SlideShare a Scribd company logo
1 of 41
Download to read offline
 
Launch Vehicle Design 
Saturn V Subcooled Propane Study 
 
Auburn University 
 
Benjamin Bauldree 
Scott Carnahan 
Kevin Elliott 
Charlie Gonzalez 
Matthew Oakes 
Kirsten Tuggle 
Forrest Ward 
Alex Fresh 
   
1 
Abstract  
The study focuses on the type of propellants used on the Saturn V first stage.                             
Apollo 16 was used as the reference mission for Saturn V data. A trajectory code was                               
developed in order to replicate the performance characteristics of the original vehicle                       
launch up to the burnout of the first stage. A chemical equilibrium analysis was used                             
with input parameters of an F­1 class engine in order to get propellant performance data                             
for subcooled propane. Propane performance data was used in the validated trajectory                       
code in order to get performance parameters for comparison to the original Apollo 16                           
Saturn V vehicle. For one propane case, the fuel and oxidizer tanks were left the same                               
size and an appropriate mixture ratio was found. For a second propane case, the fuel                             
and oxidizer tanks were resized to match the initial weight of the Apollo 16 Saturn V and                                 
ice on the tanks was considered. For a third propane case, the tanks were once again                               
resized to match liftoff weight, but the mixture ratio was altered to achieve maximum                           
thrust. In the final propane case, the tanks were resized to match liftoff weight of the                               
original Saturn V, but the mixture ratio was altered to achieve as close as possible to                               
the highest Isp we could achieve without altering the exterior dimensions of the Saturn V.                             
As a proof of theory, a propane­fueled S­IC vehicle was treated in a rocket equation                             
analysis and its performance found to surpass that of a traditional, RP­1 fueled S­IC.                           
This comparison provided a classical proof of the benefits of propane over RP­1. 
 
   
2 
Nomenclature 
ε……. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         
structural ratio 
λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .                                                                                                                               
payload ratio 
g. . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .gravitational acceleration at sea                                                                                         
level 
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                 
.current stage 
Isp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . specific                                                                                                                           
impulse 
kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                   
.kilograms 
m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                         
.meters 
ML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                           
.payload mass 
M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                   
.total mass 
Mp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                         
propellant mass 
MR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                 
mass ratio 
MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                         
.structural mass 
n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of                                                                                                                           
stages 
O/F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidizer to Fuel Mass                                                                                                           
Ratio 
S­IC­11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . Apollo 16 First                                                                                                           
Stage 
ue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .exhaust                                                                                                                           
velocity  
Δv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …..velocity                                                                                                                       
change 
 
   
3 
List of Figures 
Figure 1: Momentum Thrust per Mass Flow Rate vs. Mass Ratio . . . . . . . . . . . . . . . . . . .                                                           
. 
Figure 2: Mass Flow Rate vs. Range Time……14 
Figure 3: Drag Coefficient vs. Mach Number…….16 
Figure 4: Apollo 16 Flight Profile…..19 
Figure 2: Tankage Comparison for O/F = 2.709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                               
. . .  
Figure 3: Tankage Comparison for O/F = 2.66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                 
. . . 
Figure 4: Mixture Ratio vs. Δv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                       
. . . . 28 
Figure 5: Mixture Ratio vs. Isp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                       
. . . .  28 
Figure 6: Mixture Ratio vs. Propellant Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                               
. . . 29 
Figure 7: Mixture Ratio vs. Mass Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                           
. . . 29 
   
4 
List of Tables 
Table 1: Critical Area Figures... . . . . . . . . . . . . . . . . . . . .11 
Table 2: Launch Sequence Event Times…12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                               
.  
Table 3: Trajectory Control Sequence...12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 4: Original S­IC Tank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                   
. . . . . . 18 
Table 5: Original Saturn V Mass Ratio Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                     
. . . . . . . . . . . . . . .  18 
Table 6: Comparison of Simulation Ouput vs Apollo 16 Data . . . . . . . . . . . . . . . . . . . . . .                                                               
. . . . . . . . . . . . . . 19 
Table 7: S­IC Tank Data with Propane, O/F = 2.59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                               
. . . . . . . . . . . . 22 
Table 8: Saturn V Mass Ratio Data with Propane... . . . . . . . . . . . . . . . . . . . .23 
Table 9: Comparison of Propane/Lox(O/F = 2.59) to Apollo 16…23 . . . . . . . . . . . . . . . . .                                                     
. . . . . . . . . . . . . . . . . .  
Table 10: S­IC Tank Data with Propane, O/F = 2.709...23 . . . . . . . . . . . . . . . . . . . . . . . .                                                                   
. . . . . . . . . . . . 
Table 11: Saturn V Mass Ratio Data with Propane, O/F = 2.709 . . . . . . . . . . . . . . . . . . .                                                             
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Table 12: Comparison of Propane/LOX(O/F = 2.709) to Apollo 16 . . . . . . . . . . . . . . . . . .                                                       
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
Table 13: S­IC Tank Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                             
. . . . . . . 25 
Table 14: Saturn V Mass Ratio Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . .                                                               
. . . . . . . . . . . . . . . . . . . . . . 26 
Table 15: Comparison of Propane/LOX (O/F = 2.66) to Apollo 16...27 . . . . . . . . . . . . . . .                                                   
. . . . . . . . . . . . . . . . . . . . . 
Table 16: Mass and Performance Properties of a Propane­fueled S­IC (MR = 2.59) . . . .                                 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
Table 12: Comparison of Propane/LOX(O/F = 2.709) to Apollo 16 . . . . . . . . . . . . . . . . . .                                                       
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
Table 13: S­IC Tank Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                             
. . . . . . . 25 
Table 14: Saturn V Mass Ratio Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . .                                                               
. . . . . . . . . . . . . . . . . . . . . . 26   
5 
Introduction 
Faced with the task of lifting large payloads through Earth’s substantial gravity                       
well, launch vehicles call, first and foremost, for a staged architecture, the first stage of                             
which typically utilizes a high energy density hydrocarbon fuel and thus low structural                         
mass ratios. RP­1 (Rocket Propellant­1), a highly refined form of kerosene, has                       
traditionally served this purpose well, and as a result boasts a great deal of proven                             
hardware and processes built around it. Propane (C3H8), however, a hydrocarbon very                       
similar to RP­1, exhibits potentially greater energy densities, and thus the opportunity                       
for increased performance over the historically successful fuel. Energy density,                   
expressed by a propellant’s impulse density, considers both bulk density and specific                       
impulse of combustion products. While a subcooled volume of propane has a lower                         
density than RP­1 and would require more tankage for an equal amount of propellant                           
mass, its projected higher values of specific impulse would compensate for the slightly                         
larger structural masses required to carry it. Moreover, subcooled propane and oxygen,                       
for a range of 7° Rankine, share a liquid state, and could be stored together with a                                 
common bulkhead. Mass savings in propane tankage, then, could possibly make up for                         
the increased structural weight required to keep the fuel subcooled, allowing for higher                         
payload­to­orbit opportunities than possible with RP­1 for an equivalent liftoff mass.   
6 
Description of CEA Code 
In order to perform the necessary propellant information and combustion                   
calculations, NASA’s CEA Code was used. Chemical Equilibrium with Applications was                     
produced in its present form by Glenn Research Center in 1994.  
The code takes inputs relevant to both propellant and rocket parameters such as                         
chamber pressures, chamber temperatures, expansion ratios, fuel selection, oxidizer                 
selection, ambient pressure, and much more, depending upon the purpose and scope                       
of the run. 
For the purposes of this project, the code was run as a rocket problem with RP­1                               
and LOX or with propane and LOX. 
   
7 
Considered Oxidizer to Fuel Ratios 
Case 1: Tanks Filled 
Setting out to compare the performance of RP­1 as a fuel to that of subcooled                             
propane, an S­IC booster stage identical to that of S­IC­11 was considered, i.e. without                           
tanks resized to accommodate propane fuel. This would provide a straightforward                     
metric of comparison, from which further analysis could be conducted. A configuration                       
was desired that maximized propellant weight, or filled the S­IC­11 propellant tanks. To                         
this end, the density of RP­1 and S­IC­11’s mass thereof were used to calculate a                             
maximum allowable volume available for fuel. 
 
 
Multiplying this allowable fuel volume by the density of propane yields a mass of 
propane to fill S­IC­11’s tanks. 
 
 
In accordance with intuition, the fuel tank weighs less when full of propane than with 
RP­1, assuming that no extra structure is applied to keep the propane subcooled. 
Keeping the same amount of LOX in the stage, the mixture ratio is calculated as follows: 
 
8 
 
Case 2: Tanks Resized 
Through the process of simply filling up the Saturn V tanks with propane and                           
excluding any icing weight, a total weight of 6,375,810 lb is calculated for time at                             
ignition. The difference between this weight and the Saturn V weight of 6,537,238 lb [1]                             
gives a value of 161,428 lb. To determine the maximum O/F ratio possible, through this                             
limited allowable weight gain, we can consider all of this weight being added to just the                               
oxidizer propellant and tank. Calculating the weight of the ice, considering it covering                         
just the surface area of the fuel tank with a thickness of 0.25 inches and a density of                                   
57.74 lb/ft3
, gives a value of 7,544.87 lb. Thus, the true extra weight needed to add to                                 
the oxidizer propellent and tank is just 153,883.1 lb.  
This produces a new fuel weight equal to the old value of 1,278,466 lb [1] and a                                 
new oxidizer weight of 3,463,363 lb. This gives the maximum O/F possible of 2.709. 
Case 3: Maximum Thrust 
Through the use of CEA, we were able to determine the mass ratio that would                             
produce the maximum thrust available. This was found by producing a graph of the                           
thrust coefficient times the effective exhaust velocity, the momentum thrust per mass                       
flow rate, vs O/F. This produced a polynomial with one maximum at a mass ratio value                               
of 2.66 as can be seen in Figure 1. 
 
 
 
9 
Fig. 1 Momentum Thrust per Mass Flow Rate vs. Mass Ratio 
 
   
10 
Description of Trajectory Code 
To simulate the flight of the Saturn V first stage, a trajectory code had to be                               
generated. This trajectory code had to account for key aspects of the flight, including                           
range, altitude, velocity, dynamic pressure, initial vehicle weight and weight of the                       
vehicle at burnout. Given that the key element of our design task was to compare the                               
performance characteristics of the Saturn V fueled by RP­1/LOX and propane/LOX, the                       
code had to be sensitive to a number of various inputs related to the mass of the                                 
vehicle, the thrust generation for various propellants, and aerodynamic effects due to                       
drag and gravity. 
The program rested on an assortment of variables and calculations, as well as                         
constants and characteristics of past Apollo missions, specifically the Apollo 16 mission,                       
which was chosen as a baseline comparison for the code and all generated results                           
obtained from the simulations. These constants included gravitational acceleration, as                   
well as the universal gas constant, for use when calculating the Mach number during                           
flight. Various initial conditions were also defined. Examples of these are velocity,                       
acceleration, mach, range, altitude, dynamic pressure, etc. Each of these was set to                         
zero as their initial conditions. General characteristics regarding the Saturn V body were                         
also defined, including the cross­sectional area of the first stage [1] and the exit area of                               
the F­1 engine [3]. The value for these are listed below: 
Table 1: Critical Area Figures 
Cross­sectional Area (Stage 1)  855.30 ft2
 
Exit Area (Single F­1)  89.36 ft2
 
11 
 
The event times from the Apollo 16 mission were used in various aspects of the                             
program. The times for ignition, holddown arm release, center engine cutoff, and end of                           
burn were used to simulate the flight with as much accuracy as possible [1]. These                             
values are listed in the table below. 
Table 2: Launch Sequence Event Times 
Event  Time (s) 
Ignition  ­6.4 
Holddown Arm Release  0.3 
Center Engine Cutoff  137.9 
End of Burn  161.8 
Separation  163.5 
 
Another key component of the program was the commanded pitch angle. The program                         
was written such that at certain times of flight, the pitch angle would adjust to place the                                 
launch vehicle on a correct trajectory with respect to the actual Apollo missions. These                           
pitch angles are listed in the table below [4]. 
Table 3: Trajectory Control Sequence 
Time (s)  Pitch Degrees (deg)  Pitch Rate (deg/s) 
0.3 to 30  0  0 
30 to 80  0 to 37.40  0.7280000 
80 to 135  37.40 to 62.23  0.4696364 
135 to 165  62.23 to 71.14  0.2970000 
12 
 
The program required various inputs from the user based on the propellant type being                           
used: 
1. Input stage 1 masses, including structural mass, payload mass, and propellant                     
mass (appendix A). These were summed up to acquire the total vehicle weight. 
2. F­1 class chamber conditions based on the propellant type and mixture ratio.                       
These values included chamber pressure and temperature, exit pressure and                   
temperature, and specific heat. All data was gathered from CEA runs and input                         
into the program. 
 
The basis of the program consisted of simple numerical integrations over time                       
step loops using equations of motion based around Newtons Second Law. The goal                         
was to calculate three main forces acting on the rocket: thrust, drag, and gravity.                           
Calculating these through multiple iterations while also calculating the change in mass                       
of the vehicle would give the acceleration of the vehicle, which could then give the                             
velocity and displacement per time step.  
 
Atmospheric Calculations 
The program began its computing iterations by calculating the change in pitch                       
angle based on the current time of flight. Next, it calculated the drag coefficient based                             
on current Mach number. Finally, atmospheric properties were calculated. Density was                     
calculated using the exponential equation below: 
13 
 
where a and b are defined according to the units desired [5]. Pressure and temperature                             
were calculated using the atmospheric model included in Matlab’s aerospace toolbox.                     
This atmospheric model was based on the U.S. Standard Atmosphere, 1976.  
 
Thrust 
The next step in the computational process was determining the mass flow rate                         
based on time of flight. This was done using the graph shown below [1,5­4]. 
 
Fig. 2 Mass Flow Rate vs. Range Time 
 
14 
A general equation was developed using various points on the graph to mimic the                           
increase in mass flow rate that occurs approximately at a range time of 80 seconds.  
Next, the exit velocity of the F­1 class engine needed to be calculated. The exit                             
velocity depended on three variables that were acquired from CEA: specific pressure,                       
chamber temperature, and exit temperature. These were input into the equation below: 
 
The thrust could then be derived using the mass flow rate, exit velocity, exit pressure                             
(from the CEA run using whichever propellant type and mixture ratio was chosen) and                           
the ambient pressure via the following equation: 
 
Drag 
Drag was calculated using the drag equation below.  
 
The drag coefficient was calculated using a series of equations retrieved by recreating                         
the drag coefficient data found on the Saturn V Launch Simulation website [4]. Then,                           
the data was split into five sections at the inflection points to generate equations for                             
each Mach number section. This data is the accumulation of multiple sources of                         
experimental data of the Saturn V in flight combined with that of the Mercury­Atlas                           
rocket, which is similar enough to a Saturn to achieve a similar drag coefficient curve                             
and is very detailed. This was done because the information required for the Saturn V                             
is incomplete.  This method produced the follow set of equations: 
15 
 
which can be visualized below [4]: 
Fig. 3 Drag Coefficient vs. Mach Number 
 
Gravity 
The gravitational force exerted on the vehicle was calculated using the standard                       
gravitational acceleration value of 32.17 ft/s2
and then multiplying it by the mass of the                             
vehicle at that particular point in time. 
 
Equations of Motion 
After all the forces were calculated, they were broken up into x­ and y­                           
components based on the pitch angle of the rocket. These force components were then                           
16 
divided by the total mass of the vehicle at that particular time and then multiplied by the                                 
time step. This resulted in a change in velocity for the x­ and y­ direction. To find the                                   
total velocity of the vehicle, these were added to the last recorded velocity in the                             
iteration process. The same process was done to find the range and altitude of the                             
launch vehicle by simply multiplying the current velocity by the time step and adding it to                               
the last recorded value for the range or altitude.  
The final step in the loop was to calculate the change in mass of the vehicle from                                 
propellant expelled through the engines. 
 
Program Configuration 
The program consisted of two loops that were set to run a designated number of                             
times. The first loop was for the powered ascent. This loop ran from ignition of the                               
vehicle at t = ­6.4 s to end of the burntime at t = 161.8 s. The second loop was for the                                           
period of coasting between the end of the burntime and separation between stage 1 and                             
stage 2. This ran for 1.7 s and ended immediately before the separation occurred. The                             
time step used in the program was 0.1 seconds. 
 
   
17 
Results and Discussion 
The Original Apollo 16 
Based on data gathered from references [1] and [2], data with regards to the                           
launch of Apollo 16 are summarized below: 
 
Table 4: Original S­IC Tank Data 
  RP­1  Oxidiser 
Tank Height (feet)  44  64 
Tank Diameter (feet)  33  33 
Propellent Weight (lb)  1,439,871  3,311,226 
Tank Weight (lb)  24,000  38,000 
 
 
Table 5: Original Saturn V Mass Ratio Data 
  Stage 1  Stage 2  Stage 3 
Structural Mass (lb)  303,367  90,360  31,394 
Propellant Mass (lb)  4,751,097  1,005,757  238,949 
Payload Mass (lb)  1,482,774  386,657  116,314 
Total Mass (lb)  6,537,238  1,482,774  386,657 
Payload Ratio, λ  0.293  0.353  0.430 
Structural Ratio, ε  0.060  0.082  0.116 
 
18 
Using the data above with the trajectory code discussed earlier, as well as CEA runs                             
using RP1/LOX propellant combo with a mixture ratio of 2.27, simulation data was                         
calculated, along with various graphs comparing the simulation data to that of the actual                           
Apollo 16 flight, as shown below. 
Table 6: Comparison of Simulation Output vs Apollo 16 Data 
 
Output Data  Apollo 16 Data 
Percent 
Difference (%) 
Max range:  60.25 miles  59.76 miles  0.83 
Max altitude:  41.72 miles  42.07 miles  ­0.83 
Max velocity:  7,702.65 ft/s  7,767.80 ft/s  ­0.84 
Max Q:  728.28 psi  726.81 psf  0.20 
Burnout vehicle mass:  1,877,301.15 lbs  1,857,487 lbs  ­0.80 
 
Fig. 4 Apollo 16 Flight Profile 
 
19 
Fig. 5 Apollo 16 Dynamic Pressure vs Time 
 
Fig 6. Apollo 16 Mach Number vs Time 
 
20 
Fig. 7 Apollo 16 Alt vs Time 
 
Fig 8. Apollo 16 Range vs Time 
 
 
21 
Fig. 9 Apollo 16 Velocity vs Time 
 
As can be seen in the Table and various graphs above, the trajectory code is validated                               
by matching the Apollo 16 flight within 1% in all 5 categories compared: altitude, range,                             
velocity, max dynamic pressure, and weight of the vehicle at burnout. 
 
Subcooled Propane 
Case 1: O/F = 2.59 
Table 7: S­IC Tank Data with Propane, O/F = 2.59 
  Propane  LOX 
Tank Height (feet)  45.45  66.12 
Ice Weight (lb)  7,725.24  ­ 
Propellent Weight (lb)  1,278,465.57  3,260,087.21 
Tank Weight (lb)  24,788.92  39,258.13 
22 
 
 
Table 8: Saturn V Mass Ratio Data with Propane, O/F = 2.59 
  Stage 1  Stage 2  Stage 3 
Structural Mass (lb)  313,139  90,360  31,394 
Propellant Mass (lb)   4,589,691.4  1,005,757  23,8949 
Payload Mass (lb)  1,482,774  386,657  116,314 
Total Mass (lb)  6,537,261  1,482,774  386,657 
Payload Ratio λ  0.293  0.353  0.430 
Structural Ratio ε  0.062  0.082  0.116 
 
The following table shows the simulation data output from the trajectory program after                         
inputting the above weights and CEA numbers discussed previously. This case used                       
the mixture ratio between propane and LOX of 2.59. 
 
Table 9: Comparison of Propane/LOX (O/F = 2.59) to Apollo 16 
  Output Data  Percent Difference (%) 
Max range:  62.16 miles  4.02 
Max altitude:  46.32 miles  10.11 
Max velocity:  7966.10 ft/s  2.55 
Max Q:  708.55 psi  ­2.51 
Burnout vehicle mass:  1890734.73 lbs  ­0.09 
 
Case 2: O/F = 2.709 
23 
Table 10: S­IC Tank Data with Propane, O/F = 2.709 
  Propane  LOX 
Tank Height (feet)  44  66.94 
Ice Weight (lb)  7,544.87  ­ 
Propellent Weight (lb)  1,278,465.67  3,463,363.51 
Tank Weight (lb)  24,000  39,745.95 
 
Fig. 10 Tankage Comparison for Propane O/F = 2.709 
 
 
 
Table 11: Saturn V Mass Ratio Data with Propane, O/F = 2.709 
  Stage 1  Stage 2  Stage 3 
Structural Mass (lb)  312,668  90,360  31,394 
24 
Propellant Mass (lb)  4,741,829  1,005,757  23,8949 
Payload Mass (lb)  1,482,774  386,657  116,314 
Total Mass (lb)  6,537,271  1,482,774  386,657 
Payload Ratio λ  0.293  0.353  0.430 
Structural Ratio ε  0.0618  0.082  0.116 
 
The following table shows the simulation data output from the trajectory program after                         
inputting the above weights and CEA numbers discussed previously. This case used                       
the mixture ratio between propane and LOX of 2.709. 
Table 12: Comparison of Propane/LOX (O/F = 2.709) to Apollo 16 
  Output Data  Percent Difference (%) 
Max range:  63.56 miles  6.36 
Max altitude:  48.86 miles  16.14 
Max velocity:  8159.53 ft/s  5.04 
Max Q:  711.88 psi  ­2.05 
Burnout vehicle mass:  1891545.21 lbs  ­0.05 
 
Case 3: O/F = 2.66 
Table 13: S­IC Tank Data with Propane, O/F = 2.66 
  Propane  LOX 
Tank Height (feet)  44.59  66.61 
Ice Weight (lb)  7,618.1  ­ 
Propellent Weight (lb)  1,295,528.33  3,446,105.37 
Tank Weight (lb)  24,320.3  39,546.89 
25 
Fig. 11: Tankage Comparison for Propane O/F = 2.66 
 
 
Table 14: Saturn V Mass Ratio Data with Propane, O/F = 2.66 
  Stage 1  Stage 2  Stage 3 
Structural Mass (lb)  312,762  90,360  31,394 
Propellant Mass (lb)  4,741,634  1,005,757  23,8949 
Payload Mass (lb)  1,482,774  386,657  116,314 
Total Mass (lb)  6,537,169  1,482,774  386,657 
Payload Ratio λ  0.293  0.353  0.430 
Structural Ratio ε  0.0619  0.082  0.116 
 
26 
The following table shows the simulation data output from the trajectory program after                         
inputting the above weights and CEA numbers discussed previously. This case used                       
the mixture ratio between propane and LOX of 2.66. 
Table 15: Comparison of Propane/LOX (O/F: 2.66) to Apollo 16 
  Output Data  Percent Difference (%) 
Max range:  64.31 miles  7.61 
Max altitude:  50.43 miles  19.87 
Max velocity:  8277.67 ft/s  6.56 
Max Q:  714.01 psi  ­1.76 
Burnout vehicle mass:  1891510.54 lbs  ­0.05 
 
The following graphs show a comparison of all cases compared an Apollo 16 flight                           
simulated using the trajectory program. 
 
  
 
 
 
 
 
 
 
 
27 
Fig 12. Propane Altitude vs Range 
 
Fig. 13 Propane Altitude vs Time 
 
28 
Fig. 14 Propane Range vs Time 
 
Fig. 15 Velocity vs Time 
 
29 
Fig. 16 Propane Mach Number vs Time 
 
Fig. 17 Propane Acceleration vs Time 
 
30 
The data presented in the three cases above indicates that a propane/LOX 
propellant combination theoretically performs better than a RP1/LOX propellant 
combination if the following assumptions could be accomplished: 
1. An F­1 class engine could be built and operated using the propane/LOX 
combination. 
2. The structure of the Stage 1 of the Saturn V could handle the increased loads 
due to pressurization required to keep the propane subcooled. This could be 
accomplished using materials that are available today, but were not available 
during the Saturn V era. 
3. The creation of a turbopump that could handle the lower density of propane and 
meet the requirements needs to operate an F­1 class engine. 
The case studies showed that the mixture ratio of 2.66 provided the “best” performance 
results, as predicted in estimations performed prior to the simulated run. This is due to a 
higher desire for thrust rather than specific impulse for the first stage due to the short 
time period the first stage remains with the rocket.  
It should be noted, however, that given the inaccuracies of rudimentary trajectory 
codes for simulations and also the inaccuracies produced from CEA, the percent 
differences listed above will be greatly diminished. 
   
31 
Rocket Equation Analysis 
Before conducting a propellant trade study, proposed trades must be examined                     
from a theoretical, or Rocket Equation, perspective. Tsiolkovsky’s equality, which                   
relates the mass ratio of a given vehicle, the exhaust velocity of its propellant, and the                               
velocity imparted to the vehicle, provides an order­of­magnitude approximation of                   
performance for a rocket­body. Typically used to calculate the required mass ratio for a                           
given mission, here Tsiolkovsky’s relation will be used to calculate an imparted Δv to the                             
Saturn V Apollo 16 first stage with the understanding that improvements in Δv may be                             
translated to reductions in liftoff weight or increases in payload weight. From such a                           
conclusion, more illustrative and descriptive means of comparing performance can be                     
implemented, as was done in the case of the 3DOF trajectory code. 
In order to provide a controlled comparison of performance, an RP­1 fueled                       
vehicle and propane fueled vehicle were treated in a non­gravitational vacuum field,                       
ignoring gravity and drag losses and stating all specific impulses as in vacuo. For a                             
preliminary comparison, a nominal tank size, both tanks full (Case 2, above), was                         
considered first. Using Apollo 16 Flight Data for mass flow rates and time of significant                             
flight events, mass properties were calculated and the rocket equation utilized to                       
measure the performance of S­IC fueled by propane. One particularly limiting                     
assumption was made with regards to this comparison: that there currently exists a                         
viable propane­fueled rocket engine, or even so much as consensus in the rocket                         
industry to create one. While thrust is only of importance when launching from the                           
ground, and of no concern to a rocket equation­based comparison, the very existence of                           
32 
a propane engine was first assumed when CEA was used to calculate specific impulses                           
for a propane/LOX propellant mixture. Another assumption, described earlier, leaves the                     
original S­IC fuel tank alone, and simply presumes the presence of insulating ice around                           
the outside of the rocket that preserves the subcooled state of the propane, considering                           
the weight of the ice added to the effective structural weight of the rocket. 
All rocket launches come with losses, especially those associated with imperfect                     
propellant management, that cannot be ignored if meaningful results are to be                       
obtained. Propellant masses on the order of thousands of pounds have to be ignored in                             
some cases due to vehicle “holddown” and residuals left in the pipes. In the case of a                                 
Saturn V first stage, powered by five F­1 engines, holddown losses can be quite large                             
despite the fact that vehicle holddown only lasts a fraction of a second past the point of                                 
all­engines­running status because of the immense mass flow rates the stage produces.                       
With the help of reference [1], significant trajectory event times were used in conjunction                           
with measured mass flow rates and mixture ratios to solve for propane­equivalent                       
holddown losses and residuals, and thus effective liftoff and burnout weights (Appendix                       
A). Table n presents the mass properties of a propane­burning S­IC vehicle as well as                             
Isp and Δv imparted. What is found is a slight improvement over a RP­1 burning S­IC,                               
which imparted by a similar analysis 12,546 ft/s to its payload. Although the                         
improvement is small, only 144 ft/s, it was developed through the use of an unaltered                             
(save for the addition of ice) S­IC, whose tanks were designed for an optimal RP­1/LOX                             
propellant combination. Any improvement at all, even a small one, in this case, hints to                             
33 
the greater advantages that may be gained by designing a stage for Propane/LOX                         
consumption.  
 
Table 16: Mass and Performance Properties of a Propane­fueled S­IC (MR = 2.59) 
 
This may be illustrated by repeating the previous procedure for a range of mixture                           
ratios, with more fuel­rich configurations necessitating the off­loading of liquid oxygen                     
and oxygen­rich the opposite. Using MATLAB to plot the results shown in figures 12                           
through 15, one can see that while Isp, also sensitive to engine mixture ratio, is                             
maximized at a value of 2.8, performance remains optimal for this scenario at 2.59, or                             
tanks­full. The size of the S­IC tanks constrain the fuel’s potential; were a                         
34 
propane­powered stage’s tanks designed for a mixture ratio of 2.8, performance could                       
be improved further. 
 
Figure 18: Mixture Ratio vs. Δv
 
 
 
 
 
Figure 19: Mixture Ratio vs. Isp
 
 
 
35 
 
Figure 20: Mixture Ratio vs. Propellant Volume
 
 
 
 
 
 
 
Figure 21: Mixture Ratio vs. Mass Ratio
 
 
 
36 
Conclusion 
The propane/LOX combination has been tested against RP­1/LOX in various                   
ways and outperforms the RP­1 every time. In various configurations the propane                       
imparts greater ⃤v , higher burnout altitude, lower max Q, or creates any number of                               
desirable effects. 
Though it may at first glance seem like a better choice than RP­1, propane does                             
not come without issues. Most notably, this project assumes that there is in existence                           
an engine, similar to the F­1, and that it is capable of producing the thrust, Isp, and                                 
efficiency considered in the previous pages. While this does pose a problem, along with                           
other factors like tank sizing, turbopump power, and many more, the gains to be had by                               
propane cannot be ignored. Even if some of these factors caused the great minds of                             
the 1960’s to disregard propane, it seems clear that with modern advances in material                           
sciences, manufacturing, and rocket development, propane will outperform RP­1 in a                     
ground­up rocket design. 
Though some may argue that the addition structure and support systems needed                       
to contain and maintain subcooled propane outweigh the benefits, it is clear to see that                             
with such large systems at stake, even a 1% difference in mass to burnout is huge                               
advancement and propane provides even better than that. For this reason it is deemed                           
that a subcooled propane/LOX propellant combination is not only feasible, but a better                         
choice than RP­1/LOX. 
 
 
37 
Propane is fresher than LOX, hands down. 
I bet you ANYTHING it WILL not work. 
We need a hint. 
“You know on ‘SHUTTLE’ we just said ‘fuck LOX’” 
bout to change every instance of “earth” in this document to “kerbin”... 
 
38 
 
 
39 
References 
1.   "Apollo 16 Mission." Saturn V Launch Vehicle Flight Evaluation Report AS­511 
(19 Jun. 1972.): 1­317. Web. 23 Apr. 2014. 
<http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730025090.pdf>. 
2. "First Stage Fact Sheet." Saturn V News Reference DEC 1968, n. pag. Web. 23 Apr. 
2014. <http://history.msfc.nasa.gov/saturn_apollo/documents/First_Stage.pdf>. 
3. "F­1 Engine Fact Sheet." Saturn V News Reference n.d., n. pag. Web. 23 Apr. 2014. 
<http://history.msfc.nasa.gov/saturn_apollo/documents/F­1_Engine.pdf>. 
4. Braeunig, Robert. "Saturn V Launch Simulation." Saturn V Launch Simulation. 
N.p., 1 Dec. 2013. Web. 23 Apr. 2014. 
<http://www.braeunig.us/apollo/saturnV.htm>. 
5. Hill, Philip, and Carl Peterson. "Performance of Rocket Vehicles." Mechanics and 
Thermodynamics of Propulsion. . Reprint. : Addison­Wesley, 1992. . Print. 
 
   
40 
Appendix A: Determination of Structural, Payload and Propellent Weights 
Original Data: 
MS = 287855 lb [1] 
ML  = 1492865 lb [1] ­ Consistent for all cases 
Mp  = 1,439,871 + 3,311,226 (RP­1 & LOX Respectively [1]) = 4,751,097 lb 
 
ε = MS / (MS + Mp) = 287855 / (287855 + 4751097) = 0.057126 
λ = ML / (MS + Mp) = 
41 

More Related Content

What's hot

1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manualJA Larson
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 16
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 16Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 16
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 16Grey Enterprise Holdings, Inc.
 
Design note ded mhp bayan 1
Design note ded mhp bayan 1Design note ded mhp bayan 1
Design note ded mhp bayan 1gazalba zaedar
 
6.subject verb agreement
6.subject verb agreement6.subject verb agreement
6.subject verb agreementEn Chomrong
 
How i became a cornetist herbert l clarke
How i became a cornetist herbert l clarkeHow i became a cornetist herbert l clarke
How i became a cornetist herbert l clarkeJossue Acevedo
 
Mech tech power plant 09
Mech tech power plant 09Mech tech power plant 09
Mech tech power plant 09Yuri Melliza
 
Gpub11712 00001 Full Interior
Gpub11712 00001 Full InteriorGpub11712 00001 Full Interior
Gpub11712 00001 Full InteriorPHD910
 
1. unit 5, proofreading
1. unit 5, proofreading1. unit 5, proofreading
1. unit 5, proofreadingEn Chomrong
 
8.topic sentence
8.topic sentence8.topic sentence
8.topic sentenceEn Chomrong
 
Power plant technology (lecture notes)
Power plant technology (lecture notes)Power plant technology (lecture notes)
Power plant technology (lecture notes)Yuri Melliza
 

What's hot (12)

1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual1987 army-corps-wetlands-delineation-manual
1987 army-corps-wetlands-delineation-manual
 
European_History
European_HistoryEuropean_History
European_History
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 16
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 16Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 16
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 16
 
Design note ded mhp bayan 1
Design note ded mhp bayan 1Design note ded mhp bayan 1
Design note ded mhp bayan 1
 
6.subject verb agreement
6.subject verb agreement6.subject verb agreement
6.subject verb agreement
 
How i became a cornetist herbert l clarke
How i became a cornetist herbert l clarkeHow i became a cornetist herbert l clarke
How i became a cornetist herbert l clarke
 
Final Report 2
Final Report 2Final Report 2
Final Report 2
 
Mech tech power plant 09
Mech tech power plant 09Mech tech power plant 09
Mech tech power plant 09
 
Gpub11712 00001 Full Interior
Gpub11712 00001 Full InteriorGpub11712 00001 Full Interior
Gpub11712 00001 Full Interior
 
1. unit 5, proofreading
1. unit 5, proofreading1. unit 5, proofreading
1. unit 5, proofreading
 
8.topic sentence
8.topic sentence8.topic sentence
8.topic sentence
 
Power plant technology (lecture notes)
Power plant technology (lecture notes)Power plant technology (lecture notes)
Power plant technology (lecture notes)
 

Viewers also liked

Mary.faller
Mary.fallerMary.faller
Mary.fallerNASAPMC
 
ASTE599_Launcher_Design
ASTE599_Launcher_DesignASTE599_Launcher_Design
ASTE599_Launcher_DesignTrevor Ormonde
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014Masahiro Kanazaki
 
Demystifying the rocket science behind making presentations
Demystifying the rocket science behind making presentationsDemystifying the rocket science behind making presentations
Demystifying the rocket science behind making presentationsSandeep Burman
 
Chapter 23 section 2 notes (the moon earth's satellite)
Chapter 23 section 2 notes (the moon earth's satellite)Chapter 23 section 2 notes (the moon earth's satellite)
Chapter 23 section 2 notes (the moon earth's satellite)Mr. Motuk
 
Profiting from Great Cross-Channel Customer Experiences_Final Draft 2
Profiting from Great Cross-Channel Customer Experiences_Final Draft 2Profiting from Great Cross-Channel Customer Experiences_Final Draft 2
Profiting from Great Cross-Channel Customer Experiences_Final Draft 2Patty Lehan
 
Interculturalidad crítica y “buen vivir”. el “otro” lugar de desarrollo
Interculturalidad crítica y “buen vivir”. el “otro” lugar de desarrolloInterculturalidad crítica y “buen vivir”. el “otro” lugar de desarrollo
Interculturalidad crítica y “buen vivir”. el “otro” lugar de desarrolloluisa fernanda gallego quina
 
problemas de la economía
problemas de la economía problemas de la economía
problemas de la economía Brenda Torres
 
Aprendizaje autonomo-diana-lizbeth-guzman-guzman
Aprendizaje autonomo-diana-lizbeth-guzman-guzmanAprendizaje autonomo-diana-lizbeth-guzman-guzman
Aprendizaje autonomo-diana-lizbeth-guzman-guzmanDIANA GUZMAN
 
Euro art studio where new jersey teens can express themselves through art
Euro art studio where new jersey teens can express themselves through artEuro art studio where new jersey teens can express themselves through art
Euro art studio where new jersey teens can express themselves through artEuro Art Studio
 
OpeningDoorsEndingHomelessnessInBristolConnecticut
OpeningDoorsEndingHomelessnessInBristolConnecticutOpeningDoorsEndingHomelessnessInBristolConnecticut
OpeningDoorsEndingHomelessnessInBristolConnecticutTravis Londen
 
sitios turisticos de colombia
sitios turisticos de colombia sitios turisticos de colombia
sitios turisticos de colombia camilofforero21
 

Viewers also liked (20)

Bauldree_Hui_ATAV_Report
Bauldree_Hui_ATAV_ReportBauldree_Hui_ATAV_Report
Bauldree_Hui_ATAV_Report
 
Mary.faller
Mary.fallerMary.faller
Mary.faller
 
ASTE599_Launcher_Design
ASTE599_Launcher_DesignASTE599_Launcher_Design
ASTE599_Launcher_Design
 
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
ハイブリッドロケットエンジンを用いたクラスタ型多段ロケットの設計@ICFD2014
 
Year 9 - Rocket Science
Year 9 - Rocket Science Year 9 - Rocket Science
Year 9 - Rocket Science
 
Demystifying the rocket science behind making presentations
Demystifying the rocket science behind making presentationsDemystifying the rocket science behind making presentations
Demystifying the rocket science behind making presentations
 
Chapter 23 section 2 notes (the moon earth's satellite)
Chapter 23 section 2 notes (the moon earth's satellite)Chapter 23 section 2 notes (the moon earth's satellite)
Chapter 23 section 2 notes (the moon earth's satellite)
 
Rockets
RocketsRockets
Rockets
 
Rocket Science
Rocket ScienceRocket Science
Rocket Science
 
Profiting from Great Cross-Channel Customer Experiences_Final Draft 2
Profiting from Great Cross-Channel Customer Experiences_Final Draft 2Profiting from Great Cross-Channel Customer Experiences_Final Draft 2
Profiting from Great Cross-Channel Customer Experiences_Final Draft 2
 
Gmd academia 2016
Gmd academia 2016Gmd academia 2016
Gmd academia 2016
 
Ahmed Assem CV 6.08.2016
Ahmed Assem CV 6.08.2016Ahmed Assem CV 6.08.2016
Ahmed Assem CV 6.08.2016
 
Interculturalidad crítica y “buen vivir”. el “otro” lugar de desarrollo
Interculturalidad crítica y “buen vivir”. el “otro” lugar de desarrolloInterculturalidad crítica y “buen vivir”. el “otro” lugar de desarrollo
Interculturalidad crítica y “buen vivir”. el “otro” lugar de desarrollo
 
problemas de la economía
problemas de la economía problemas de la economía
problemas de la economía
 
Aprendizaje autonomo-diana-lizbeth-guzman-guzman
Aprendizaje autonomo-diana-lizbeth-guzman-guzmanAprendizaje autonomo-diana-lizbeth-guzman-guzman
Aprendizaje autonomo-diana-lizbeth-guzman-guzman
 
El aprendizaje autonomo
El aprendizaje autonomoEl aprendizaje autonomo
El aprendizaje autonomo
 
Liderazgo terminado
Liderazgo terminadoLiderazgo terminado
Liderazgo terminado
 
Euro art studio where new jersey teens can express themselves through art
Euro art studio where new jersey teens can express themselves through artEuro art studio where new jersey teens can express themselves through art
Euro art studio where new jersey teens can express themselves through art
 
OpeningDoorsEndingHomelessnessInBristolConnecticut
OpeningDoorsEndingHomelessnessInBristolConnecticutOpeningDoorsEndingHomelessnessInBristolConnecticut
OpeningDoorsEndingHomelessnessInBristolConnecticut
 
sitios turisticos de colombia
sitios turisticos de colombia sitios turisticos de colombia
sitios turisticos de colombia
 

Similar to Saturn V Subcooled Propane Study

1-Module 1-Fundamentals of Chemistry.pdf
1-Module 1-Fundamentals of Chemistry.pdf1-Module 1-Fundamentals of Chemistry.pdf
1-Module 1-Fundamentals of Chemistry.pdfEliudkamande
 
Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100cromicom
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 04
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 04Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 04
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 04Grey Enterprise Holdings, Inc.
 
Geophysics: Detecting Stress in Mines
Geophysics: Detecting Stress in MinesGeophysics: Detecting Stress in Mines
Geophysics: Detecting Stress in Minesali oncel
 
NUCLEAR PHYSICS AND REACTOR THEORY.pdf
NUCLEAR PHYSICS AND REACTOR THEORY.pdfNUCLEAR PHYSICS AND REACTOR THEORY.pdf
NUCLEAR PHYSICS AND REACTOR THEORY.pdfPiyushPriyadarshi27
 
Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileWayne Smith
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 15
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 15Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 15
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 15Grey Enterprise Holdings, Inc.
 
Financial And Management Accounting
Financial And Management AccountingFinancial And Management Accounting
Financial And Management Accountingcarolinacamacho123
 
SE_Drivetrain_Model_Report
SE_Drivetrain_Model_ReportSE_Drivetrain_Model_Report
SE_Drivetrain_Model_ReportTaylor Parsons
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 05
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 05Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 05
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 05Grey Enterprise Holdings, Inc.
 
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas EmissionsStudy: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas EmissionsMarcellus Drilling News
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 07
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 07Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 07
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 07Grey Enterprise Holdings, Inc.
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2slmnsvn
 
Concept mapping patient initials, age, gender and admitting d
Concept mapping patient initials, age, gender and admitting dConcept mapping patient initials, age, gender and admitting d
Concept mapping patient initials, age, gender and admitting dARIV4
 
Answer CK-12 Physics.pdf
Answer CK-12 Physics.pdfAnswer CK-12 Physics.pdf
Answer CK-12 Physics.pdfJessica Navarro
 

Similar to Saturn V Subcooled Propane Study (20)

1-Module 1-Fundamentals of Chemistry.pdf
1-Module 1-Fundamentals of Chemistry.pdf1-Module 1-Fundamentals of Chemistry.pdf
1-Module 1-Fundamentals of Chemistry.pdf
 
COA_GHGInv_Full
COA_GHGInv_FullCOA_GHGInv_Full
COA_GHGInv_Full
 
Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100Boss cdsm amp effects processor gt 100
Boss cdsm amp effects processor gt 100
 
PROJECT KISALA
PROJECT KISALAPROJECT KISALA
PROJECT KISALA
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 04
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 04Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 04
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 04
 
Geophysics: Detecting Stress in Mines
Geophysics: Detecting Stress in MinesGeophysics: Detecting Stress in Mines
Geophysics: Detecting Stress in Mines
 
chemometrics.pdf
chemometrics.pdfchemometrics.pdf
chemometrics.pdf
 
thesis_lmd
thesis_lmdthesis_lmd
thesis_lmd
 
NUCLEAR PHYSICS AND REACTOR THEORY.pdf
NUCLEAR PHYSICS AND REACTOR THEORY.pdfNUCLEAR PHYSICS AND REACTOR THEORY.pdf
NUCLEAR PHYSICS AND REACTOR THEORY.pdf
 
Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating Turnstile
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 15
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 15Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 15
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 15
 
Financial And Management Accounting
Financial And Management AccountingFinancial And Management Accounting
Financial And Management Accounting
 
SE_Drivetrain_Model_Report
SE_Drivetrain_Model_ReportSE_Drivetrain_Model_Report
SE_Drivetrain_Model_Report
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 05
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 05Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 05
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 05
 
Thesis-Athina Sylaidi
Thesis-Athina SylaidiThesis-Athina Sylaidi
Thesis-Athina Sylaidi
 
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas EmissionsStudy: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 07
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 07Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 07
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 07
 
Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2Optimum performance for aqraba electrical network 2
Optimum performance for aqraba electrical network 2
 
Concept mapping patient initials, age, gender and admitting d
Concept mapping patient initials, age, gender and admitting dConcept mapping patient initials, age, gender and admitting d
Concept mapping patient initials, age, gender and admitting d
 
Answer CK-12 Physics.pdf
Answer CK-12 Physics.pdfAnswer CK-12 Physics.pdf
Answer CK-12 Physics.pdf
 

Saturn V Subcooled Propane Study

  • 2. Abstract   The study focuses on the type of propellants used on the Saturn V first stage.                              Apollo 16 was used as the reference mission for Saturn V data. A trajectory code was                                developed in order to replicate the performance characteristics of the original vehicle                        launch up to the burnout of the first stage. A chemical equilibrium analysis was used                              with input parameters of an F­1 class engine in order to get propellant performance data                              for subcooled propane. Propane performance data was used in the validated trajectory                        code in order to get performance parameters for comparison to the original Apollo 16                            Saturn V vehicle. For one propane case, the fuel and oxidizer tanks were left the same                                size and an appropriate mixture ratio was found. For a second propane case, the fuel                              and oxidizer tanks were resized to match the initial weight of the Apollo 16 Saturn V and                                  ice on the tanks was considered. For a third propane case, the tanks were once again                                resized to match liftoff weight, but the mixture ratio was altered to achieve maximum                            thrust. In the final propane case, the tanks were resized to match liftoff weight of the                                original Saturn V, but the mixture ratio was altered to achieve as close as possible to                                the highest Isp we could achieve without altering the exterior dimensions of the Saturn V.                              As a proof of theory, a propane­fueled S­IC vehicle was treated in a rocket equation                              analysis and its performance found to surpass that of a traditional, RP­1 fueled S­IC.                            This comparison provided a classical proof of the benefits of propane over RP­1.        2 
  • 3. Nomenclature  ε……. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          structural ratio  λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .                                                                                                                                payload ratio  g. . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .gravitational acceleration at sea                                                                                          level  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                  .current stage  Isp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . specific                                                                                                                            impulse  kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                    .kilograms  m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                          .meters  ML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                            .payload mass  M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                    .total mass  Mp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                          propellant mass  MR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                                  mass ratio  MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                                          .structural mass  n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of                                                                                                                            stages  O/F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidizer to Fuel Mass                                                                                                            Ratio  S­IC­11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . Apollo 16 First                                                                                                            Stage  ue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .exhaust                                                                                                                            velocity   Δv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …..velocity                                                                                                                        change        3 
  • 4. List of Figures  Figure 1: Momentum Thrust per Mass Flow Rate vs. Mass Ratio . . . . . . . . . . . . . . . . . . .                                                            .  Figure 2: Mass Flow Rate vs. Range Time……14  Figure 3: Drag Coefficient vs. Mach Number…….16  Figure 4: Apollo 16 Flight Profile…..19  Figure 2: Tankage Comparison for O/F = 2.709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                . . .   Figure 3: Tankage Comparison for O/F = 2.66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                  . . .  Figure 4: Mixture Ratio vs. Δv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                        . . . . 28  Figure 5: Mixture Ratio vs. Isp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                        . . . .  28  Figure 6: Mixture Ratio vs. Propellant Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                . . . 29  Figure 7: Mixture Ratio vs. Mass Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                            . . . 29      4 
  • 5. List of Tables  Table 1: Critical Area Figures... . . . . . . . . . . . . . . . . . . . .11  Table 2: Launch Sequence Event Times…12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                .   Table 3: Trajectory Control Sequence...12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Table 4: Original S­IC Tank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                    . . . . . . 18  Table 5: Original Saturn V Mass Ratio Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                      . . . . . . . . . . . . . . .  18  Table 6: Comparison of Simulation Ouput vs Apollo 16 Data . . . . . . . . . . . . . . . . . . . . . .                                                                . . . . . . . . . . . . . . 19  Table 7: S­IC Tank Data with Propane, O/F = 2.59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                . . . . . . . . . . . . 22  Table 8: Saturn V Mass Ratio Data with Propane... . . . . . . . . . . . . . . . . . . . .23  Table 9: Comparison of Propane/Lox(O/F = 2.59) to Apollo 16…23 . . . . . . . . . . . . . . . . .                                                      . . . . . . . . . . . . . . . . . .   Table 10: S­IC Tank Data with Propane, O/F = 2.709...23 . . . . . . . . . . . . . . . . . . . . . . . .                                                                    . . . . . . . . . . . .  Table 11: Saturn V Mass Ratio Data with Propane, O/F = 2.709 . . . . . . . . . . . . . . . . . . .                                                              . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  Table 12: Comparison of Propane/LOX(O/F = 2.709) to Apollo 16 . . . . . . . . . . . . . . . . . .                                                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25  Table 13: S­IC Tank Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                              . . . . . . . 25  Table 14: Saturn V Mass Ratio Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . .                                                                . . . . . . . . . . . . . . . . . . . . . . 26  Table 15: Comparison of Propane/LOX (O/F = 2.66) to Apollo 16...27 . . . . . . . . . . . . . . .                                                    . . . . . . . . . . . . . . . . . . . . .  Table 16: Mass and Performance Properties of a Propane­fueled S­IC (MR = 2.59) . . . .                                  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  Table 12: Comparison of Propane/LOX(O/F = 2.709) to Apollo 16 . . . . . . . . . . . . . . . . . .                                                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25  Table 13: S­IC Tank Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                              . . . . . . . 25  Table 14: Saturn V Mass Ratio Data with Propane, O/F = 2.66 . . . . . . . . . . . . . . . . . . . .                                                                . . . . . . . . . . . . . . . . . . . . . . 26    5 
  • 6. Introduction  Faced with the task of lifting large payloads through Earth’s substantial gravity                        well, launch vehicles call, first and foremost, for a staged architecture, the first stage of                              which typically utilizes a high energy density hydrocarbon fuel and thus low structural                          mass ratios. RP­1 (Rocket Propellant­1), a highly refined form of kerosene, has                        traditionally served this purpose well, and as a result boasts a great deal of proven                              hardware and processes built around it. Propane (C3H8), however, a hydrocarbon very                        similar to RP­1, exhibits potentially greater energy densities, and thus the opportunity                        for increased performance over the historically successful fuel. Energy density,                    expressed by a propellant’s impulse density, considers both bulk density and specific                        impulse of combustion products. While a subcooled volume of propane has a lower                          density than RP­1 and would require more tankage for an equal amount of propellant                            mass, its projected higher values of specific impulse would compensate for the slightly                          larger structural masses required to carry it. Moreover, subcooled propane and oxygen,                        for a range of 7° Rankine, share a liquid state, and could be stored together with a                                  common bulkhead. Mass savings in propane tankage, then, could possibly make up for                          the increased structural weight required to keep the fuel subcooled, allowing for higher                          payload­to­orbit opportunities than possible with RP­1 for an equivalent liftoff mass.    6 
  • 7. Description of CEA Code  In order to perform the necessary propellant information and combustion                    calculations, NASA’s CEA Code was used. Chemical Equilibrium with Applications was                      produced in its present form by Glenn Research Center in 1994.   The code takes inputs relevant to both propellant and rocket parameters such as                          chamber pressures, chamber temperatures, expansion ratios, fuel selection, oxidizer                  selection, ambient pressure, and much more, depending upon the purpose and scope                        of the run.  For the purposes of this project, the code was run as a rocket problem with RP­1                                and LOX or with propane and LOX.      7 
  • 8. Considered Oxidizer to Fuel Ratios  Case 1: Tanks Filled  Setting out to compare the performance of RP­1 as a fuel to that of subcooled                              propane, an S­IC booster stage identical to that of S­IC­11 was considered, i.e. without                            tanks resized to accommodate propane fuel. This would provide a straightforward                      metric of comparison, from which further analysis could be conducted. A configuration                        was desired that maximized propellant weight, or filled the S­IC­11 propellant tanks. To                          this end, the density of RP­1 and S­IC­11’s mass thereof were used to calculate a                              maximum allowable volume available for fuel.      Multiplying this allowable fuel volume by the density of propane yields a mass of  propane to fill S­IC­11’s tanks.      In accordance with intuition, the fuel tank weighs less when full of propane than with  RP­1, assuming that no extra structure is applied to keep the propane subcooled.  Keeping the same amount of LOX in the stage, the mixture ratio is calculated as follows:    8 
  • 9.   Case 2: Tanks Resized  Through the process of simply filling up the Saturn V tanks with propane and                            excluding any icing weight, a total weight of 6,375,810 lb is calculated for time at                              ignition. The difference between this weight and the Saturn V weight of 6,537,238 lb [1]                              gives a value of 161,428 lb. To determine the maximum O/F ratio possible, through this                              limited allowable weight gain, we can consider all of this weight being added to just the                                oxidizer propellant and tank. Calculating the weight of the ice, considering it covering                          just the surface area of the fuel tank with a thickness of 0.25 inches and a density of                                    57.74 lb/ft3 , gives a value of 7,544.87 lb. Thus, the true extra weight needed to add to                                  the oxidizer propellent and tank is just 153,883.1 lb.   This produces a new fuel weight equal to the old value of 1,278,466 lb [1] and a                                  new oxidizer weight of 3,463,363 lb. This gives the maximum O/F possible of 2.709.  Case 3: Maximum Thrust  Through the use of CEA, we were able to determine the mass ratio that would                              produce the maximum thrust available. This was found by producing a graph of the                            thrust coefficient times the effective exhaust velocity, the momentum thrust per mass                        flow rate, vs O/F. This produced a polynomial with one maximum at a mass ratio value                                of 2.66 as can be seen in Figure 1.        9 
  • 11. Description of Trajectory Code  To simulate the flight of the Saturn V first stage, a trajectory code had to be                                generated. This trajectory code had to account for key aspects of the flight, including                            range, altitude, velocity, dynamic pressure, initial vehicle weight and weight of the                        vehicle at burnout. Given that the key element of our design task was to compare the                                performance characteristics of the Saturn V fueled by RP­1/LOX and propane/LOX, the                        code had to be sensitive to a number of various inputs related to the mass of the                                  vehicle, the thrust generation for various propellants, and aerodynamic effects due to                        drag and gravity.  The program rested on an assortment of variables and calculations, as well as                          constants and characteristics of past Apollo missions, specifically the Apollo 16 mission,                        which was chosen as a baseline comparison for the code and all generated results                            obtained from the simulations. These constants included gravitational acceleration, as                    well as the universal gas constant, for use when calculating the Mach number during                            flight. Various initial conditions were also defined. Examples of these are velocity,                        acceleration, mach, range, altitude, dynamic pressure, etc. Each of these was set to                          zero as their initial conditions. General characteristics regarding the Saturn V body were                          also defined, including the cross­sectional area of the first stage [1] and the exit area of                                the F­1 engine [3]. The value for these are listed below:  Table 1: Critical Area Figures  Cross­sectional Area (Stage 1)  855.30 ft2   Exit Area (Single F­1)  89.36 ft2   11 
  • 12.   The event times from the Apollo 16 mission were used in various aspects of the                              program. The times for ignition, holddown arm release, center engine cutoff, and end of                            burn were used to simulate the flight with as much accuracy as possible [1]. These                              values are listed in the table below.  Table 2: Launch Sequence Event Times  Event  Time (s)  Ignition  ­6.4  Holddown Arm Release  0.3  Center Engine Cutoff  137.9  End of Burn  161.8  Separation  163.5    Another key component of the program was the commanded pitch angle. The program                          was written such that at certain times of flight, the pitch angle would adjust to place the                                  launch vehicle on a correct trajectory with respect to the actual Apollo missions. These                            pitch angles are listed in the table below [4].  Table 3: Trajectory Control Sequence  Time (s)  Pitch Degrees (deg)  Pitch Rate (deg/s)  0.3 to 30  0  0  30 to 80  0 to 37.40  0.7280000  80 to 135  37.40 to 62.23  0.4696364  135 to 165  62.23 to 71.14  0.2970000  12 
  • 13.   The program required various inputs from the user based on the propellant type being                            used:  1. Input stage 1 masses, including structural mass, payload mass, and propellant                      mass (appendix A). These were summed up to acquire the total vehicle weight.  2. F­1 class chamber conditions based on the propellant type and mixture ratio.                        These values included chamber pressure and temperature, exit pressure and                    temperature, and specific heat. All data was gathered from CEA runs and input                          into the program.    The basis of the program consisted of simple numerical integrations over time                        step loops using equations of motion based around Newtons Second Law. The goal                          was to calculate three main forces acting on the rocket: thrust, drag, and gravity.                            Calculating these through multiple iterations while also calculating the change in mass                        of the vehicle would give the acceleration of the vehicle, which could then give the                              velocity and displacement per time step.     Atmospheric Calculations  The program began its computing iterations by calculating the change in pitch                        angle based on the current time of flight. Next, it calculated the drag coefficient based                              on current Mach number. Finally, atmospheric properties were calculated. Density was                      calculated using the exponential equation below:  13 
  • 14.   where a and b are defined according to the units desired [5]. Pressure and temperature                              were calculated using the atmospheric model included in Matlab’s aerospace toolbox.                      This atmospheric model was based on the U.S. Standard Atmosphere, 1976.     Thrust  The next step in the computational process was determining the mass flow rate                          based on time of flight. This was done using the graph shown below [1,5­4].    Fig. 2 Mass Flow Rate vs. Range Time    14 
  • 15. A general equation was developed using various points on the graph to mimic the                            increase in mass flow rate that occurs approximately at a range time of 80 seconds.   Next, the exit velocity of the F­1 class engine needed to be calculated. The exit                              velocity depended on three variables that were acquired from CEA: specific pressure,                        chamber temperature, and exit temperature. These were input into the equation below:    The thrust could then be derived using the mass flow rate, exit velocity, exit pressure                              (from the CEA run using whichever propellant type and mixture ratio was chosen) and                            the ambient pressure via the following equation:    Drag  Drag was calculated using the drag equation below.     The drag coefficient was calculated using a series of equations retrieved by recreating                          the drag coefficient data found on the Saturn V Launch Simulation website [4]. Then,                            the data was split into five sections at the inflection points to generate equations for                              each Mach number section. This data is the accumulation of multiple sources of                          experimental data of the Saturn V in flight combined with that of the Mercury­Atlas                            rocket, which is similar enough to a Saturn to achieve a similar drag coefficient curve                              and is very detailed. This was done because the information required for the Saturn V                              is incomplete.  This method produced the follow set of equations:  15 
  • 16.   which can be visualized below [4]:  Fig. 3 Drag Coefficient vs. Mach Number    Gravity  The gravitational force exerted on the vehicle was calculated using the standard                        gravitational acceleration value of 32.17 ft/s2 and then multiplying it by the mass of the                              vehicle at that particular point in time.    Equations of Motion  After all the forces were calculated, they were broken up into x­ and y­                            components based on the pitch angle of the rocket. These force components were then                            16 
  • 17. divided by the total mass of the vehicle at that particular time and then multiplied by the                                  time step. This resulted in a change in velocity for the x­ and y­ direction. To find the                                    total velocity of the vehicle, these were added to the last recorded velocity in the                              iteration process. The same process was done to find the range and altitude of the                              launch vehicle by simply multiplying the current velocity by the time step and adding it to                                the last recorded value for the range or altitude.   The final step in the loop was to calculate the change in mass of the vehicle from                                  propellant expelled through the engines.    Program Configuration  The program consisted of two loops that were set to run a designated number of                              times. The first loop was for the powered ascent. This loop ran from ignition of the                                vehicle at t = ­6.4 s to end of the burntime at t = 161.8 s. The second loop was for the                                            period of coasting between the end of the burntime and separation between stage 1 and                              stage 2. This ran for 1.7 s and ended immediately before the separation occurred. The                              time step used in the program was 0.1 seconds.        17 
  • 18. Results and Discussion  The Original Apollo 16  Based on data gathered from references [1] and [2], data with regards to the                            launch of Apollo 16 are summarized below:    Table 4: Original S­IC Tank Data    RP­1  Oxidiser  Tank Height (feet)  44  64  Tank Diameter (feet)  33  33  Propellent Weight (lb)  1,439,871  3,311,226  Tank Weight (lb)  24,000  38,000      Table 5: Original Saturn V Mass Ratio Data    Stage 1  Stage 2  Stage 3  Structural Mass (lb)  303,367  90,360  31,394  Propellant Mass (lb)  4,751,097  1,005,757  238,949  Payload Mass (lb)  1,482,774  386,657  116,314  Total Mass (lb)  6,537,238  1,482,774  386,657  Payload Ratio, λ  0.293  0.353  0.430  Structural Ratio, ε  0.060  0.082  0.116    18 
  • 19. Using the data above with the trajectory code discussed earlier, as well as CEA runs                              using RP1/LOX propellant combo with a mixture ratio of 2.27, simulation data was                          calculated, along with various graphs comparing the simulation data to that of the actual                            Apollo 16 flight, as shown below.  Table 6: Comparison of Simulation Output vs Apollo 16 Data    Output Data  Apollo 16 Data  Percent  Difference (%)  Max range:  60.25 miles  59.76 miles  0.83  Max altitude:  41.72 miles  42.07 miles  ­0.83  Max velocity:  7,702.65 ft/s  7,767.80 ft/s  ­0.84  Max Q:  728.28 psi  726.81 psf  0.20  Burnout vehicle mass:  1,877,301.15 lbs  1,857,487 lbs  ­0.80    Fig. 4 Apollo 16 Flight Profile    19 
  • 22. Fig. 9 Apollo 16 Velocity vs Time    As can be seen in the Table and various graphs above, the trajectory code is validated                                by matching the Apollo 16 flight within 1% in all 5 categories compared: altitude, range,                              velocity, max dynamic pressure, and weight of the vehicle at burnout.    Subcooled Propane  Case 1: O/F = 2.59  Table 7: S­IC Tank Data with Propane, O/F = 2.59    Propane  LOX  Tank Height (feet)  45.45  66.12  Ice Weight (lb)  7,725.24  ­  Propellent Weight (lb)  1,278,465.57  3,260,087.21  Tank Weight (lb)  24,788.92  39,258.13  22 
  • 23.     Table 8: Saturn V Mass Ratio Data with Propane, O/F = 2.59    Stage 1  Stage 2  Stage 3  Structural Mass (lb)  313,139  90,360  31,394  Propellant Mass (lb)   4,589,691.4  1,005,757  23,8949  Payload Mass (lb)  1,482,774  386,657  116,314  Total Mass (lb)  6,537,261  1,482,774  386,657  Payload Ratio λ  0.293  0.353  0.430  Structural Ratio ε  0.062  0.082  0.116    The following table shows the simulation data output from the trajectory program after                          inputting the above weights and CEA numbers discussed previously. This case used                        the mixture ratio between propane and LOX of 2.59.    Table 9: Comparison of Propane/LOX (O/F = 2.59) to Apollo 16    Output Data  Percent Difference (%)  Max range:  62.16 miles  4.02  Max altitude:  46.32 miles  10.11  Max velocity:  7966.10 ft/s  2.55  Max Q:  708.55 psi  ­2.51  Burnout vehicle mass:  1890734.73 lbs  ­0.09    Case 2: O/F = 2.709  23 
  • 24. Table 10: S­IC Tank Data with Propane, O/F = 2.709    Propane  LOX  Tank Height (feet)  44  66.94  Ice Weight (lb)  7,544.87  ­  Propellent Weight (lb)  1,278,465.67  3,463,363.51  Tank Weight (lb)  24,000  39,745.95    Fig. 10 Tankage Comparison for Propane O/F = 2.709        Table 11: Saturn V Mass Ratio Data with Propane, O/F = 2.709    Stage 1  Stage 2  Stage 3  Structural Mass (lb)  312,668  90,360  31,394  24 
  • 25. Propellant Mass (lb)  4,741,829  1,005,757  23,8949  Payload Mass (lb)  1,482,774  386,657  116,314  Total Mass (lb)  6,537,271  1,482,774  386,657  Payload Ratio λ  0.293  0.353  0.430  Structural Ratio ε  0.0618  0.082  0.116    The following table shows the simulation data output from the trajectory program after                          inputting the above weights and CEA numbers discussed previously. This case used                        the mixture ratio between propane and LOX of 2.709.  Table 12: Comparison of Propane/LOX (O/F = 2.709) to Apollo 16    Output Data  Percent Difference (%)  Max range:  63.56 miles  6.36  Max altitude:  48.86 miles  16.14  Max velocity:  8159.53 ft/s  5.04  Max Q:  711.88 psi  ­2.05  Burnout vehicle mass:  1891545.21 lbs  ­0.05    Case 3: O/F = 2.66  Table 13: S­IC Tank Data with Propane, O/F = 2.66    Propane  LOX  Tank Height (feet)  44.59  66.61  Ice Weight (lb)  7,618.1  ­  Propellent Weight (lb)  1,295,528.33  3,446,105.37  Tank Weight (lb)  24,320.3  39,546.89  25 
  • 26. Fig. 11: Tankage Comparison for Propane O/F = 2.66      Table 14: Saturn V Mass Ratio Data with Propane, O/F = 2.66    Stage 1  Stage 2  Stage 3  Structural Mass (lb)  312,762  90,360  31,394  Propellant Mass (lb)  4,741,634  1,005,757  23,8949  Payload Mass (lb)  1,482,774  386,657  116,314  Total Mass (lb)  6,537,169  1,482,774  386,657  Payload Ratio λ  0.293  0.353  0.430  Structural Ratio ε  0.0619  0.082  0.116    26 
  • 27. The following table shows the simulation data output from the trajectory program after                          inputting the above weights and CEA numbers discussed previously. This case used                        the mixture ratio between propane and LOX of 2.66.  Table 15: Comparison of Propane/LOX (O/F: 2.66) to Apollo 16    Output Data  Percent Difference (%)  Max range:  64.31 miles  7.61  Max altitude:  50.43 miles  19.87  Max velocity:  8277.67 ft/s  6.56  Max Q:  714.01 psi  ­1.76  Burnout vehicle mass:  1891510.54 lbs  ­0.05    The following graphs show a comparison of all cases compared an Apollo 16 flight                            simulated using the trajectory program.                       27 
  • 31. The data presented in the three cases above indicates that a propane/LOX  propellant combination theoretically performs better than a RP1/LOX propellant  combination if the following assumptions could be accomplished:  1. An F­1 class engine could be built and operated using the propane/LOX  combination.  2. The structure of the Stage 1 of the Saturn V could handle the increased loads  due to pressurization required to keep the propane subcooled. This could be  accomplished using materials that are available today, but were not available  during the Saturn V era.  3. The creation of a turbopump that could handle the lower density of propane and  meet the requirements needs to operate an F­1 class engine.  The case studies showed that the mixture ratio of 2.66 provided the “best” performance  results, as predicted in estimations performed prior to the simulated run. This is due to a  higher desire for thrust rather than specific impulse for the first stage due to the short  time period the first stage remains with the rocket.   It should be noted, however, that given the inaccuracies of rudimentary trajectory  codes for simulations and also the inaccuracies produced from CEA, the percent  differences listed above will be greatly diminished.      31 
  • 32. Rocket Equation Analysis  Before conducting a propellant trade study, proposed trades must be examined                      from a theoretical, or Rocket Equation, perspective. Tsiolkovsky’s equality, which                    relates the mass ratio of a given vehicle, the exhaust velocity of its propellant, and the                                velocity imparted to the vehicle, provides an order­of­magnitude approximation of                    performance for a rocket­body. Typically used to calculate the required mass ratio for a                            given mission, here Tsiolkovsky’s relation will be used to calculate an imparted Δv to the                              Saturn V Apollo 16 first stage with the understanding that improvements in Δv may be                              translated to reductions in liftoff weight or increases in payload weight. From such a                            conclusion, more illustrative and descriptive means of comparing performance can be                      implemented, as was done in the case of the 3DOF trajectory code.  In order to provide a controlled comparison of performance, an RP­1 fueled                        vehicle and propane fueled vehicle were treated in a non­gravitational vacuum field,                        ignoring gravity and drag losses and stating all specific impulses as in vacuo. For a                              preliminary comparison, a nominal tank size, both tanks full (Case 2, above), was                          considered first. Using Apollo 16 Flight Data for mass flow rates and time of significant                              flight events, mass properties were calculated and the rocket equation utilized to                        measure the performance of S­IC fueled by propane. One particularly limiting                      assumption was made with regards to this comparison: that there currently exists a                          viable propane­fueled rocket engine, or even so much as consensus in the rocket                          industry to create one. While thrust is only of importance when launching from the                            ground, and of no concern to a rocket equation­based comparison, the very existence of                            32 
  • 33. a propane engine was first assumed when CEA was used to calculate specific impulses                            for a propane/LOX propellant mixture. Another assumption, described earlier, leaves the                      original S­IC fuel tank alone, and simply presumes the presence of insulating ice around                            the outside of the rocket that preserves the subcooled state of the propane, considering                            the weight of the ice added to the effective structural weight of the rocket.  All rocket launches come with losses, especially those associated with imperfect                      propellant management, that cannot be ignored if meaningful results are to be                        obtained. Propellant masses on the order of thousands of pounds have to be ignored in                              some cases due to vehicle “holddown” and residuals left in the pipes. In the case of a                                  Saturn V first stage, powered by five F­1 engines, holddown losses can be quite large                              despite the fact that vehicle holddown only lasts a fraction of a second past the point of                                  all­engines­running status because of the immense mass flow rates the stage produces.                        With the help of reference [1], significant trajectory event times were used in conjunction                            with measured mass flow rates and mixture ratios to solve for propane­equivalent                        holddown losses and residuals, and thus effective liftoff and burnout weights (Appendix                        A). Table n presents the mass properties of a propane­burning S­IC vehicle as well as                              Isp and Δv imparted. What is found is a slight improvement over a RP­1 burning S­IC,                                which imparted by a similar analysis 12,546 ft/s to its payload. Although the                          improvement is small, only 144 ft/s, it was developed through the use of an unaltered                              (save for the addition of ice) S­IC, whose tanks were designed for an optimal RP­1/LOX                              propellant combination. Any improvement at all, even a small one, in this case, hints to                              33 
  • 34. the greater advantages that may be gained by designing a stage for Propane/LOX                          consumption.     Table 16: Mass and Performance Properties of a Propane­fueled S­IC (MR = 2.59)    This may be illustrated by repeating the previous procedure for a range of mixture                            ratios, with more fuel­rich configurations necessitating the off­loading of liquid oxygen                      and oxygen­rich the opposite. Using MATLAB to plot the results shown in figures 12                            through 15, one can see that while Isp, also sensitive to engine mixture ratio, is                              maximized at a value of 2.8, performance remains optimal for this scenario at 2.59, or                              tanks­full. The size of the S­IC tanks constrain the fuel’s potential; were a                          34 
  • 35. propane­powered stage’s tanks designed for a mixture ratio of 2.8, performance could                        be improved further.    Figure 18: Mixture Ratio vs. Δv           Figure 19: Mixture Ratio vs. Isp       35 
  • 37. Conclusion  The propane/LOX combination has been tested against RP­1/LOX in various                    ways and outperforms the RP­1 every time. In various configurations the propane                        imparts greater ⃤v , higher burnout altitude, lower max Q, or creates any number of                                desirable effects.  Though it may at first glance seem like a better choice than RP­1, propane does                              not come without issues. Most notably, this project assumes that there is in existence                            an engine, similar to the F­1, and that it is capable of producing the thrust, Isp, and                                  efficiency considered in the previous pages. While this does pose a problem, along with                            other factors like tank sizing, turbopump power, and many more, the gains to be had by                                propane cannot be ignored. Even if some of these factors caused the great minds of                              the 1960’s to disregard propane, it seems clear that with modern advances in material                            sciences, manufacturing, and rocket development, propane will outperform RP­1 in a                      ground­up rocket design.  Though some may argue that the addition structure and support systems needed                        to contain and maintain subcooled propane outweigh the benefits, it is clear to see that                              with such large systems at stake, even a 1% difference in mass to burnout is huge                                advancement and propane provides even better than that. For this reason it is deemed                            that a subcooled propane/LOX propellant combination is not only feasible, but a better                          choice than RP­1/LOX.      37 
  • 40. References  1.   "Apollo 16 Mission." Saturn V Launch Vehicle Flight Evaluation Report AS­511  (19 Jun. 1972.): 1­317. Web. 23 Apr. 2014.  <http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730025090.pdf>.  2. "First Stage Fact Sheet." Saturn V News Reference DEC 1968, n. pag. Web. 23 Apr.  2014. <http://history.msfc.nasa.gov/saturn_apollo/documents/First_Stage.pdf>.  3. "F­1 Engine Fact Sheet." Saturn V News Reference n.d., n. pag. Web. 23 Apr. 2014.  <http://history.msfc.nasa.gov/saturn_apollo/documents/F­1_Engine.pdf>.  4. Braeunig, Robert. "Saturn V Launch Simulation." Saturn V Launch Simulation.  N.p., 1 Dec. 2013. Web. 23 Apr. 2014.  <http://www.braeunig.us/apollo/saturnV.htm>.  5. Hill, Philip, and Carl Peterson. "Performance of Rocket Vehicles." Mechanics and  Thermodynamics of Propulsion. . Reprint. : Addison­Wesley, 1992. . Print.        40