. (2000). Thermochemistry in gaussian. Gaussian Inc, Pittsburgh, PA, 1-17.
Gaussian 09, Frisch M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.
Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,
G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.
Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
Chad Johnston, personal communication, April 29, 2015

More Related Content

What's hot

What's hot (11)

Halogen bonding
Halogen bondingHalogen bonding
Halogen bonding
 
analytical chemistry: introduction
analytical chemistry: introductionanalytical chemistry: introduction
analytical chemistry: introduction
 
Synthesis, characterization, in vitro cytotoxic and antioxidant activities of...
Synthesis, characterization, in vitro cytotoxic and antioxidant activities of...Synthesis, characterization, in vitro cytotoxic and antioxidant activities of...
Synthesis, characterization, in vitro cytotoxic and antioxidant activities of...
 
G030102044051
G030102044051G030102044051
G030102044051
 
Chap3web
Chap3webChap3web
Chap3web
 
2001 complete
2001 complete2001 complete
2001 complete
 
Problems II
Problems IIProblems II
Problems II
 
2010_JCED
2010_JCED2010_JCED
2010_JCED
 
2007_EPJ
2007_EPJ2007_EPJ
2007_EPJ
 
Stoichiometric Calculations
Stoichiometric CalculationsStoichiometric Calculations
Stoichiometric Calculations
 
2006_JSC
2006_JSC2006_JSC
2006_JSC
 

Similar to Senior Thesis Presentation

264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016
Ibrahim Abdel-Rahman
 
293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016
Ibrahim Abdel-Rahman
 
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
Yuriko Takahashi
 
Evaluating Utility of APCI MS for Analyzing Organic Peroxides
Evaluating Utility of APCI MS for Analyzing Organic PeroxidesEvaluating Utility of APCI MS for Analyzing Organic Peroxides
Evaluating Utility of APCI MS for Analyzing Organic Peroxides
Amanda Jameer
 
RCWPosterFall2014
RCWPosterFall2014RCWPosterFall2014
RCWPosterFall2014
Tim Rose
 
Kanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSocKanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSoc
Jalal Hawari
 
ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...
ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...
ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...
EDITOR IJCRCPS
 

Similar to Senior Thesis Presentation (20)

Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.
 
The Versatility of Mesoscopic Solar Cells.
The Versatility of Mesoscopic Solar Cells.The Versatility of Mesoscopic Solar Cells.
The Versatility of Mesoscopic Solar Cells.
 
264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016264-JMES-2335-Ellouze-Published Paper-May 2016
264-JMES-2335-Ellouze-Published Paper-May 2016
 
293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016
 
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimidesOrganocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
 
Vibrational Characterization and Antioxidant Activity of Newly Synthesized Ga...
Vibrational Characterization and Antioxidant Activity of Newly Synthesized Ga...Vibrational Characterization and Antioxidant Activity of Newly Synthesized Ga...
Vibrational Characterization and Antioxidant Activity of Newly Synthesized Ga...
 
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
 
Bicrystalline Titania Photocatalyst for Reduction of CO2 to Solar Fuels
Bicrystalline Titania Photocatalyst for Reduction of CO2 to Solar FuelsBicrystalline Titania Photocatalyst for Reduction of CO2 to Solar Fuels
Bicrystalline Titania Photocatalyst for Reduction of CO2 to Solar Fuels
 
Journal of the Taiwan Institute of Chemical Engineers 0 0 0 (2016) 1–20
Journal of the Taiwan Institute of Chemical Engineers 0 0 0 (2016) 1–20Journal of the Taiwan Institute of Chemical Engineers 0 0 0 (2016) 1–20
Journal of the Taiwan Institute of Chemical Engineers 0 0 0 (2016) 1–20
 
Clarissa Presentation
Clarissa PresentationClarissa Presentation
Clarissa Presentation
 
Ramesh research scientist
Ramesh research scientistRamesh research scientist
Ramesh research scientist
 
Samba1 ol (1)
Samba1 ol (1)Samba1 ol (1)
Samba1 ol (1)
 
Мутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотикамиМутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотиками
 
Evaluating Utility of APCI MS for Analyzing Organic Peroxides
Evaluating Utility of APCI MS for Analyzing Organic PeroxidesEvaluating Utility of APCI MS for Analyzing Organic Peroxides
Evaluating Utility of APCI MS for Analyzing Organic Peroxides
 
Inorg Chem 2003 Grotjahn
Inorg Chem 2003 GrotjahnInorg Chem 2003 Grotjahn
Inorg Chem 2003 Grotjahn
 
CEO_finalREUposter [3]
CEO_finalREUposter [3]CEO_finalREUposter [3]
CEO_finalREUposter [3]
 
RCWPosterFall2014
RCWPosterFall2014RCWPosterFall2014
RCWPosterFall2014
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
Kanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSocKanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSoc
 
ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...
ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...
ACETYLATION OF BENZYLIC ALCOHOLS OVER BiFeO3 (BFO), Bi0.86Sm0.07Eu0.07FeO3 (B...
 

Senior Thesis Presentation

  • 1. Quantum Mechanical Modeling of Organic-Oxide Surface Complexation Reactions UNDERGRADUATE SENIOR THESIS DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING UNIVERSITY OF CONNECTICUT BRIANNA DATTI
  • 2. Organic pollutants in the environment are a growing concern. Agriculture Industry Pharmaceutical
  • 3. We can expand on current models to increase the understanding of adsorption of contaminants in the environment. (Kung & McBride, 1989)
  • 4. The model utilizes quantum mechanics to predict binding energies of adsorption. ∆𝐺 = 𝑓(Ebinding, Enonbinding) Schrödinger equation: 𝐸𝛹 = Ĥ𝛹 ∆ 𝑟 𝐺° (298𝐾) = (𝜀0+𝐺𝑐𝑜𝑟𝑟) 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − (𝜀0+𝐺𝑐𝑜𝑟𝑟) 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 ∆𝐺° = −𝑅𝑇𝑙𝑛(𝐾)
  • 5. The adsorption of organic acids to iron oxide was investigated. Figure 1. Adsorption of organic acids to iron oxide. The following are the organic acids: (A) meta-hydroxybenzoic acid; (B) ortho-hydroxybenzoic acid; (C) Carboxybenzoic acid; (D) Methylbenzoic acid; (E) Methoxybenzoic acid; (F) Malonic acid; (G) Lactic acid; (H) Phthalic acid; (I) Aminobenzoic acid; (J) Nitrobenzoic acid; (K) Bisulfide benzoic acid.
  • 6. Results: Thermodynamic favorability of adsorption Compound ΔrG°(298K) (KJ/mol) ΔrH°(298K) (KJ/mol) Para-hydroxybenzoic acid -40.7038 -40.0609 Carboxybenzoic acid -47.5986 -47.5227 Methylbenzoic acid -42.3473 -41.9869 Meta- hydroxybenzoic acid -41.6365 -41.391 Ortho- hydroxybenzoic acid -40.9961 -40.7976 Nitrobenzoic acid -53.2728 -53.3361 Aminobenzoic acid -39.8923 -39.3759 Methoxybenzoic acid -40.281 -39.9421 Bisulfide-benzoic acid -45.8215 -45.6282 Malonic acid -413.5957 -413.2736 Lactic acid -42.0809 -42.2158 Phthalic acid -57.5008 -57.1641 Para-hydroxybenzoic acid with bidentate binuclear iron oxide -48.0664 -45.0541 Para-hydroxybenzoic acid with bidentate mononuclear iron oxide 125.2468 127.0777
  • 7. The existence of para-hydroxybenzoic acid adsorbed to bidentate mononuclear iron oxide has been debated. Bidentate mononuclear VS Bidentate binuclear
  • 8. Adsorption strength is correlated to Hammet constants, but has little correlation to pKa values. R² = 0.853 0 10 20 30 40 50 60 -1 -0.5 0 0.5 1 |ΔG| Hammet Constant R² = 0.1251 0 10 20 30 40 50 60 70 0 5 10 15 |ΔG| pKa
  • 9. 05001000150020002500300035004000 Intensity Wavenumber (cm-1) Meta-hydroxybenzoic acid Ortho-hydroxybenzoic acid Para-hydroxybenzoic acid Theoretical spectra indicate bonding geometries and allow comparisons to experimental data. 05001000150020002500300035004000 Intensity Wavenumber (cm-1) Bisulfide-benzoic acid Nitrobenzoic acid Aminobenzoic acid Methylbenzoic acid Methoxybenzoic acid Carboxybenzoic acid
  • 10. 05001000150020002500300035004000 Intensity Wavenumber (cm-1) Bidentate mononuclear iron oxide Bidentate binuclear iron oxide Theoretical spectra indicate bonding geometries and allow comparisons to experimental data. 05001000150020002500300035004000 Intensity Wavenumber (cm-1) Phthalic acid Lactic acid Malonic acid
  • 11. Shift in spectra peaks from aqueous to adsorbed structures represent inner-sphere complexes. 05001000150020002500300035004000 Intensity Wavenumber (cm-1) Ortho-hydroxybenzoic acid Meta-hydroxybenzoic acid Para-hydroxybenzoic acid Aqueous Structures 05001000150020002500300035004000 Intensity Wavenumber (cm-1) Meta-hydroxybenzoic acid Ortho-hydroxybenzoic acid Para-hydroxybenzoic acid Adsorbed Structures
  • 12. Combining quantum mechanical modeling, as presented, with molecular dynamics simulations will provide a greater scope of knowledge concerning contaminant fate. Molecular Dynamics Simulation: para-hydroxybenzoic acid Inner-Sphere complexation: ∆𝐺𝑠𝑜𝑟𝑏 ≅ 6.5 𝑘𝑐𝑎𝑙 𝑚𝑜𝑙 = 27.2 𝐾𝐽 𝑚𝑜𝑙
  • 13. Conclusions • Thermodynamic favorability of the investigated organic acids sorption to iron oxides o Except para-hydroxybenzoic acid adsorbed to bidentate mononuclear iron oxide • Adsorption increases with increasing Hammet constants; electron withdrawing group substituents having the greatest sorption • Quantum mechanical modeling results validated by comparison of theoretical spectra to experimental IR spectra o Theoretical spectra indicate presence of inner-sphere and outer-sphere complexes, with inner-sphere complexes being dominant for para substituted benzoic acids • Combining quantum mechanical modeling and molecular dynamics simulations can expand the study of adsorption to a whole new class of chemicals
  • 14. Acknowledgments Major Advisor: Dr. Chad Johnston Fellow Thesis Students: • Grant Bedard • Luke McNaboe • Stefanie Shea
  • 16. References Kung, K. H., McBride, M. B. (1989). Adsorption of Para-substituted Benzoates on Iron Oxides. Soil Science Society of America Journal, (53), 1673-1678. Ochterski, J. W. (2000). Thermochemistry in gaussian. Gaussian Inc, Pittsburgh, PA, 1-17. Gaussian 09, Frisch M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. Chad Johnston, personal communication, April 29, 2015