SlideShare a Scribd company logo
1 of 55
Download to read offline
  1	
  
	
  
	
  
	
  
	
  
	
  
Improving	
  Public	
  Safety	
  &	
  Reducing	
  
Greenhouse	
  Gas	
  Emissions	
  by	
  Replacing	
  
Vintage	
  Gas	
  Distribution	
  Pipelines	
  in	
  
Michigan,	
  New	
  York,	
  Pennsylvania,	
  and	
  Ohio	
  
	
  
	
  
	
  
	
  
Andrew	
  Ray	
  
	
  
	
  
The	
  Johns	
  Hopkins	
  University	
  
	
  
	
  
	
  
	
  
10/14/14	
  
	
   	
  
  2	
  
Summary	
  
	
   	
  
	
   On	
   March	
   12,	
   2014,	
   eight	
   New	
   York	
   City	
   residents	
   lost	
   their	
   lives	
   and	
   48	
  
others	
   were	
   seriously	
   injured	
   when	
   a	
   violent	
   explosion	
   destroyed	
   two	
   five-­‐story	
  
tenements	
  in	
  the	
  densely	
  populated	
  borough	
  of	
  East	
  Harlem.	
  	
  Just	
  three	
  years	
  prior,	
  
the	
   Commonwealth	
   of	
   Pennsylvania	
   was	
   shocked	
   when,	
   within	
   a	
   span	
   of	
   three	
  
weeks,	
  two	
  separate	
  explosions	
  left	
  six	
  people	
  dead.	
  	
  The	
  connection	
  between	
  these	
  
tragic	
  and	
  deadly	
  explosions:	
  vintage	
  natural	
  gas	
  pipelines.	
  	
  
	
   Massive	
   quantities	
   of	
   vintage	
   natural	
   gas	
   pipelines	
   lie	
   nestled	
   beneath	
   the	
  
sidewalks	
  and	
  streets	
  of	
  New	
  York,	
  Boston,	
  Chicago,	
  Cleveland,	
  Philadelphia,	
  Detroit,	
  
and	
  Washington	
  D.C.,	
  and	
  dozens	
  of	
  other	
  major	
  American	
  cities.	
  	
  These	
  aging	
  gas	
  
mains	
  are	
  made	
  of	
  cast	
  iron	
  and	
  bare	
  steel	
  pipes	
  that	
  have	
  inferior	
  connection	
  joints	
  
and	
   were	
   installed	
   without	
   protective	
   measures	
   shielding	
   them	
   from	
   caustic	
   soil	
  
conditions.	
  	
  As	
  such,	
  vintage	
  gas	
  lines	
  are	
  far	
  more	
  vulnerable	
  to	
  corrosion,	
  leaks,	
  
and	
  catastrophic	
  failure	
  than	
  modern	
  day	
  pipeline	
  materials.	
  	
  
	
   Safely	
  transporting	
  natural	
  gas	
  in	
  a	
  cost-­‐effective	
  manner	
  has	
  been	
  an	
  issue	
  
that	
  has	
  confronted	
  the	
  gas	
  industry	
  since	
  its	
  inception.	
  Preventing	
  gas	
  leaks	
  across	
  
the	
   millions	
   of	
   miles	
   of	
   local	
   distribution	
   mains	
   and	
   customer	
   service	
   lines	
  
constantly	
  challenges	
  the	
  utility	
  companies	
  and	
  government	
  regulators	
  responsible	
  
for	
  overseeing	
  the	
  country’s	
  gas	
  distribution	
  infrastructure.	
  In	
  an	
  effort	
  to	
  improve	
  
the	
   safety	
   of	
   the	
   United	
   States	
   distribution	
   network,	
   natural	
   gas	
   utilities	
   are	
  
replacing	
   thousands	
   of	
   miles	
   of	
   vintage	
   natural	
   gas	
   pipelines	
   each	
   year.	
  	
  
Nevertheless,	
   more	
   work	
   needs	
   to	
   be	
   done.	
   	
   Since	
   2006,	
   the	
   number	
   of	
   people	
  
seriously	
  injured	
  because	
  of	
  our	
  aging	
  distribution	
  system	
  has	
  risen	
  considerably.	
  
  3	
  
And	
  at	
  the	
  current	
  replacement	
  levels,	
  it	
  will	
  be	
  more	
  than	
  a	
  half-­‐century	
  before	
  the	
  
last	
  of	
  the	
  highest	
  risk	
  gas	
  mains	
  are	
  eliminated.	
  But	
  the	
  ever-­‐present	
  threat	
  of	
  a	
  
natural	
  gas	
  explosion	
  is	
  not	
  the	
  only	
  hazard	
  created	
  by	
  the	
  unintended	
  release	
  of	
  
natural	
  gas.	
  	
  
	
   Natural	
  gas	
  has	
  a	
  composition	
  that	
  is	
  roughly	
  95	
  percent	
  methane	
  –	
  a	
  potent	
  
greenhouse	
   gas	
   (GHG)	
   and	
   a	
   primary	
   driver	
   of	
   global	
   climate	
   change.	
   As	
  
atmospheric	
  GHG	
  concentrations	
  climb,	
  it	
  is	
  probable	
  that	
  trillions	
  of	
  dollars	
  of	
  low	
  
lying	
  costal	
  infrastructure	
  will	
  be	
  threatened	
  by	
  rising	
  sea	
  levels,	
  and	
  much	
  of	
  the	
  
world’s	
   crop	
   supply	
   may	
   be	
   jeopardized	
   by	
   altered	
   precipitation	
   patterns.	
   (IPCC,	
  
2014)	
  
	
   Accelerating	
   the	
   pace	
   of	
   vintage	
   pipeline	
   modernization	
   efforts	
   is	
   an	
   issue	
  
positioned	
   squarely	
   at	
   the	
   nexus	
   of	
   pubic	
   safety	
   and	
   climate	
   policy.	
   	
   This	
   paper	
  
seeks	
   to	
   provide	
   a	
   brief	
   historical	
   context	
   of	
   vintage	
   pipeline	
   infrastructure	
   and	
  
highlight	
   the	
   threat	
   they	
   pose	
   to	
   public	
   safety.	
   It	
   also	
   presents	
   a	
   prospective	
  
emissions	
   model	
   that	
   attempts	
   to	
   quantify	
   the	
   volume	
   of	
   methane	
   emissions	
  
avoided	
  by	
  the	
  twenty-­‐eight	
  natural	
  gas	
  utility	
  companies	
  participating	
  in	
  pipeline	
  
replacement	
   programs	
   in	
   Michigan,	
   New	
   York,	
   Ohio,	
   and	
   Pennsylvania	
   between	
  
2014	
  and	
  the	
  end	
  of	
  2040.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
  4	
  
Introduction	
  
	
  
	
   Locked	
   within	
   the	
   geologic	
   formations	
   beneath	
   the	
   United	
   States	
   are	
   vast	
  
reserves	
   of	
   natural	
   gas.	
   	
   Abundant	
   throughout	
   large	
   swaths	
   of	
   the	
   country,	
   these	
  
supplies	
  have	
  been	
  exploited	
  for	
  more	
  than	
  150	
  years	
  and	
  have	
  become	
  a	
  highly	
  
versatile	
   and	
   valuable	
   fuel	
   source	
   used	
   across	
   a	
   diverse	
   array	
   of	
   applications	
   —	
  
applications	
  that	
  affect	
  nearly	
  every	
  facet	
  of	
  our	
  modern	
  industrial	
  society.	
  	
  In	
  the	
  
early	
   days	
   of	
   natural	
   gas	
   production,	
   the	
   role	
   of	
   this	
   fossil	
   fuel	
   was	
   limited,	
   with	
  
most	
  being	
  used	
  to	
  illuminate	
  the	
  streets	
  of	
  19th	
  century	
  America.	
  Over	
  the	
  following	
  
century,	
   the	
   use	
   of	
   natural	
   gas	
   became	
   more	
   widespread	
   as	
   production	
   methods	
  
improved	
  and	
  as	
  the	
  network	
  of	
  transportation	
  and	
  distribution	
  pipelines	
  expanded.	
  	
  
	
   Today	
  natural	
  gas	
  is	
  a	
  prominent	
  fuel	
  source	
  that	
  has	
  become	
  so	
  vital,	
  and	
  so	
  
deeply	
  woven	
  into	
  the	
  fabric	
  of	
  our	
  modern-­‐day	
  society,	
  that	
  it	
  is	
  inexorably	
  linked	
  
to	
   the	
   economic	
   well	
   being	
   of	
   the	
   United	
   States.	
   Millions	
   of	
   residences	
   rely	
   on	
  
natural	
  gas	
  for	
  home	
  heating	
  and	
  cooking,	
  and	
  hundreds	
  of	
  power	
  plants	
  to	
  use	
  it	
  to	
  
efficiently	
  generate	
  low-­‐carbon	
  electricity.	
  The	
  primary	
  component	
  of	
  natural	
  gas,	
  
methane,	
  is	
  also	
  an	
  invaluable	
  petrochemical	
  building	
  block	
  used	
  to	
  produce	
  a	
  wide	
  
variety	
  of	
  chemicals	
  and	
  compounds	
  that	
  we	
  rely	
  upon	
  every	
  day,	
  including	
  plastics,	
  
solvents,	
  and	
  fertilizers.	
  But	
  because	
  the	
  vast	
  majority	
  of	
  the	
  nation’s	
  natural	
  gas	
  
distribution	
  network	
  is	
  buried	
  out	
  of	
  sight	
  beneath	
  the	
  soil,	
  the	
  aging	
  network	
  of	
  
pipelines	
  that	
  bring	
  heat	
  to	
  our	
  homes	
  and	
  supply	
  fuel	
  to	
  the	
  country’s	
  industrial	
  
base	
  largely	
  goes	
  unnoticed.	
  	
  As	
  such,	
  few	
  realize	
  that	
  massive	
  volume	
  of	
  natural	
  gas	
  
that	
  is	
  lost	
  from	
  leaking	
  vintage	
  cast	
  iron,	
  unprotected	
  steel,	
  and	
  copper	
  natural	
  gas	
  
pipeline	
  infrastructure.	
  	
  
  5	
  
	
   Last	
   year	
   in	
   2013,	
   there	
   were	
   91,857	
   miles	
   of	
   leak	
   prone	
   natural	
   gas	
  
distribution	
   mains	
   and	
   approximately	
   4.61	
   million	
   vintage	
   customer	
   service	
   lines	
  
dispersed	
  throughout	
  the	
  United	
  States.	
  (PHMSA,	
  2014)	
  It	
  is	
  estimated	
  that	
  more	
  
than	
  20	
  million	
  Mscf	
  (one	
  thousand	
  standard	
  cubic	
  feet)	
  of	
  natural	
  gas	
  was	
  lost	
  from	
  
the	
  network	
  of	
  vintage	
  pipeline	
  infrastructure	
  in	
  2013	
  alone.	
  (EPA	
  GHG	
  Inventory,	
  
2014)	
  Michigan,	
  New	
  York,	
  Ohio,	
  and	
  Pennsylvania	
  accounted	
  for	
  31	
  percent	
  of	
  the	
  
national	
  total	
  as	
  those	
  states	
  have	
  some	
  of	
  the	
  highest	
  concentrations	
  of	
  leak	
  prone	
  
pipelines	
  in	
  the	
  country.1	
  Nationally	
  gas	
  lost	
  from	
  vintage	
  pipelines	
  costs	
  consumers	
  
hundreds	
   of	
   millions	
   of	
   dollars	
   annually.	
   However,	
   the	
   harm	
   caused	
   by	
   leaking	
  
vintage	
  pipelines	
  extends	
  well	
  beyond	
  the	
  financial	
  burden	
  that	
  is	
  passed	
  along	
  to	
  
the	
  ratepayers	
  that	
  must	
  cover	
  the	
  expense	
  of	
  natural	
  gas	
  which	
  never	
  reaches	
  the	
  
meter.	
  	
  
	
   The	
   methane	
   contained	
   in	
   natural	
   gas	
   also	
   has	
   a	
   notable	
   impact	
   on	
  
anthropogenic	
   climate	
   disruption.	
   As	
   the	
   second	
   most	
   influential	
   forcer	
   of	
   global	
  
climate	
  change,	
  and	
  possessing	
  a	
  global	
  warming	
  potential	
  (GWP)	
  30	
  times	
  greater	
  
than	
  carbon	
  dioxide	
  over	
  a	
  100-­‐year	
  timeframe,	
  fugitive	
  methane	
  emissions	
  from	
  
the	
   natural	
   gas	
   supply	
   chain,	
   including	
   those	
   from	
   vintage	
   pipelines,	
   have	
   helped	
  
exacerbate	
  the	
  rise	
  of	
  global	
  temperatures	
  over	
  the	
  past	
  century.	
  (IPCC,	
  2014)	
  Over	
  
shorter	
  durations,	
  the	
  impact	
  of	
  incrementally	
  rising	
  greenhouse	
  gas	
  concentrations	
  
may	
  seem	
  distant	
  or	
  even	
  imperceptible.	
  But	
  recent	
  scientific	
  research	
  has	
  made	
  it	
  
increasingly	
   clear	
   that	
   even	
   a	
   nominal	
   growth	
   of	
   atmospheric	
   GHG	
   levels	
   beyond	
  
those	
  presently	
  observed	
  would	
  almost	
  assuredly	
  have	
  long-­‐term	
  consequences	
  that	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Extrapolated	
  using	
  leakage	
  factors	
  from	
  40	
  CFR	
  98,	
  Subpart	
  W	
  and	
  PHMSA	
  Distribution,	
  
Transmission	
  &	
  Gathering,	
  LNG,	
  and	
  Liquid	
  Annual	
  Data	
  	
  (2013)	
  
  6	
  
are	
   widespread	
   and	
   very	
   real.	
   Altered	
   precipitation	
   patterns,	
   rising	
   sea	
   levels,	
  
diminished	
  crop	
  productivity,	
  and	
  the	
  spread	
  of	
  vector-­‐borne	
  diseases	
  are	
  but	
  a	
  few	
  
of	
   the	
   many	
   adverse	
   conditions	
   that	
   threaten	
   the	
   global	
   community	
   if	
   significant	
  
reductions	
   are	
   not	
   soon	
   made	
   to	
   international	
   budget	
   of	
   carbon	
   dioxide	
   and	
  
methane	
  emissions.	
  (IPCC,	
  2014)	
  
	
   But	
  the	
  most	
  obvious	
  hazard	
  posed	
  by	
  systemic	
  pipeline	
  leakage	
  originates	
  
from	
   the	
   explosive	
   nature	
   of	
   natural	
   gas.	
   On	
   the	
   morning	
   of	
   March	
   12,	
   2014,	
   the	
  
citizens	
  of	
  New	
  York	
  were	
  painfully	
  reminded	
  of	
  that	
  fact.	
  That	
  morning	
  a	
  sudden	
  
and	
   violent	
   gas	
   explosion	
   ripped	
   through	
   a	
   densely	
   populated	
   East	
   Harlem	
  
neighborhood.	
  The	
  force	
  of	
  the	
  blast	
  and	
  the	
  fire	
  that	
  ensued	
  destroyed	
  two	
  five-­‐
story	
  multi-­‐purpose	
  buildings	
  and	
  left	
  several	
  other	
  tenements	
  severely	
  damaged.	
  
This	
  tragic	
  event	
  killed	
  eight	
  people,	
  seriously	
  injured	
  48	
  others,	
  and	
  caused	
  $2.8	
  
million	
   dollars	
   of	
   property	
   damage.	
   The	
   explosion,	
   the	
   most	
   deadly	
   on	
   the	
   U.S.	
  
distribution	
  system	
  in	
  over	
  27	
  years,	
  is	
  thought	
  to	
  have	
  been	
  caused	
  by	
  natural	
  gas	
  
leaking	
  from	
  a	
  crack	
  in	
  an	
  8-­‐inch	
  low-­‐pressure	
  cast	
  iron	
  gas	
  main	
  installed	
  in	
  1887.	
  
(NTSB,	
  2014)	
  (PHMSA,	
  2014)	
  	
  
	
   The	
  disaster	
  in	
  East	
  Harlem	
  serves	
  as	
  a	
  powerful	
  and	
  vivid	
  reminder	
  of	
  the	
  
potential	
   dangers	
   presented	
   with	
   the	
   continued	
   operation	
   of	
   vintage	
   natural	
   gas	
  
pipelines.	
   Unfortunately,	
   it	
   is	
   not	
   practical,	
   or	
   even	
   possible	
   for	
   that	
   matter,	
   to	
  
design	
  a	
  natural	
  gas	
  network	
  where	
  the	
  prospect	
  of	
  an	
  explosion	
  is	
  fully	
  eliminated,	
  
as	
  there	
  will	
  always	
  be	
  some	
  degree	
  of	
  inherent	
  risk	
  involved	
  with	
  transporting	
  and	
  
distributing	
  an	
  explosive	
  gas.	
  	
  Nor	
  is	
  it	
  possible	
  to	
  completely	
  eliminate	
  the	
  harmful	
  
methane	
   emissions	
   that	
   are	
   helping	
   disturb	
   global	
   climate	
   dynamics	
   and	
   afflict	
  
  7	
  
ratepayers	
  with	
  undue	
  financial	
  hardship.	
  But	
  the	
  possibility	
  exists	
  to	
  significantly	
  
improve	
  the	
  safety	
  and	
  efficacy	
  of	
  natural	
  gas	
  systems,	
  and	
  possibly	
  reduce	
  long-­‐
term	
  operational	
  costs	
  by	
  replacing	
  vintage	
  natural	
  gas	
  pipelines.	
  	
  
	
   Throughout	
  the	
  country	
  efforts	
  are	
  underway	
  to	
  reduce	
  the	
  massive	
  quantity	
  
of	
   vintage	
   natural	
   gas	
   mains	
   and	
   customer	
   service	
   lines.	
   In	
   the	
   decade	
   between	
  
2004	
  and	
  the	
  end	
  of	
  2013,	
  twenty-­‐three	
  percent	
  of	
  the	
  nation’s	
  vintage	
  gas	
  mains	
  
were	
  upgraded	
  or	
  retired	
  from	
  service.	
  (PHMSA,	
  2014)	
  It	
  is	
  very	
  likely	
  that	
  these	
  
efforts	
  have	
  prevented	
  an	
  unknown	
  number	
  of	
  deaths	
  and	
  injuries.	
  Nonetheless,	
  it	
  is	
  
becoming	
  apparent	
  that	
  more	
  assertive	
  action	
  needs	
  to	
  taken	
  as	
  the	
  rate	
  of	
  pipeline	
  
replacement	
  has	
  not	
  effectively	
  keep	
  pace	
  with	
  the	
  decay	
  of	
  vintage	
  infrastructure.	
  	
  
	
  
Leak	
  Prone	
  Pipeline	
  Infrastructure	
  	
  
	
   	
  
	
   Natural	
   gas	
   distribution	
   infrastructure	
   is	
   constantly	
   subjected	
   to	
   a	
   wide	
  
variety	
   of	
   events	
   and	
   forces	
   that	
   threaten	
   the	
   integrity,	
   reliability,	
   and	
   safety	
   of	
  
natural	
  gas	
  delivery.	
  	
  Corrosion,	
  ground	
  movement,	
  and	
  improper	
  installation	
  can	
  
cause	
  the	
  unintended	
  release	
  of	
  gas	
  from	
  any	
  pipeline.	
  But	
  vintage	
  gas	
  mains,	
  made	
  
of	
   cast	
   iron	
   and	
   unprotected	
   steel,	
   are	
   far	
   more	
   prone	
   to	
   leaks	
   and	
   catastrophic	
  
failure	
  than	
  modern	
  pipeline	
  materials.	
  
Cast	
  and	
  Wrought	
  Iron	
  Pipe	
  
	
  
	
   The	
  earliest	
  natural	
  gas	
  pipeline	
  networks	
  were	
  laid	
  beneath	
  the	
  major	
  cities	
  
along	
   the	
   eastern	
   seaboard	
   of	
   the	
   United	
   States	
   and	
   were	
   composed	
   of	
   cast	
   or	
  
  8	
  
wrought	
  iron	
  pipes.	
  These	
  systems	
  were	
  extensively	
  used	
  to	
  feed	
  the	
  gas	
  lamps	
  that	
  
illuminated	
   the	
   streets	
   of	
   mid-­‐19th	
   century	
   America.	
   	
   At	
   that	
   time	
   pipeline	
  
technology	
  made	
  it	
  difficult	
  to	
  efficiently	
  transport	
  gas	
  over	
  long	
  distances	
  –	
  so	
  early	
  
pipelines	
   usually	
   carried	
   syngas,	
   or	
   manufactured	
   gas,	
   produced	
   in	
   gasification	
  
plants	
  located	
  near	
  city	
  centers	
  that	
  collected	
  the	
  flammable	
  gases	
  released	
  when	
  
coal	
  is	
  heated	
  in	
  the	
  absence	
  of	
  oxygen.	
  Cast	
  and	
  wrought	
  iron	
  pipe	
  continued	
  to	
  be	
  
used	
   into	
   the	
   mid-­‐20th	
   century	
   because	
   it	
   was	
   cheap	
   and	
   easy	
   to	
   install.	
   But	
   the	
  
durability	
  of	
  cast	
  iron	
  mains,	
  and	
  the	
  composition	
  of	
  the	
  joints,	
  are	
  not	
  comparable	
  
to	
  present-­‐day	
  materials,	
  and	
  therefore,	
  are	
  poorly	
  suited	
  for	
  modern	
  natural	
  gas	
  
distribution	
  systems.	
  	
  
	
   Cast	
  iron	
  gas	
  mains	
  were	
  constructed	
  using	
  sections	
  of	
  pipe	
  roughly	
  ten	
  to	
  
fourteen	
   feet	
   long	
   connected	
   by	
   a	
   bell	
   and	
   spigot	
   union.	
   (EPA/GRI,	
   1996)	
   	
   When	
  
joining	
  the	
  sections	
  end	
  to	
  end,	
  it	
  was	
  common	
  practice	
  to	
  tightly	
  pack	
  hemp	
  rope	
  
and	
  molten	
  lead	
  into	
  the	
  bell	
  joint	
  to	
  form	
  a	
  tight	
  seal.	
  Hemp	
  seals,	
  also	
  known	
  as	
  
jute	
   or	
   oakum	
   seals,	
   worked	
   reasonably	
   well	
   when	
   higher	
   moisture	
   syngas	
   was	
  
used.	
  But	
  as	
  natural	
  gas,	
  which	
  possesses	
  a	
  lower	
  moisture	
  content	
  became	
  more	
  
prevalent,	
  the	
  hemp	
  seals	
  dried	
  out	
  permitting	
  gas	
  to	
  escape.	
  (U.S.	
  DOT,	
  2014)	
  
	
   Cast	
   iron	
   is	
   also	
   a	
   brittle	
   material	
   -­‐	
   and	
   although	
   it	
   has	
   a	
   relatively	
   high	
  
compressive	
   strength,	
   its	
   tensile	
   strength	
   is	
   intrinsically	
   low	
   -­‐	
   making	
   cast	
   iron	
  
vulnerable	
  to	
  the	
  sheering	
  forces	
  generated	
  by	
  ground	
  movements.	
  Moreover,	
  cast	
  
iron	
  can	
  undergo	
  graphitization,	
  “a	
  natural	
  process	
  in	
  which	
  iron	
  degrades	
  to	
  softer	
  
elements,	
  making	
  iron	
  pipelines	
  more	
  susceptible	
  to	
  cracking”.	
  (U.S.	
  DOT,	
  2014) As	
  
a	
   result	
   of	
   its	
   brittleness	
   and	
   the	
   large	
   number	
   of	
   leak-­‐prone	
   joints	
   on	
   cast	
   iron	
  
  9	
  
mains,	
  it	
  has	
  the	
  highest	
  overall	
  leakage	
  rate	
  of	
  all	
  gas	
  pipeline	
  materials	
  with	
  each	
  
mile	
  emitting	
  an	
  average	
  of	
  239	
  Mscf	
  of	
  natural	
  gas	
  annually.	
  (EPA	
  GHG	
  Inventory,	
  
2014)	
  
	
   The	
  poor	
  resistance	
  to	
  ground	
  disruptions	
  and	
  the	
  high	
  number	
  of	
  gas	
  leaks	
  
found	
  on	
  cast	
  iron	
  mains	
  also	
  makes	
  them	
  more	
  prone	
  to	
  the	
  catastrophic	
  failures	
  
that	
   often	
   lead	
   to	
   serious	
   injury	
   or	
   death.	
   In	
   fact,	
   the	
   frequency	
   of	
   accidents	
  
occurring	
   on	
   cast	
   iron	
   segments	
   of	
   the	
   U.S.	
   gas	
   distribution	
   system	
   is	
   four	
   times	
  
greater	
   than	
   that	
   of	
   modern	
   pipeline	
   materials.	
   (PHMSA,	
   2014)	
   In	
   this	
   light,	
  
regulators	
  and	
  utilities	
  are	
  focusing	
  on	
  eliminating	
  cast	
  iron	
  pipes	
  from	
  the	
  nation’s	
  
gas	
  distribution	
  networks.	
  	
   	
   	
  
	
   Nationwide,	
  there	
  were	
  30,888	
  miles	
  of	
  cast	
  iron	
  gas	
  distribution	
  mains	
  that	
  
comprised	
  approximately	
  2.4	
  percent	
  of	
  the	
  U.S.	
  gas	
  distribution	
  system	
  at	
  the	
  end	
  
of	
  2013.	
  (PHMSA,	
  2014)	
  	
  In	
  thirty-­‐four	
  states	
  and	
  the	
  District	
  of	
  Columbia	
  cast	
  iron	
  
distribution	
   infrastructure	
   is	
   still	
   in	
   service.	
   More	
   than	
   40	
   percent	
   of	
   this	
  
infrastructure	
   is	
   installed	
   in	
   the	
   states	
   of	
   New	
   Jersey,	
   New	
   York,	
   Massachusetts,	
  
Pennsylvania,	
  and	
  Michigan.	
  (PHMSA,	
  2014)	
  The	
  majority	
  of	
  the	
  nation’s	
  cast	
  iron	
  
service	
  lines	
  have	
  been	
  replaced	
  over	
  the	
  past	
  decades	
  and	
  fewer	
  than	
  12,000	
  of	
  
these	
  services	
  lines	
  remain	
  in	
  operation	
  today,	
  most	
  in	
  upstate	
  New	
  York.	
  (PHMSA,	
  
2014)	
  
Bare	
  Steel	
  Pipe	
  
	
   	
  
	
   Bare	
  steel	
  pipe	
  has	
  been	
  used	
  for	
  natural	
  gas	
  distribution	
  for	
  more	
  than	
  one	
  
hundred	
  years;	
  and	
  while	
  it	
  is	
  stronger	
  than	
  cast	
  iron,	
  and	
  able	
  to	
  withstand	
  higher	
  
  10	
  
pressures,	
   under	
   certain	
   soil	
   conditions,	
   it	
   is	
   highly	
   vulnerable	
   to	
   corrosion.	
  	
  
Damage	
  from	
  corrosion	
  is	
  the	
  pathway	
  that	
  most	
  commonly	
  allows	
  natural	
  gas	
  to	
  
leak	
   from	
   bare	
   steel	
   infrastructure.	
   While	
   not	
   all	
   bare	
   steel	
   pipes	
   will	
  experience	
  
corrosion	
  –	
  as	
  even	
  those	
  buried	
  in	
  soils	
  that	
  are	
  known	
  to	
  be	
  corrosive	
  will	
  not	
  
necessarily	
  degrade	
  –	
  corrosion	
  is	
  stochastic	
  in	
  nature	
  and	
  it	
  is	
  difficult	
  to	
  predict	
  
what	
  segments	
  of	
  pipeline	
  will	
  be	
  affected,	
  or	
  when	
  they	
  will	
  become	
  structurally	
  
compromised.	
  Many	
  variables	
  influence	
  the	
  rate	
  that	
  which	
  unprotected	
  steel	
  pipe	
  
will	
  corrode.	
  These	
  variables	
  include:	
  soil	
  moisture	
  content,	
  aeration,	
  drainage;	
  and	
  
most	
  importantly,	
  the	
  chemical	
  composition	
  of	
  the	
  soil	
  itself.	
  	
  Retroactive	
  protection	
  
measures	
  are	
  costly	
  to	
  implement	
  and	
  their	
  effectiveness	
  is	
  often	
  marginal	
  because	
  
it	
  is	
  impossible	
  to	
  restore	
  pipelines	
  already	
  damaged	
  by	
  corrosion.	
  Consequently,	
  
unprotected	
  metallic	
  gas	
  mains	
  have	
  been	
  slated	
  for	
  removal	
  in	
  many	
  states.	
  	
  	
  
	
   Unprotected	
   steel	
   pipes	
   were	
   installed	
   extensively	
   throughout	
   the	
   United	
  
States	
  before	
  federal	
  regulations	
  were	
  instituted	
  in	
  1970	
  mandating	
  that	
  cathodic	
  
protection	
   (CP)	
   and	
   protective	
   coatings	
   be	
   applied	
   to	
   all	
   new	
   steel	
   pipes.	
   	
   In	
   the	
  
United	
  States	
  there	
  are	
  55,556	
  miles	
  of	
  unprotected	
  steel	
  pipelines	
  and	
  over	
  2.33	
  
million	
   bare	
   steel	
   service	
   lines	
   in	
   operation	
   as	
   of	
   January	
   2014.	
   (PHMSA,	
   2014)	
  
More	
   than	
   half	
   of	
   the	
   unprotected	
   steel	
   infrastructure	
   is	
   located	
   in	
   Pennsylvania,	
  
Ohio,	
   Texas,	
   New	
   York,	
   and	
   Kansas.	
   	
   Each	
   mile	
   of	
   bare	
   steel	
   pipeline	
   emits	
   an	
  
average	
  of	
  110	
  Mscf	
  of	
  natural	
  gas	
  per	
  year,	
  and	
  each	
  individual	
  bare	
  steel	
  service	
  
line	
  leaks	
  an	
  average	
  of	
  1.66	
  Mscf	
  annually.	
  (EPA	
  GHG	
  Inventory,	
  2014)	
  The	
  relative	
  
rate	
  of	
  methane	
  emissions	
  leaked	
  from	
  bare	
  steel	
  infrastructure	
  in	
  the	
  United	
  States	
  
is	
  less	
  than	
  half	
  of	
  that	
  leaked	
  from	
  cast	
  iron.	
  Despite	
  this,	
  the	
  absolute	
  volume	
  GHG	
  
  11	
  
emissions	
   escaping	
   from	
   bare	
   steel	
   distribution	
   lines	
   is	
   greater	
   than	
   its	
   cast	
   iron	
  
counterpart	
  due	
  to	
  the	
  large	
  volume	
  of	
  bare	
  steel	
  infrastructure.	
  	
  
Copper	
  Pipe	
  
	
  
	
   Copper	
  piping	
  is	
  now	
  used	
  almost	
  exclusively	
  for	
  customer	
  service	
  lines	
  and	
  
is	
  also	
  a	
  candidate	
  for	
  replacement	
  in	
  some	
  pipeline	
  modernization	
  programs.	
  Since	
  
copper	
  is	
  a	
  relatively	
  soft	
  and	
  malleable	
  material,	
  it	
  can	
  be	
  easily	
  damaged.	
  Ground	
  
movements	
  may	
  cause	
  pliable	
  copper	
  service	
  lines	
  to	
  kink	
  and	
  reduce	
  or	
  cut	
  off	
  the	
  
flow	
  of	
  gas	
  to	
  the	
  customer.	
  Corrosion	
  typically	
  is	
  not	
  an	
  issue	
  with	
  copper	
  lines,	
  but	
  
can	
  occur	
  under	
  certain	
  soil	
  conditions.	
  Corrosion	
  may	
  also	
  appear	
  if	
  at	
  some	
  point	
  
of	
  during	
  the	
  gas	
  line’s	
  service	
  life	
  the	
  sulfide	
  content	
  of	
  the	
  natural	
  gas	
  exceeded	
  
specifications,	
  although	
  this	
  is	
  more	
  of	
  a	
  concern	
  for	
  collection	
  lines	
  that	
  transport	
  
unprocessed	
   natural	
   gas.	
   Issues	
   also	
   can	
   arise	
   if	
   copper	
   service	
   lines	
   are	
   coupled	
  
with	
  unprotected	
  metallic	
  gas	
  mains	
  with	
  improper	
  fittings,	
  whereby	
  a	
  galvanic	
  cell	
  
is	
  created	
  and	
  increasing	
  the	
  prospect	
  of	
  corrosive	
  damage	
  on	
  the	
  adjoining	
  metal	
  
line.	
  	
  
	
   Although	
  copper	
  is	
  superior	
  to	
  cast	
  iron	
  and	
  unprotected	
  steel	
  in	
  terms	
  of	
  
annual	
  gas	
  leakage,	
  copper	
  gas	
  lines	
  are	
  not	
  considered	
  to	
  be	
  as	
  effective	
  as	
  modern	
  
plastic	
  and	
  protected	
  steel	
  gas	
  lines.	
  With	
  more	
  than	
  970,000	
  active	
  copper	
  service	
  
lines	
  in	
  the	
  United	
  States	
  at	
  the	
  end	
  of	
  2013,	
  each	
  leaking	
  an	
  average	
  of	
  0.26	
  Mscf	
  
per	
   service	
   annually,	
   methane	
   emissions	
   lost	
   from	
   copper	
   services	
   are	
   not	
  
inconsequential.	
  (EPA	
  GHG	
  Inventory,	
  2014)	
  
	
  
  12	
  
Modern	
  Pipeline	
  Materials	
  and	
  Protection	
  
	
  
	
   To	
  improve	
  safety	
  of	
  gas	
  distribution	
  systems	
  the	
  natural	
  gas	
  industry	
  has	
  
adopted	
  the	
  use	
  of	
  plastic	
  and	
  cathodically	
  protected	
  coated	
  steel	
  gas	
  mains.	
  These	
  
newer	
   materials	
   are	
   not	
   immune	
   from	
   damage	
   or	
   catastrophic	
   failures,	
   but	
   they	
  
represent	
  major	
  improvements	
  in	
  overall	
  safety	
  and	
  reliability	
  when	
  compared	
  to	
  
the	
   higher-­‐risk	
   vintage	
   cast	
   iron	
   and	
   bare	
   steel	
   infrastructure	
   that	
   they	
   replace.	
  
Most	
  of	
  the	
  new	
  low	
  to	
  mid	
  pressure	
  distribution	
  mains	
  (≤	
  60	
  psi)	
  less	
  than	
  12”	
  in	
  
diameter	
   are	
   constructed	
   from	
   a	
   medium	
   density	
   polyethylene	
   plastic	
   that	
   is	
  
relatively	
  cheap,	
  easy	
  to	
  install,	
  will	
  not	
  corrode,	
  and	
  possesses	
  both	
  the	
  strength	
  
and	
   flexibility	
   to	
   be	
   largely	
   impervious	
   to	
   damage	
   from	
   moving	
   ground.	
   	
   Since	
  
plastic	
   mains	
   cannot	
   be	
   located	
   using	
   a	
   metal	
   detector,	
   a	
   tracer	
   wire	
   is	
   placed	
  
alongside	
  the	
  gas	
  line	
  during	
  installation	
  so	
  that	
  the	
  lines	
  can	
  be	
  properly	
  marked	
  in	
  
order	
  to	
  prevent	
  future	
  damage	
  from	
  third	
  party	
  excavation.	
  	
  
	
   Cathodically	
   protected	
   coated	
   steel	
   lines	
   are	
   deployed	
   in	
   locations	
   where	
  
high-­‐pressure	
   mains	
   (≥	
   60	
   psi)	
   are	
   necessary	
   and	
   sometimes	
   in	
   areas	
   where	
   the	
  
likelihood	
   of	
   excavation	
   damage	
   is	
   high	
   such	
   as	
   in	
   dense	
   urban	
   environments.	
  
Protected	
   steel	
   is	
   also	
   utilized	
   for	
   above	
   ground	
   pipeline	
   segments	
   because	
   long-­‐
term	
  exposure	
  to	
  UV	
  light	
  degrades	
  plastic	
  gas	
  lines	
  causing	
  them	
  to	
  become	
  brittle.	
  
	
   Both	
  cathodic	
  protection	
  and	
  epoxy-­‐based	
  protective	
  coatings	
  are	
  applied	
  to	
  
modern	
  metallic	
  gas	
  mains	
  and	
  components	
  to	
  shield	
  from	
  the	
  damaging	
  effects	
  of	
  
corrosion.	
   Two	
   methods	
   of	
   cathodic	
   protection	
   are	
   available:	
   1)	
   applying	
   an	
  
impressed	
  current	
  using	
  a	
  low-­‐voltage	
  DC	
  current	
  between	
  a	
  pipeline	
  and	
  an	
  anode	
  
that	
  permits	
  electrons	
  to	
  flow	
  towards	
  the	
  pipeline	
  rather	
  than	
  be	
  stripped	
  of	
  them;	
  
  13	
  
and	
  2)	
  wiring	
  a	
  pipeline	
  to	
  sacrificial	
  anodes	
  made	
  from	
  magnesium,	
  zinc,	
  or	
  other	
  
metal	
   that	
   are	
   more	
   reactive	
   than	
   the	
   steel	
   alloys	
   used	
   in	
   pipeline	
   construction.	
  	
  
(Fessler	
  &	
  Baker	
  Jr.,	
  Inc.,	
  2008)	
  	
   	
  
Grading	
  Natural	
  Gas	
  Leaks	
   	
  
	
  
	
   Most	
   states	
   have	
   adopted	
   the	
   leak	
   definitions	
   and	
   standards	
   set	
   by	
   the	
  
American	
  Gas	
  Association’s	
  Gas	
  Piping	
  Technology	
  Committee	
  (GPTC).	
  Natural	
  gas	
  
leaks	
   are	
   classified	
   into	
   three	
   categories	
   based	
   on	
   the	
   potential	
   hazard	
   that	
   they	
  
present	
  to	
  the	
  public	
  and	
  property.	
  Grade	
  one	
  leaks	
  are	
  the	
  most	
  serious	
  and	
  are	
  
defined	
   as	
   “leaks	
   that	
   represent	
   an	
   existing	
   or	
   probable	
   hazard	
   to	
   persons	
   or	
  
Gas	
  Piping	
  Technology	
  Committee	
  Natural	
  Gas	
  Distribution	
  Leak	
  Classifications	
  
	
   Definition	
   Action	
  Criteria	
   Example	
  
Grade	
  1	
  	
  
A	
  leak	
  that	
  
represents	
  an	
  
existing	
  or	
  
probable	
  hazard	
  to	
  
persons	
  or	
  
property	
  
Immediate	
  repair	
  or	
  
continuous	
  action	
  until	
  
conditions	
  are	
  no	
  longer	
  
hazardous.	
  Notify	
  police	
  
and	
  fire	
  departments	
  
• Any	
  indication	
  of	
  gas	
  that	
  is,	
  or	
  is	
  likely	
  to	
  
migrate	
  into,	
  under,	
  or	
  near	
  an	
  outside	
  
wall	
  of	
  a	
  building	
  
• ≥	
  80%	
  LEL	
  reading	
  in	
  confined	
  space	
  
• Any	
  leak	
  that	
  can	
  be	
  seen,	
  heard,	
  or	
  felt	
  
that	
  may	
  endanger	
  the	
  public	
  or	
  property	
  
Grade	
  2	
  
A	
  leak	
  that	
  is	
  
recognized	
  as	
  being	
  
non-­‐hazardous	
  at	
  
the	
  time	
  of	
  
detection,	
  but	
  
requires	
  scheduled	
  
repair	
  based	
  on	
  
probable	
  future	
  
hazard	
  
Repair	
  or	
  clear	
  within	
  
one	
  calendar	
  year,	
  but	
  
no	
  later	
  than	
  15	
  months	
  
from	
  the	
  date	
  the	
  leak	
  
was	
  reported.	
  Should	
  be	
  
reevaluated	
  at	
  least	
  once	
  
every	
  six	
  months.	
  May	
  
vary	
  greatly	
  in	
  degree	
  of	
  
potential	
  hazard	
  
• Any	
  reading	
  of	
  40%	
  LEL,	
  or	
  greater,	
  
under	
  a	
  sidewalk	
  in	
  a	
  wall-­‐to-­‐wall	
  paved	
  
area	
  that	
  does	
  not	
  qualify	
  as	
  a	
  Grade	
  1	
  
leak	
  
• Any	
  reading	
  between	
  20%	
  LEL	
  and	
  80%	
  
LEL	
  in	
  a	
  confined	
  space	
  
• Any	
  leak	
  which,	
  in	
  the	
  judgment	
  of	
  
operating	
  personnel	
  at	
  the	
  scene,	
  is	
  of	
  
sufficient	
  magnitude	
  to	
  justify	
  scheduled	
  
repair	
  
Grade	
  3	
  
A	
  leak	
  that	
  is	
  non-­‐
hazardous	
  at	
  the	
  
time	
  of	
  detection	
  
and	
  can	
  be	
  
reasonably	
  
expected	
  to	
  remain	
  
non-­‐hazardous	
  
These leaks should be
reevaluated during the
next scheduled survey, or
within15 months of the
date reported, whichever
occurs first, until the leak
is regraded or no longer
results in a reading
• Any	
  reading	
  of	
  less	
  than	
  80%	
  LEL	
  in	
  
small	
  gas	
  associated	
  substructures	
  
• Any	
  reading	
  under	
  a	
  street	
  in	
  areas	
  
without	
  wall-­‐to-­‐wall	
  paving	
  where	
  it	
  is	
  
unlikely	
  gas	
  could	
  migrate	
  to	
  the	
  outside	
  
wall	
  of	
  a	
  building	
  
• Any	
  reading	
  of	
  less	
  than	
  20%	
  LEL	
  in	
  a	
  
confined	
  space	
  
Source:	
  GPTC	
  Guide	
  For	
  Gas	
  Transmission	
  and	
  Distribution	
  Piping	
  Systems:	
  2012	
  Edition	
  
Guide	
  Material	
  Appendix	
  G-­‐192-­‐11	
  pp.	
  608-­‐610	
  	
  
  14	
  
property”.	
   (GPTC,	
   2012)	
   These	
   leaks	
   must	
   undergo	
   immediate	
   repair.	
   Under	
  
standard	
   atmospheric	
   conditions	
   natural	
   gas	
   will	
   ignite	
   at	
   concentrations	
   of	
   five	
  
percent	
   by	
   volume.	
   This	
   threshold	
   is	
   the	
   lower	
   explosive	
   limit	
   (LEL).	
   In	
   order	
   to	
  
provide	
  a	
  margin	
  of	
  safety,	
  grade	
  one	
  leaks	
  include	
  any	
  situation	
  where	
  gas	
  exceeds	
  
80%	
  of	
  the	
  LEL	
  (4.0%	
  by	
  volume	
  or	
  40,000	
  parts	
  per	
  million).	
  	
  
	
   On	
  the	
  other	
  end	
  of	
  the	
  leak	
  spectrum	
  are	
  non-­‐hazardous	
  grade	
  three	
  leaks.	
  
It	
  is	
  here	
  where	
  an	
  overwhelming	
  majority	
  of	
  natural	
  gas	
  leaks	
  are	
  categorized.	
  In	
  
most	
  states,	
  grade	
  three	
  leaks	
  must	
  be	
  reevaluated	
  every	
  fifteen	
  months,	
  and	
  if	
  they	
  
do	
  not	
  present	
  a	
  threat	
  to	
  public	
  safety,	
  they	
  are	
  sometimes	
  allowed	
  to	
  remain	
  for	
  
decades	
  after	
  their	
  detection.	
  Only	
  in	
  five	
  states	
  are	
  limits	
  established	
  that	
  dictate	
  
the	
  amount	
  of	
  time	
  that	
  these	
  “lesser”	
  leaks	
  are	
  allowed	
  to	
  continue	
  without	
  being	
  
repaired.	
  (NAPSR,	
  2013)	
  	
  
	
   Gas	
   operators	
   often	
   refer	
   to	
   grade	
   three	
  
leaks,	
  as	
  “non-­‐hazardous”	
  –	
  but	
  this	
  phrase	
  can	
  be	
  
misleading	
   because	
   it	
   is	
   one	
   that	
   can	
   easily	
   be	
  
misconstrued	
  to	
  denote	
  that	
  grade	
  three	
  leaks	
  lack	
  
harmful	
   consequences.	
   Although	
   they	
   are	
  
sometimes	
  only	
  pinhole	
  sized,	
  their	
  impact	
  should	
  
not	
   be	
   dismissed,	
   for	
   it	
   is	
   these	
   leaks	
   that	
   are	
  
responsible	
  for	
  a	
  majority	
  of	
  the	
  lost	
  gas	
  from	
  distribution	
  pipelines.	
  	
  PHMSA	
  data	
  
indicates	
  that	
  U.S.	
  gas	
  utilities	
  were	
  aware	
  of	
  105,513	
  gas	
  leaks	
  at	
  the	
  end	
  of	
  2013.	
  
(PHMSA,	
  2014)	
  However,	
  this	
  figure	
  only	
  accounts	
  for	
  the	
  number	
  of	
  reported	
  leaks,	
  
and	
  it	
  is	
  exceedingly	
  likely	
  that	
  thousands	
  more	
  go	
  undetected.	
  	
  
Reported	
  Number	
  of	
  
Unrepaired	
  Natural	
  Gas	
  
Leaks	
  	
  (As	
  of	
  12/31/13)	
  
Michigan	
   5,077	
  
New	
  York	
   422	
  
Ohio	
   8,197	
  
Pennsylvania	
   3,895	
  
United	
  States	
   105,513	
  
Source:	
  PHMSA	
  Annual	
  Pipeline	
  Data	
  
  15	
  
Methane	
  Emissions	
  in	
  Urban	
  Environments	
  
	
   	
  
	
   Operating	
   natural	
   gas	
   systems	
   in	
   America’s	
   most	
   densely	
   populated	
   urban	
  
environments	
   involves	
   a	
   great	
   deal	
   of	
   intrinsic	
   risk.	
   	
   While	
   many	
   elements	
  
contribute	
  to	
  the	
  elevated	
  level	
  of	
  risk,	
  the	
  most	
  tangible	
  originates	
  from	
  the	
  many	
  
individuals	
   that	
   may	
   potentially	
   be	
   affected	
   by	
   an	
   unforeseen	
   outage	
   or	
   accident.	
  
Whereas	
   a	
   localized	
   service	
   disruption	
   occurring	
   on	
   a	
   rural	
   network	
   may	
   impact	
  
several	
   dozen	
   customers,	
   a	
   similar	
   disruption	
   in	
   major	
   metropolitan	
   area	
   might	
  
potentially	
  affect	
  many	
  thousands.	
  And	
  as	
  can	
  be	
  witnessed	
  by	
  the	
  explosion	
  in	
  East	
  
Harlem,	
  accidents	
  in	
  high	
  population	
  centers	
  can	
  be	
  catastrophic.	
  But	
  in	
  addition	
  to	
  
the	
   high	
   population	
   density	
   of	
   cities,	
   there	
   are	
   many	
   other	
   challenges	
   presented	
  
with	
  operating	
  gas	
  pipelines	
  in	
  urbanized	
  environments.	
  	
  	
  
	
   A	
  large	
  percentage	
  of	
  the	
  nation’s	
  vintage	
  pipeline	
  infrastructure	
  is	
  located	
  in	
  
many	
  of	
  America’s	
  oldest	
  and	
  most	
  populous	
  cities.	
  	
  Here,	
  hundreds,	
  and	
  sometimes	
  
thousands,	
   of	
   miles	
   of	
   the	
   most	
   dangerous	
   leak-­‐prone-­‐pipeline	
   remains.	
   Even	
  
though	
   these	
   systems	
   are	
   remnants	
   of	
   a	
   former	
   era	
   their	
   operation	
   persists:	
   For	
  
example,	
  in	
  New	
  York	
  City,	
  nearly	
  3,000	
  miles	
  of	
  cast	
  iron	
  pipe	
  remains;	
  in	
  Detroit,	
  
there	
  are	
  another	
  2,000	
  miles;	
  and	
  in	
  Philadelphia	
  lies	
  1,500	
  more.	
  (PHMSA,	
  2014)	
  
	
   In	
  the	
  tightly	
  packed	
  city	
  streetscapes,	
  gas	
  pipelines	
  compete	
  for	
  space	
  with	
  
the	
  myriad	
  of	
  water	
  mains,	
  sanitary	
  sewers,	
  telephone,	
  fiber	
  optic	
  lines,	
  etc.	
  situated	
  
below	
  the	
  paved	
  surfaces.	
  For	
  natural	
  gas	
  pipelines,	
  this	
  has	
  several	
  implications,	
  
especially	
   during	
   the	
   winter	
   months,	
   which	
   can	
   be	
   particularly	
   troublesome	
   for	
  
urban	
  cast	
  iron	
  infrastructure.	
  	
  	
  
  16	
  
	
   A	
   significant	
   portion	
   of	
   the	
   nation’s	
   cast	
   iron	
   gas	
   lines	
   reside	
   in	
   northern	
  
latitudes	
  where	
  the	
  formation	
  of	
  ground	
  frost	
  can	
  disturb	
  the	
  surrounding	
  ground	
  
through	
  a	
  process	
  known	
  as	
  “frost	
  heave”.	
  	
  The	
  forces	
  generated	
  by	
  frost	
  heave	
  –	
  a	
  
result	
  of	
  soil	
  moisture	
  expanding	
  as	
  it	
  transitions	
  between	
  a	
  liquid	
  and	
  frozen	
  state	
  –	
  
can	
  shift	
  the	
  ground	
  and	
  compromise	
  the	
  unreinforced	
  seals	
  that	
  connect	
  the	
  short	
  
segments	
   of	
   cast	
   iron	
   pipe.	
   Most	
   leaks	
   allow	
   only	
   small	
   volumes	
   of	
   methane	
   to	
  
escape	
   and	
   do	
   not	
   generally	
   present	
   a	
   safety	
   hazard.	
   But	
   intermittently	
   the	
  
disturbances	
   created	
   by	
   the	
   freeze/thaw	
   cycle	
   will	
   completely	
   dislocate	
   an	
  
unreinforced	
  bell	
  and	
  spigot	
  joint	
  of	
  a	
  cast	
  iron	
  gas	
  main.	
  	
  It	
  is	
  also	
  possible	
  for	
  these	
  
forces	
   to	
   cause	
   the	
   brittle	
   cast	
   iron	
   pipe	
   to	
   crack.	
   Both	
   situations	
   create	
   an	
  
exceptionally	
  dangerous	
  situation	
  for	
  any	
  persons	
  and	
  property	
  in	
  the	
  vicinity.	
  	
  	
  
	
   	
  The	
   removal	
   of	
   snow	
   from	
   city	
   streets	
   can	
   also	
   indirectly	
   contribute	
   to	
  
subsurface	
   pipeline	
   damage.	
   	
   The	
   extent	
   to	
   which	
   a	
   freezing	
   surface	
   will	
   be	
  
disturbed	
   is	
   partially	
   dependent	
   on	
   how	
   deep	
   frost	
   penetrates	
   into	
   the	
   ground.	
  	
  
Because	
   more	
   ground	
   moisture	
   is	
   affected,	
   a	
   deep	
   frost	
   is	
   apt	
   to	
   have	
   a	
   more	
  
pronounced	
  impact.	
  	
  And	
  because	
  snow	
  is	
  a	
  surprisingly	
  effective	
  insulator,	
  when	
  
the	
  blanket	
  of	
  insulating	
  snow	
  is	
  plowed,	
  the	
  roads	
  receive	
  direct	
  exposure	
  to	
  frigid	
  
air	
   temperatures,	
   causing	
   in	
   a	
   deeper	
   and	
   longer	
   lasting	
   frost	
   layer	
   that	
   is	
   more	
  
likely	
  to	
  the	
  damage	
  vintage	
  cast	
  iron	
  pipes.	
  	
  	
  	
  
	
   Broken	
  water	
  mains,	
  be	
  it	
  caused	
  by	
  a	
  frozen	
  pipe,	
  frost	
  heave,	
  or	
  other	
  cause	
  
is	
   another	
   threat	
   more	
   frequently	
   experienced	
   during	
   the	
   winter.	
   	
   When	
   a	
   water	
  
main	
  breaks	
  a	
  large	
  volume	
  of	
  pressurized	
  water	
  is	
  released.	
  This	
  can	
  quickly	
  wash	
  
out	
   roads	
   and	
   undermine	
   natural	
   gas	
   pipelines.	
   If	
   the	
   soil	
   supporting	
   the	
   short	
  
  17	
  
segments	
   of	
   cast	
   iron	
   pipe	
   is	
   washed	
   away,	
   it	
   is	
   virtually	
   inevitable	
   that	
   the	
  
segments	
  will	
  either	
  shift	
  or	
  collapse	
  allowing	
  natural	
  gas	
  to	
  escape.	
  
	
   Finally,	
   frozen	
   ground	
   creates	
   an	
   extremely	
   effective	
   barrier	
   that	
   leaking	
  
natural	
  gas	
  is	
  unable	
  to	
  penetrate.	
  When	
  natural	
  gas	
  leaks	
  from	
  subsurface	
  pipes,	
  
the	
  gas	
  will	
  gradually	
  travel	
  through	
  the	
  soil	
  before	
  ultimately	
  dissipating	
  into	
  the	
  
atmosphere.	
   But	
   when	
   an	
   impermeable	
   covering	
   such	
   as	
   frost,	
   a	
   city	
   street,	
   or	
  
sidewalk	
  prevents	
  the	
  gas	
  from	
  venting	
  a	
  hazardous	
  condition	
  can	
  arise.	
  	
  When	
  an	
  
overlying	
   cap	
   is	
   in	
   place,	
   natural	
   gas	
   is	
   able	
   to	
   collect	
   and	
   concentrate	
   in	
   nearby	
  
cavities,	
  migrate	
  horizontally	
  below	
  the	
  surface,	
  and	
  potentially	
  infiltrate	
  basements	
  
through	
   cracked	
   building	
   foundations.	
   If	
   gas	
   accumulates	
   in	
   sewer	
   manholes,	
   the	
  
explosive	
  gas	
  may	
  be	
  able	
  to	
  travel	
  a	
  considerable	
  distance.	
  	
  
	
   	
  
	
   Leaking	
   vintage	
   pipelines	
   clearly	
   are	
   a	
   known	
   risk.	
   As	
   part	
   of	
   a	
   risk	
  
management	
   plan,	
   gas	
   distribution	
   companies	
   perform	
   regular	
   leak	
   detection	
  
surveys	
   throughout	
   their	
   networks	
   to	
   preemptively	
   pinpoint	
   and	
   repair	
   leaking	
  
segments	
   of	
   pipe.	
   During	
   the	
   winter	
   season,	
   natural	
   gas	
   utilities	
   in	
   northern	
   U.S.	
  
states	
  are	
  required	
  to	
  conduct	
  frost	
  patrols	
   to	
  monitor	
  areas	
  where	
  cast	
  iron	
  gas	
  
mains	
  are	
  present	
  for	
  elevated	
  methane	
  concentrations.	
  Yet	
  despite	
  the	
  best	
  efforts	
  
of	
   the	
   natural	
   gas	
   utilities	
   to	
   minimize	
   leaks	
   on	
   their	
   distribution	
   systems,	
  
independent	
   methane	
   detection	
   surveys	
   in	
   Washington	
   D.C.	
   and	
   Boston	
   have	
  
demonstrated	
  that	
  a	
  large	
  number	
  of	
  gas	
  leaks	
  go	
  undetected.	
  	
  
	
   A	
  2014	
  study	
  measuring	
  gas	
  leaks	
  in	
  the	
  District	
  of	
  Columbia	
  located	
  5,893	
  
potential	
  gas	
  leaks	
  over	
  1,500	
  miles	
  of	
  road.	
  (Jackson,	
  et	
  al.,	
  2014)	
  Equivalent	
  to	
  one	
  
  18	
  
gas	
  leak	
  for	
  every	
  1,344	
  feet	
  of	
  road	
  sampled,	
  the	
  leak	
  density	
  in	
  Washington,	
  D.C.	
  
was	
   only	
   slightly	
   less	
   than	
   was	
   observed	
   the	
   previous	
   year	
   in	
   Boston,	
   where	
   a	
  
related	
   survey	
   documented	
   one	
   leak	
   across	
   every	
   1,235	
   feet	
   of	
   road	
   sampled.	
  
(Phillips,	
  et	
  al.,	
  2013)	
  Since	
  both	
  Boston	
  and	
  the	
  District	
  of	
  Columbia	
  possess	
  a	
  high	
  
percentage	
  of	
  aging	
  cast	
  iron	
  pipelines,	
  it	
  is	
  plausible	
  that	
  these	
  findings	
  may	
  mirror	
  
the	
  leakage	
  profiles	
  of	
  larger	
  cities	
  that	
  too	
  have	
  a	
  significant	
  quantity	
  of	
  cast	
  iron	
  
gas	
  mains	
  including	
  Detroit,	
  Philadelphia,	
  and	
  New	
  York	
  City.	
  	
  
	
   Most	
  of	
  leaks	
  found	
  in	
  the	
  surveys	
  were	
  found	
  to	
  be	
  non-­‐hazardous	
  grade	
  
three	
  leaks,	
  but	
  during	
  the	
  Washington	
  D.C.	
  survey,	
  researchers	
  located	
  one	
  dozen	
  
undetected	
  gas	
  leaks	
  that	
  were	
  quite	
  hazardous.	
  Twelve	
  manholes	
  were	
  found	
  to	
  
contain	
  methane	
  concentrations	
  that	
  exceeded	
  the	
  explosive	
  lower	
  limit	
  of	
  40,000	
  
ppm,	
   and	
   in	
   three	
   of	
   these	
   manholes,	
   methane	
   concentrations	
   were	
   ten	
   times	
  
greater	
  than	
  the	
  explosive	
  lower	
  limit.	
  (Jackson,	
  et	
  al.,	
  2014)	
  Shortly	
  after	
  they	
  were	
  
discovered,	
   the	
   research	
   team	
   notified	
   the	
   local	
   distribution	
   company.	
   This	
  
information,	
   according	
   to	
   guidelines	
   set	
   by	
   the	
   GPTC,	
   should	
   have	
   triggered	
   the	
  
utility	
   to	
   dispatch	
   an	
   emergency	
   response	
   unit	
   so	
   that	
   each	
   manhole	
   would	
   be	
  
assessed	
  and	
  classified	
  as	
  a	
  grade	
  one	
  leak	
  and	
  be	
  scheduled	
  for	
  immediate	
  repair.	
  
But	
   disconcertingly,	
   when	
   researchers	
   returned	
   four	
   months	
   later,	
   again	
   they	
  
measured	
  hazardous	
  methane	
  concentrations	
  in	
  nine	
  of	
  the	
  twelve	
  locations.	
  	
  	
  	
  
	
  
	
  
	
  
  19	
  
Regulatory	
  History	
  
	
  
	
   Federal	
   regulations	
   concerning	
   pipeline	
   integrity	
   and	
   safety	
   were	
   first	
  
introduced	
   in	
   1970	
   as	
   a	
   result	
   of	
   the	
   1968	
   Natural	
   Gas	
   Pipeline	
   Safety	
   Act.	
  	
  
Thereafter,	
   all	
   new	
   installations	
   of	
   natural	
   gas	
   pipeline	
   on	
   transmission	
   and	
  
distribution	
   networks	
   in	
   the	
   United	
   States	
   were	
   required	
   to	
   satisfy	
   the	
   minimum	
  
safety	
  requirements	
  set	
  forth	
  by	
  the	
  Department	
  of	
  Transportation	
  (DOT).	
  	
  Among	
  
the	
   initial	
   safety	
   standards	
   was	
   the	
   requirement	
   that	
   cathodic	
   protection	
   be	
  
installed	
  on	
  new	
  steel	
  gas	
  lines	
  and	
  the	
  collection	
  of	
  detailed	
  records	
  regarding	
  the	
  
location,	
   material	
   type,	
   and	
   installation	
   date	
   of	
   pipe.	
   	
   The	
   new	
   guidelines	
   also	
  
stipulated	
  that	
  future	
  use	
  of	
  cast	
  iron	
  pipes	
  for	
  the	
  distribution	
  of	
  natural	
  gas	
  be	
  
prohibited.	
  Today,	
  a	
  division	
  within	
  the	
  DOT,	
  the	
  Pipeline	
  and	
  Hazardous	
  Materials	
  
Administration	
   (PHMSA),	
   is	
   tasked	
   with	
   developing	
   and	
   enforcing	
   regulations	
   to	
  
ensure	
  the	
  safe,	
  reliable,	
  and	
  environmentally	
  responsible	
  operation	
  of	
  the	
  nation’s	
  
natural	
  gas	
  pipelines.	
  	
  The	
  PHMSA	
  maintains	
  minimum	
  pipeline	
  safety	
  standards	
  as	
  
outlined	
  under	
  U.S.	
  Code	
  of	
  Federal	
  Regulations	
  §192	
  which	
  covers	
  interstate	
  and	
  
distribution	
   pipelines	
   in	
   all	
   fifty	
   states,	
   the	
   District	
   of	
   Columbia,	
   and	
   Puerto	
   Rico.	
  
The	
  PHMSA	
  analyzes	
  pipeline	
  accidents	
  and	
  incident	
  data	
  to	
  evaluate	
  the	
  strength	
  of	
  
current	
   safety	
   standards	
   regarding	
   design,	
   construction,	
   operation,	
   and	
  
maintenance	
  practices	
  of	
  gas	
  pipeline	
  systems.	
  	
  
	
   The	
  states	
  also	
  play	
  a	
  vital	
  regulatory	
  role	
  in	
  natural	
  gas	
  operations.	
  State	
  
legislatures	
  have	
  the	
  authority	
  to	
  pass	
  additional	
  or	
  more	
  rigorous	
  safety	
  standards	
  
that	
  exceed	
  PHMSA	
  requirements.	
  In	
  fact,	
  nearly	
  every	
  state	
  has	
  enacted	
  legislation	
  
to	
   implement	
   policies	
   and	
   enhanced	
   safety	
   initiatives	
   that	
   surpass	
   specifications	
  
  20	
  
mandated	
  by	
  federal	
  code.	
  	
  Only	
  Montana,	
  North	
  Dakota,	
  South	
  Dakota,	
  Utah,	
  and	
  
the	
  territory	
  of	
  Puerto	
  Rico	
  have	
  failed	
  to	
  require	
  additional	
  safety	
  requirements	
  for	
  
natural	
  gas	
  systems.	
  (NAPSR,	
  2013)	
  	
  
	
   The	
  enforcement	
  and	
  inspection	
  of	
  intrastate	
  pipelines	
  and	
  gas	
  distribution	
  
systems	
   is	
   also	
   a	
   task	
   frequently	
   performed	
   by	
   state	
   inspectors.	
   This	
   is	
  
accomplished	
  through	
  a	
  federal/state	
  agreement	
  where	
  an	
  agent	
  of	
  the	
  state	
  acts	
  on	
  
behalf	
   of	
   the	
   DOT	
   to	
   monitor	
   and	
   oversee	
   safety	
   federal	
   regulations	
   while	
   also	
  
enforcing	
  additional	
  state	
  requirements.	
  	
  For	
  their	
  part	
  in	
  safety	
  enforcement,	
  the	
  
PHMSA	
   is	
   authorized	
   to	
   reimburse	
   state	
   agencies	
   up	
   to	
   80	
   percent	
   of	
   the	
   costs	
  
required	
  to	
  carry	
  out	
  inspection	
  and	
  enforcement	
  activities	
  of	
  intrastate	
  pipelines	
  
and	
  local	
  distribution	
  systems.	
  (NAPSR,	
  2013,	
  p.	
  11)	
  
	
   Overseeing	
  the	
  requests	
  of	
  individual	
  gas	
  distribution	
  utilities	
  are	
  the	
  state	
  
public	
   utility	
   commissions.	
   	
   Because	
   natural	
   gas	
   companies	
   operate	
   monopoly	
  
franchises,	
   each	
   state’s	
   public	
   utility	
   commission	
   is	
   granted	
   the	
   sole	
   authority	
   to	
  
approve	
   or	
   deny	
   proposals,	
   rates,	
   and	
   financial	
   expenditures	
   of	
   distribution	
  
operators	
  located	
  within	
  their	
  jurisdictional	
  territory.	
  	
  The	
  primary	
  duty	
  of	
  utility	
  
commissions	
  is	
  to	
  determine	
  and	
  set	
  just	
  and	
  prudent	
  rates	
  that	
  enable	
  utilities	
  to	
  
safely	
  and	
  reliably	
  deliver	
  natural	
  gas	
  while	
  also	
  affording	
  utilities	
  an	
  opportunity	
  to	
  
recover	
   a	
   reasonable	
   return	
   on	
   their	
   investment.	
   Costs	
   incurred	
   by	
   distribution	
  
companies	
   are	
   usually	
   recovered	
   through	
   two	
   mechanisms:	
   a)	
   gas	
   cost	
   recovery,	
  
and	
  b)	
  base	
  rates.	
  
	
   Natural	
  gas	
  utilities	
  do	
  not	
  generate	
  profit	
  on	
  gas	
  purchased	
  from	
  interstate	
  
pipelines.	
   Instead,	
   the	
   cost	
   of	
   gas	
   is	
   directly	
   passed	
   along	
   to	
   ratepayers	
   via	
   a	
  
  21	
  
volumetric	
  gas	
  cost	
  recovery	
  charge.	
  The	
  volumetric	
  charge	
  on	
  a	
  customer’s	
  utility	
  
bill	
   is	
   automatically	
   adjusted	
   on	
   a	
   monthly	
   basis	
   based	
   upon	
   a	
   predetermined	
  
formula	
  because	
  the	
  price	
  of	
  natural	
  gas	
  is	
  subject	
  to	
  a	
  large	
  number	
  of	
  dynamic	
  
market	
  forces	
  and	
  is	
  often	
  highly	
  volatile.	
  	
  
	
   Base	
   rates	
   allowing	
   utilities	
   to	
   recover	
   the	
   costs	
   associated	
   with	
   the	
  
operation	
   of	
   distribution	
   systems	
   are	
   negotiated	
   through	
   formal	
   rate	
   case	
  
proceedings.	
  During	
  these	
  proceedings,	
  state	
  utility	
  commissions	
  rely	
  on	
  the	
  LDC’s	
  
and	
   intrastate	
   pipeline	
   operators	
   to	
   deliver	
   comprehensive	
   and	
   transparent	
  
information	
  pertaining	
  to	
  the	
  cost	
  of	
  operation,	
  the	
  utility’s	
  customer	
  base,	
  detailed	
  
financial	
   statements,	
   and	
   other	
   applicable	
   information	
   as	
   requested	
   by	
   the	
  
commission	
   so	
   that	
   base	
   rates	
   can	
   be	
   approved.	
   	
   Long-­‐term	
   capital	
   investments,	
  
operations	
   and	
   maintenance	
   costs,	
   debt	
   payments,	
   other	
   fixed	
   costs,	
   as	
   well	
   as	
   a	
  
reasonable	
  margin	
  of	
  profit	
  are	
  determined	
  during	
  the	
  base	
  rate	
  ruling.	
  	
  Many	
  states	
  
have	
   elected	
   to	
   use	
   the	
   base	
   rate	
   mechanism	
   to	
   recover	
   costs	
   associated	
   with	
  
accelerated	
  pipeline	
  programs,	
  while	
  others	
  have	
  chosen	
  alternative	
  rate	
  designs.	
  	
  
Pipeline	
  Replacement	
  Programs	
  
	
  
	
   The	
   first	
   national	
   scale	
   effort	
   to	
   remove	
   cast	
   iron	
   pipe	
   began	
   in	
   1991	
  
following	
  the	
  investigation	
  of	
  a	
  fatal	
  gas	
  explosion	
  in	
  Allentown,	
  PA.	
  	
  Based	
  upon	
  the	
  
recommendations	
  presented	
  by	
  the	
  National	
  Safety	
  Transportation	
  Board	
  (NTSB),	
  
the	
  Research	
  and	
  Special	
  Programs	
  Administration,	
  the	
  predecessor	
  agency	
  of	
  the	
  
PHMSA,	
  issued	
  an	
  alert	
  notice	
  to	
  operators	
  of	
  cast	
  iron	
  pipe	
  advising	
  that	
  “each	
  gas	
  
operator	
  implement	
  a	
  program,	
  based	
  on	
  factors	
  such	
  as	
  age,	
  pipe	
  diameter,	
  operating	
  
  22	
  
pressure,	
  soil	
  corrosiveness,	
  existing	
  graphitic	
  damage,	
  leak	
  history,	
  burial	
  depth,	
  and	
  
external	
  loading,	
  to	
  identify	
  and	
  replace	
  in	
  a	
  planed,	
  timely	
  manner	
  cast	
  iron	
  piping	
  
systems	
   that	
   may	
   threaten	
   public	
   safety.”	
   (RSPA,	
   1991)	
   	
   Following	
   the	
   advisory,	
  
operators	
  began	
  the	
  removal	
  of	
  the	
  highest	
  risk	
  cast	
  iron	
  mains	
  from	
  their	
  systems,	
  
eliminating	
  over	
  15,000	
  miles	
  of	
  cast	
  iron	
  mains	
  between	
  1992	
  and	
  the	
  end	
  of	
  2003.	
  
(PHMSA,	
  2014)	
  These	
  early	
  replacement	
  programs	
  have	
  been	
  cited	
  as	
  contributing	
  
to	
  the	
  improving	
  safety	
  on	
  the	
  U.S.	
  distribution	
  system.	
  	
  
	
   In	
  2006,	
  the	
  U.S.	
  Congress	
  took	
  further	
  action	
  to	
  enhance	
  pipeline	
  safety	
  by	
  
passing	
  the	
  Pipeline	
  Inspection,	
  Protection,	
  Enforcement,	
  and	
  Safety	
  Act.	
  	
  This	
  bill	
  
directed	
   the	
   PHMSA	
   to	
   begin	
   formulating	
   guidelines	
   to	
   implement	
   distribution	
  
integrity	
  management	
  programs	
  (DIMP)	
  for	
  operators	
  of	
  gas	
  distribution	
  systems.	
  	
  
In	
  December	
  of	
  2009,	
  the	
  PHMSA	
  promulgated	
  final	
  DIMP	
  rules	
  aimed	
  at	
  reducing	
  
the	
  frequency	
  and	
  severity	
  of	
  pipeline	
  incidents	
  on	
  the	
  U.S.	
  distribution	
  system.	
  	
  The	
  
PHMSA	
  allowed	
  distribution	
  operators	
  eighteen	
  months	
  to	
  plan,	
  write,	
  and	
  submit	
  
individualized	
  DIMP	
  protocols	
  that	
  were	
  to	
  be	
  implemented	
  by	
  August	
  of	
  2011.	
  
	
   While	
   crafting	
   DIMP	
   procedures	
   the	
   PHMSA	
   explicitly	
   avoided	
   inflexible	
  
mandates	
  for	
  the	
  1,400	
  plus	
  gas	
  distribution	
  operators	
  in	
  the	
  United	
  States	
  because	
  
the	
  requirements	
  of	
  these	
  companies	
  can	
  be	
  highly	
  variable	
  –	
  some	
  have	
  customer	
  
bases	
   of	
   fewer	
   than	
   one	
   hundred	
   and	
   the	
   largest	
   serve	
   well	
   over	
   one	
   million.	
  	
  
Natural	
  gas	
  distribution	
  networks	
  can	
  vary	
  wildly	
  in	
  age,	
  size,	
  pipeline	
  composition	
  
and	
   design;	
   they	
   operate	
   in	
   both	
   rural	
   environments	
   and	
   in	
   the	
   most	
   densely	
  
populated	
   cities;	
   and	
   operate	
   in	
   differing	
   geographical	
   locations	
   that	
   sometimes	
  
require	
   unique	
   maintenance	
   and	
   quality	
   control	
   procedures.	
   	
   Given	
   the	
   diversity	
  
  23	
  
and	
   individualized	
   requirements	
   of	
   the	
   nation’s	
   natural	
   gas	
   companies,	
   enforcing	
  
mandated	
  safety	
  procedures	
  through	
  prescriptive	
  policies	
  would	
  have	
  likely	
  been	
  
unduly	
  burdensome	
  and	
  expensive	
  for	
  many	
  operators.	
  Instead	
  the	
  PHMSA	
  outlined	
  
seven	
  key	
  steps	
  affording	
  operators	
  latitude	
  in	
  order	
  to	
  address	
  company/location	
  
specific	
  safety	
  needs	
  and	
  requirements.	
  State	
  regulators	
  may	
  choose	
  to	
  additionally	
  
implement	
  further	
  requirements	
  for	
  distribution	
  operators.	
  	
  	
  
	
  
PHMSA	
  Requirements	
  for	
  Distribution	
  Integrity	
  Management	
  Programs	
  
	
  
1) Develop	
  and	
  implement	
  a	
  written	
  distribution	
  integrity	
  management	
  plan	
  
2) Engage	
  in	
  opportunities	
  to	
  improve	
  knowledge	
  of	
  system	
  infrastructure	
  
3) Identify	
  existing	
  and	
  future	
  threats	
  
4) Analyze,	
  assess,	
  and	
  rank	
  risks	
  and	
  safety	
  threats	
  
5) Identify	
  and	
  implement	
  risk	
  mitigation	
  measures	
  
6) Measure,	
  monitor,	
  and	
  evaluate	
  program	
  performance	
  
7) Report	
  DIMP	
  results	
  annually	
  to	
  state	
  pipeline	
  regulatory	
  authorities	
  
	
  
	
   To	
   satisfy	
   risk	
   assessment	
   and	
   ranking	
   requirements	
   of	
   DIMP,	
   utility	
  
companies	
   rely	
   on	
   risk	
   analysis	
   software	
   packages	
   tailored	
   specifically	
   for	
   DIMP	
  
analysis.	
  	
  Theses	
  specialized	
  programs	
  utilize	
  customized	
  algorithms	
  to	
  analyze	
  data	
  
inputs	
   incorporating	
   pipe	
   material,	
   diameter,	
   age,	
   pressure,	
   leak	
   history,	
   and	
  
relevant	
   system	
   performance	
   metrics	
   to	
   identify	
   and	
   rank	
   at-­‐risk	
   locations.	
   By	
  
calculating	
  localized	
  risk	
  profiles	
  and	
  the	
  corresponding	
  level	
  of	
  consequence	
  of	
  an	
  
incident	
   on	
   each	
   distribution	
   segment,	
   engineers	
   can	
   identify	
   the	
   highest	
   risk	
  
infrastructure	
  and	
  can	
  proactively	
  engage	
  in	
  risk	
  mitigation	
  activities.	
  	
  	
  
  24	
  
	
   One	
   of	
   the	
   integral	
   components	
   of	
   the	
   integrity	
   management	
   rules	
   was	
  
designed	
  to	
  address	
  an	
  information	
  gap	
  that	
  could	
  result	
  in	
  operators	
  overlooking	
  
opportunities	
  that	
  address	
  significant	
  safety	
  threats.	
  	
  Prior	
  to	
  the	
  implementation	
  of	
  
minimum	
  federal	
  safety	
  standards	
  set	
  in	
  1970,	
  pipeline	
  operators	
  were	
  not	
  required	
  
to	
  retain	
  detailed	
  records	
  identifying	
  the	
  location,	
  material	
  type,	
  or	
  instillation	
  date	
  
of	
  gas	
  mains	
  and	
  service	
  lines.	
  	
  At	
  the	
  beginning	
  of	
  2014,	
  PHMSA	
  records	
  show	
  over	
  
30	
  percent	
  of	
  the	
  gas	
  distribution	
  mains	
  predate	
  the	
  federal	
  safety	
  standards	
  and	
  
that	
  gas	
  distribution	
  companies	
  were	
  unable	
  to	
  definitively	
  ascertain	
  during	
  which	
  
decade	
  more	
  than	
  96,000	
  miles	
  of	
  natural	
  gas	
  mains	
  were	
  installed.	
  (PHMSA,	
  2014)	
  
This	
  is	
  not	
  because	
  distribution	
  operators	
  were	
  necessarily	
  careless	
  in	
  their	
  efforts	
  
to	
  maintain	
  accurate	
  information	
  prior	
  to	
  federal	
  requirements,	
  but	
  rather	
  that	
  in	
  
the	
   absence	
   of	
   federal	
   law,	
   this	
   indispensible	
   information	
   was	
   more	
   apt	
   to	
   be	
  
inaccurate,	
  misplaced,	
  or	
  simply	
  unrecorded	
  without	
  penalty	
  or	
  consequence.	
  	
  	
  
	
   Although	
   it	
   is	
   uncommon,	
   companies	
   are	
   sometimes	
   unable	
   to	
   verify	
   the	
  
location	
   of	
   underground	
   gas	
   mains	
   due	
   to	
   incomplete	
   or	
   inaccurate	
   records.	
  	
  
Inaccurate	
   records	
   endanger	
   construction	
   crews	
   engaging	
   in	
   underground	
  
excavation,	
  as	
  well	
  as	
  the	
  public	
  as	
  a	
  whole.	
  	
  If	
  a	
  utility	
  is	
  unable	
  to	
  locate	
  gas	
  lines	
  or	
  
does	
  not	
  have	
  proper	
  knowledge	
  of	
  the	
  pipe’s	
  material	
  makeup,	
  it	
  is	
  impossible	
  to	
  
determine	
   appropriate	
   risk	
   identification	
   procedures	
   or	
   develop	
   preventative	
  
mitigation	
  options.	
  	
  By	
  narrowing	
  the	
  gap	
  between	
  what	
  is	
  known	
  and	
  unknown,	
  
DIMP	
   should	
   substantially	
   decrease	
   the	
   number	
   of	
   unidentified	
   risks	
   on	
   our	
   gas	
  
distribution	
  system	
  and	
  thereby	
  bolster	
  safety	
  across	
  the	
  network.	
  	
  
	
  
	
  
  25	
  
	
  
Call	
  to	
  Action	
  
	
  
	
   Between	
  1994	
  and	
  2006,	
  the	
  number	
  of	
  injuries	
  on	
  U.S.	
  distribution	
  systems	
  
had	
   been	
   in	
   a	
   variable	
   but	
   steady	
   state	
   of	
   decline.	
   In	
   2007,	
   that	
   trend	
   suddenly	
  
reversed.	
  As	
  a	
  result,	
  in	
  the	
  years	
  since	
  then,	
  the	
  number	
  of	
  individuals	
  hurt	
  by	
  gas	
  
distribution	
  accidents	
  has	
  significantly	
  grown	
  and	
  continues	
  to	
  accelerate.	
  	
  Then	
  in	
  
late	
  2010	
  and	
  early	
  2011,	
  a	
  series	
  of	
  major	
  accidents	
  on	
  U.S.	
  natural	
  gas	
  distribution	
  
systems	
  further	
  reinforced	
  the	
  need	
  to	
  improve	
  the	
  safety	
  and	
  integrity	
  of	
  the	
  entire	
  
U.S.	
  pipeline	
  network:	
  
	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
1994	
  
1995	
  
1996	
  
1997	
  
1998	
  
1999	
  
2000	
  
2001	
  
2002	
  
2003	
  
2004	
  
2005	
  
2006	
  
2007	
  
2008	
  
2009	
  
2010	
  
2011	
  
2012	
  
2013	
  
2014	
  
U.S.	
  Gas	
  Distribution	
  –	
  Fatalities	
  &	
  Injuries:	
  	
  
January	
  1994	
  –	
  August	
  2014	
  
Source:	
  PHMSA	
  Serious	
  Pipeline	
  Incident	
  Data	
  (Updated	
  8/31/14)	
  	
  
Fatalities	
  	
  
Injuries	
  	
  
5	
  Year	
  
Average	
  
  26	
  
• On	
  December	
  29th,	
  2010,	
  a	
  gas	
  explosion	
  at	
  a	
  Wayne,	
  MI	
  furniture	
  store	
  killed	
  
two	
  employees	
  and	
  seriously	
  injured	
  two	
  others.	
  	
  Although	
  investigators	
  were	
  
unable	
   to	
   conclusively	
   determine	
   the	
   cause	
   of	
   the	
   explosion,	
   investigators	
  
believe	
  that	
  gas	
  released	
  by	
  a	
  sudden	
  joint	
  separation	
  on	
  a	
  nearby	
  two-­‐inch	
  
bare	
  steel	
  distribution	
  main	
  installed	
  in	
  1940	
  migrated	
  through	
  a	
  sewer	
  line	
  to	
  
the	
  store	
  prior	
  to	
  the	
  explosion.	
  
	
  
• On	
  January	
  18th,	
  2011,	
  one	
  member	
  of	
  a	
  local	
  utility	
  gas	
  response	
  crew	
  was	
  
killed	
  and	
  three	
  others	
  injured	
  while	
  attempting	
  to	
  repair	
  a	
  major	
  gas	
  leak	
  in	
  
Northeast	
   Philadelphia.	
   A	
   crack	
   found	
   on	
   the	
   body	
   of	
   a	
   12-­‐inch	
   cast	
   iron	
  
distribution	
   main	
   installed	
   in	
   1942	
   was	
   determined	
   to	
   be	
   the	
   cause	
   of	
   the	
  
explosion.	
  	
  
	
  
• On	
   February	
   9th,	
   2011,	
   a	
   gas	
   explosion	
   in	
   Allentown,	
   PA	
   resulted	
   in	
   five	
  
fatalities	
  and	
  seriously	
  injured	
  three	
  others.	
  	
  The	
  initial	
  explosion	
  leveled	
  two	
  
townhomes	
   and	
   the	
   subsequent	
   fire	
   destroyed	
   six	
   others.	
   	
   The	
   cause	
   of	
   the	
  
explosion	
  was	
  eventually	
  found	
  to	
  be	
  a	
  crack	
  in	
  12-­‐inch	
  low-­‐pressure	
  cast	
  iron	
  
distribution	
  main	
  installed	
  1928.	
  
	
  
	
  
	
   Alarmed	
   by	
   the	
   sequence	
   and	
   severity	
   of	
   these	
   accidents	
   on	
   the	
   aging	
   gas	
  
network,	
  then	
  Secretary	
  of	
  Transportation,	
  Ray	
  LaHood,	
  issued	
  a	
  “Call	
  to	
  Action”	
  for	
  
industry	
   representatives,	
   researchers,	
   regulatory	
   officials,	
   and	
   public	
   safety	
  
advocates	
   to	
   assemble	
   at	
   a	
   pipeline	
   safety	
   forum	
   in	
   April	
   of	
   2011	
   to	
   identify	
  
potential	
  gaps	
  in	
  industry	
  practices	
  and	
  shortcomings	
  of	
  current	
  regulatory	
  regimes.	
  	
  
Following	
  this	
  forum,	
  the	
  Department	
  of	
  Transportation	
  issued	
  an	
  updated	
  advisory	
  
bulletin	
  again	
  urging	
  owners	
  and	
  operators	
  of	
  distribution	
  pipelines	
  of	
  the	
  need	
  to	
  
conduct	
  a	
  comprehensive	
  review	
  of	
  cast	
  iron	
  and	
  bare	
  steel	
  distribution	
  mains	
  and	
  
  27	
  
further	
   accelerate	
   pipeline	
   repair	
   and	
   replacement	
   programs	
   for	
   high-­‐risk	
  
infrastructure.	
  (U.S.	
  GPO,	
  2012)	
  
Acceleration	
  of	
  Pipeline	
  Replacement	
  Programs	
  
	
  
	
   Proactively	
   engaging	
   in	
   actions	
   that	
   limit	
   fugitive	
   methane	
   emissions	
   from	
  
natural	
  gas	
  lines	
  is	
  a	
  fundamental	
  requisite	
  in	
  providing	
  safe	
  and	
  reliable	
  natural	
  gas	
  
service.	
  Removing	
  or	
  retiring	
  cast	
  iron	
  and	
  bare	
  steel	
  distribution	
  lines	
  from	
  service	
  
is	
  the	
  most	
  reliable	
  method	
  to	
  eliminate	
  methane	
  leakage	
  from	
  vintage	
  pipelines.	
  
Unfortunately,	
   doing	
   so	
   can	
   be	
   prohibitively	
   expensive.	
   Due	
   to	
   the	
   high	
   cost	
   of	
  
replacement,	
   regulators	
   have	
   historically	
   been	
   reluctant	
   to	
   approve	
   large-­‐scale	
  
modernization	
   efforts.	
   But	
   an	
   analysis	
   of	
   publicly	
   available	
   rate	
   filings	
   and	
  
documents	
  filed	
  following	
  the	
  DOT	
  advisory	
  bulletin	
  indicates	
  that	
  state	
  regulators	
  
are	
   becoming	
   more	
   supportive	
   of	
   the	
   rate	
   hikes	
   that	
   are	
   necessary	
   to	
   more	
  
aggressively	
   fund	
   robust	
   pipeline	
   replacement	
   schedules.	
   	
   In	
   Michigan,	
  
Pennsylvania,	
   and	
   New	
   York	
   infrastructure	
   modernization	
   investment	
   has	
   grown	
  
substantially	
   since	
   2011	
   for	
   the	
   gas	
   utilities	
   with	
   the	
   greatest	
   amount	
   of	
   vintage	
  
infrastructure	
  –	
  in	
  some	
  instances	
  replacement	
  schedules	
  seeing	
  a	
  twofold	
  increase	
  
from	
   previous	
   rate	
   filings.	
   In	
   Ohio,	
   pipeline	
   replacement	
   rates	
   have	
   held	
   steady	
  
during	
  that	
  time	
  because	
  the	
  state	
  public	
  utility	
  commission	
  began	
  approving	
  very	
  
ambitious	
  replacement	
  schedules	
  for	
  the	
  largest	
  gas	
  distribution	
  companies	
  in	
  2001.	
  	
  
  28	
  
Cost	
  of	
  Programs	
  
	
   The	
  economics	
  surrounding	
  the	
  replacement	
  of	
  underground	
  pipelines	
  is	
  a	
  
barrier	
   limiting	
   the	
   rate	
   of	
   pipeline	
   modernization.	
   The	
   amount	
   of	
   capital	
  
investment	
   required	
   to	
   modernize	
   aging	
   gas	
   main	
   infrastructure	
   is	
   closely	
  
correlated	
   to	
   the	
   population	
   density	
   of	
   the	
   replacement	
   area.	
   	
   For	
   example,	
  
upgrading	
   a	
   single	
   mile	
   of	
   gas	
   main	
   and	
   adjacent	
   customer	
   service	
   lines	
   usually	
  
ranges	
   between	
   $300,000	
   and	
   $1,000,000,	
   but	
   in	
   dense	
   urban	
   environments	
   like	
  
Manhattan,	
  replacement	
  projects	
  may	
  be	
  as	
  high	
  as	
  $10.56	
  million/	
  mile,	
  or	
  $	
  2000	
  
per	
  foot	
  of	
  gas	
  main.	
  (New	
  York	
  State	
  PSC,	
  2014)	
  Tearing	
  out,	
  and	
  then	
  replacing	
  the	
  
sidewalks,	
  streets,	
  and	
  other	
  infrastructure	
  after	
  the	
  vintage	
  pipelines	
  are	
  removed	
  
drives	
   up	
   the	
   cost	
   of	
   pipeline	
   replacement	
   a	
   great	
   degree.	
   Sometimes	
   the	
   cost	
   of	
  
restoring	
   the	
   surrounding	
   infrastructure	
   on	
   a	
   project	
   can	
   equal,	
   or	
   may	
   even	
   be	
  
greater	
  than	
  the	
  actual	
  cost	
  of	
  installing	
  new	
  pipelines.	
  (NY	
  State	
  Assembly,	
  2014)	
  
With	
  larger	
  distribution	
  companies	
  replacing	
  upwards	
  of	
  50	
  miles	
  or	
  more	
  annually,	
  
it	
  is	
  not	
  difficult	
  to	
  see	
   that	
  replacement	
  programs	
  can	
  present	
  a	
  strong	
  financial	
  
burden.	
  
Additional	
  Benefits	
  of	
  Pipeline	
  Replacement	
  Programs	
  
	
  
	
   Accelerated	
  pipeline	
  replacement	
  programs	
  will	
  produce	
  benefits	
  that	
  extend	
  
beyond	
   the	
   primary	
   purpose	
   of	
   enhancing	
   public	
   safety.	
   	
   With	
   the	
   installation	
   of	
  
newer	
  and	
  less	
  leak-­‐prone	
  gas	
  lines	
  the	
  costs	
  of	
  frequent	
  leak	
  repair	
  will	
  be	
  avoided,	
  
service	
   quality	
   of	
   a	
   given	
   system	
   will	
   be	
   improved	
   as	
   the	
   amount	
   of	
   unplanned	
  
service	
  interruptions	
  from	
  leak	
  repairs	
  is	
  reduced,	
  and	
  the	
  number	
  of	
  personnel	
  and	
  
  29	
  
equipment	
   needed	
   to	
   perform	
   leak	
   repair	
   and	
   maintenance	
   duties	
   will	
   decrease.	
  	
  
Further	
  workforce	
  reductions	
  can	
  be	
  realized	
  once	
  all	
  cast	
  iron	
  mains	
  are	
  removed	
  
from	
  a	
  gas	
  network,	
  as	
  winter	
  frost	
  patrols	
  are	
  no	
  longer	
  necessary.	
  	
  	
  With	
  a	
  leaner	
  
workforce,	
   a	
   company’s	
   operational	
   and	
   maintenance	
   costs	
   can	
   be	
   curtailed,	
  
benefiting	
  both	
  the	
  ratepayer	
  and	
  the	
  utility.	
   	
  
	
   Replacing	
  cast	
  iron	
  infrastructure	
  with	
  newer	
  plastic	
  and	
  CP	
  steel	
  mains	
  can	
  
also	
  increase	
  the	
  gas	
  throughput	
  of	
  local	
  gas	
  networks	
  because	
  modern	
  materials	
  
are	
  able	
  to	
  operate	
  at	
  far	
  higher	
  maximum	
  allowable	
  operating	
  pressures	
  (MAOP).	
  2	
  	
  
Segments	
   of	
   distribution	
   networks	
   with	
   cast	
   iron	
   mains	
   are	
   ordinarily	
   limited	
   to	
  
operating	
  pressures	
  below	
  25	
  psig	
  by	
  federal	
  code	
  to	
  prevent	
  the	
  sudden	
  separation	
  
of	
  unreinforced	
  bell	
  and	
  spigot	
  joints.	
  	
  As	
  low-­‐pressure	
  segments	
  are	
  upgraded	
  with	
  
new	
  gas	
  mains	
  having	
  a	
  greater	
  MAOP,	
  the	
  capacity	
  of	
  the	
  upgraded	
  system	
  can	
  be	
  
increased,	
  thereby	
  opening	
  up	
  previously	
  unavailable	
  expansion	
  opportunities	
  and	
  
providing	
  new	
  revenue	
  streams	
  for	
  utility	
  companies.	
  	
  With	
  this	
  expanded	
  network,	
  
more	
   customers	
   will	
   be	
   provided	
   an	
   additional	
   choice	
   in	
   how	
   they	
   chose	
   to	
   heat	
  
their	
  homes.	
  	
  Consumers	
  that	
  switch	
  from	
  fuel	
  oil	
  or	
  propane	
  to	
  the	
  newly	
  available	
  
natural	
  gas	
  will	
  also	
  likely	
  benefit	
  from	
  lower	
  monthly	
  energy	
  bills.	
  
	
   Another	
  advantage	
  of	
  updating	
  vintage	
  cast	
  iron	
  mains	
  with	
  higher-­‐pressure	
  
lines	
  is	
  that	
  it	
  can	
  lead	
  to	
  a	
  more	
  uniform	
  and	
  streamlined	
  gas	
  network	
  because	
  the	
  
number	
   of	
   pressure	
   regulators	
   and	
   step	
   down	
   valves	
   within	
   the	
   system	
   can	
   be	
  
substantially	
   reduced.	
   This	
   carries	
   the	
   benefit	
   of	
   further	
   improving	
   reliability,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Plastic	
  gas	
  mains	
  are	
  generally	
  limited	
  to	
  60	
  psig	
  while	
  CP	
  steel	
  distribution	
  pipes	
  can	
  be	
  
engineered	
  to	
  withstand	
  pressures	
  up	
  to	
  400	
  psig	
  
  30	
  
increasing	
  overall	
  safety,	
  and	
  lowering	
  system	
  wide	
  GHG	
  emissions.	
  (PA	
  PUC,	
  2013,	
  
p.	
  41)	
  
	
  
	
   Further	
  benefits	
  of	
  modernizing	
  gas	
  distribution	
  systems	
  include:	
  
• Decreased	
  probability	
  of	
  catastrophic	
  incidents	
  
• Reduction	
  in	
  emergency	
  response	
  costs	
  and	
  evacuations	
  
• Fewer	
  fines/penalties	
  associated	
  with	
  natural	
  gas	
  accidents	
  
• Fewer	
  legal	
  settlements	
  with	
  injured	
  parties	
  and	
  families	
  of	
  victims	
  	
  
• Reduced	
  insurance	
  premiums	
  for	
  the	
  utility	
  companies	
  
• Direct	
  and	
  indirect	
  creation	
  of	
  employment	
  opportunities	
  	
  
• Significant	
  reduction	
  of	
  GHG	
  emissions	
  
	
   	
  
  31	
  
Prospective	
  Emissions	
  Model	
  
	
   	
  
	
   This	
   prospective	
   emissions	
   model	
   attempts	
   to	
   quantify	
   the	
   future	
   direct	
  
methane	
  emissions	
  from	
  cast	
  iron,	
  bare	
  steel,	
  and	
  copper	
  natural	
  gas	
  infrastructure	
  
from	
   the	
   28	
   natural	
   gas	
   utility	
   companies	
   with	
   mandatory	
   pipeline	
   replacement	
  
programs	
  operating	
  in	
  Michigan,	
  New	
  York,	
  Ohio,	
  and	
  Pennsylvania	
  between	
  2014	
  
and	
   the	
   end	
   2040.	
   Although	
   the	
   primary	
   impetus	
   behind	
   the	
   implementation	
   of	
  
pipeline	
   modernization	
   efforts	
   stems	
   from	
   the	
   need	
   to	
   enhance	
   pubic	
   safety	
   and	
  
welfare,	
   the	
   removal	
   of	
   leak	
   prone	
   vintage	
   gas	
   main	
   will	
   nonetheless	
   produce	
  
substantial	
  reductions	
  of	
  GHG	
  emissions	
  in	
  the	
  natural	
  gas	
  distribution	
  sector.	
  	
  The	
  
model	
  also	
  presents	
  an	
  analysis	
  of	
  the	
  marginalized	
  cost	
  of	
  fugitive	
  CH4	
  abatement	
  
in	
  terms	
  of	
  dollars	
  per	
  metric	
  tonne	
  of	
  CO2e	
  reduced	
  for	
  each	
  utility	
  and	
  for	
  each	
  
state	
  and	
  in	
  aggregate.	
  	
  	
  
Prospective	
  Model	
  Methodology	
  
	
  
	
   Pipeline	
  mileage	
  and	
  methane	
  emissions	
  estimates	
  from	
  2013	
  are	
  used	
  as	
  the	
  
baseline	
  for	
  the	
  prospective	
  emissions	
  model.	
  	
  Pipeline	
  mileage	
  was	
  gathered	
  from	
  
the	
   2013	
   PHMSA	
   distribution	
   annual	
   data	
   reports.	
   Company	
   specific	
   pipeline	
  
replacement	
   rates	
   and	
   capital	
   investment	
   data	
   used	
   in	
   the	
   prospective	
   emissions	
  
model	
   was	
   primarily	
   compiled	
   from	
   publicly	
   available	
   rate	
   case	
   filings	
   gathered	
  
from	
   the	
   regulatory	
   commission	
   websites	
   for	
   each	
   state.	
   	
   Where	
   replacement	
  
schedules	
   or	
   capital	
   information	
   was	
   either	
   incomplete	
   or	
   unavailable,	
   multiple	
  
inquiries	
  were	
  sent	
  to	
  each	
  respective	
  company	
  in	
  order	
  to	
  fill	
  information	
  gaps.	
  	
  
  32	
  
	
   Public	
   utility	
   commissions	
   typically	
   designate	
   the	
   minimum	
   amount	
   of	
   at-­‐
risk	
   gas	
   main	
   to	
   be	
   replaced/removed	
   in	
   each	
   year	
   of	
   a	
   pipeline	
   replacement	
  
program.	
  However,	
  the	
  specific	
  length	
  of	
  each	
  material	
  type	
  to	
  be	
  removed	
  is	
  not	
  
always	
  indicated.	
  Where	
  specific	
  material	
  replacement	
  schedules	
  were	
  not	
  publicly	
  
available,	
   the	
   model	
   assumes	
   that	
   the	
   replacement	
   rate	
   for	
   each	
   material	
   is	
  
equivalent	
   to	
   the	
   utility’s	
   ratio	
   of	
   cast	
   iron	
   and	
   bare	
   steel	
   mains.	
   	
   For	
   companies	
  
with	
   multiple	
   service	
   line	
   material	
   types	
   targeted	
   for	
   replacement,	
   the	
   model	
  
assumes	
   that	
   the	
   annual	
   removal	
   rate	
   for	
   each	
   material	
   is	
   also	
   equivalent	
   to	
   the	
  
ratio	
  of	
  each	
  material	
  within	
  the	
  utility’s	
  system.	
  When	
  the	
  removal	
  schedules	
  for	
  
higher	
  risk	
  customer	
  service	
  lines	
  was	
  unavailable,	
  unless	
  indicated	
  otherwise,	
  the	
  
model	
   applies	
   the	
   greater	
   removal	
   rate	
   of	
   the	
   following	
   scenarios:	
   A)	
   the	
   final	
  
removal	
  of	
  targeted	
  service	
  lines	
  coincides	
  with	
  the	
  final	
  removal	
  of	
  targeted	
  gas	
  
main;	
  or	
  B)	
  the	
  average	
  service	
  removal	
  rate	
  between	
  the	
  years	
  2010	
  and	
  2013	
  as	
  
indicated	
  by	
  PHMSA	
  data.	
  	
  	
  
Methane	
  Emissions	
  
	
  
	
   Based	
  on	
  data	
  from	
  the	
  5th	
  IPCC	
  Assessment	
  Report,	
  the	
  model	
  incorporates	
  
a	
  GWP	
  of	
  30	
  to	
  convert	
  fossil	
  methane	
  emissions	
  into	
  CO2	
  equivalents.	
  	
  	
  The	
  model	
  
does	
  not	
  subtract	
  the	
  impact	
  GWP	
  of	
  CO2	
  emissions	
  that	
  would	
  have	
  been	
  produced	
  
by	
  the	
  combustion	
  of	
  methane	
  had	
  the	
  leaks	
  not	
  been	
  present.	
  	
  This	
  determination	
  
was	
   made	
   because	
   only	
   during	
   extraordinary	
   circumstances	
   do	
   natural	
   gas	
  
networks	
   operate	
   at	
   maximum	
   capacity.	
   So	
   at	
   any	
   given	
   moment,	
   any	
   party	
   in	
  
possession	
  of	
  a	
  firm	
  delivery	
  contract	
  (this	
  includes	
  residential	
  customers)	
  will	
  have	
  
access	
  to	
  an	
  adequate	
  gas	
  supply.	
  	
  Therefore,	
  the	
  marginal	
  loss	
  of	
  natural	
  gas	
  supply	
  
  33	
  
due	
   to	
   leaking	
   pipelines	
   should	
   have	
   negligible	
   impact	
   on	
   levels	
   of	
   natural	
   gas	
  
consumption	
  and	
  the	
  resulting	
  CO2	
  emissions	
  from	
  the	
  combustion	
  of	
  this	
  gas.	
  	
  	
  
	
   It	
  is	
  noted	
  that	
  natural	
  gas	
  leaks	
  create	
  operational	
  inefficiencies	
  that	
  require	
  
greater	
   volumes	
   of	
   natural	
   gas	
   be	
   produced	
   and	
   processed,	
   and	
   that	
   additional	
  
energy	
  is	
  used	
  to	
  transport	
  the	
  gas,	
  which	
  does	
  result	
  in	
  increased	
  levels	
  of	
  GHG	
  
emissions.	
  	
  However,	
  quantifying	
  these	
  emissions	
  is	
  beyond	
  the	
  scope	
  of	
  this	
  model	
  
and	
  are	
  consequently	
  not	
  included.	
  	
  
	
  
	
  
	
   The	
   emissions	
   factors	
   used	
   to	
   calculate	
   the	
   estimated	
   reduction	
   of	
   direct	
  
methane	
  emissions	
  from	
  pipeline	
  replacement	
  programs	
  are	
  those	
  used	
  by	
  the	
  EPA	
  
to	
   generate	
   the	
   U.S.	
   GHG	
   inventory.	
   	
   Emissions	
   factors	
   are	
   a	
   commonly	
   used	
   in	
  
bottom-­‐up	
  studies	
  to	
  quantify	
  sectoral	
  GHG	
  emissions	
  by	
  applying	
  a	
  representative	
  
emissions	
  rate	
  for	
  an	
  individual	
  component	
  type	
  and	
  scaling	
  it	
  by	
  the	
  activity	
  data	
  of	
  
each	
  component	
  type	
  across	
  an	
  industry.	
  	
  
	
   In	
  1996	
  the	
  EPA	
  and	
  the	
  Gas	
  Research	
  Institute	
  (GRI)	
  released	
  a	
  study	
  that	
  
quantified	
   annual	
   GHG	
   emissions	
   throughout	
   the	
   natural	
   gas	
   supply	
   chain.	
   The	
  
purpose	
  of	
  the	
  study	
  was	
  to	
  develop	
  a	
  nationwide	
  methane	
  budget	
  and	
  compare	
  the	
  
relative	
   global	
   warming	
   impact	
   of	
   natural	
   gas	
   vis-­‐à-­‐vis	
   coal	
   and	
   oil.	
   Individual	
  
industry	
   segments	
   were	
   analyzed	
   to	
   develop	
   a	
   comprehensive	
   model	
   of	
   upper,	
  
Emissions	
  Factors	
  for	
  Natural	
  Gas	
  Distribution	
  Lines	
  (a)	
  
Gas	
  Mains	
   Cast	
  Iron	
   Bare	
  Steel	
   Plastic	
   CP	
  Steel	
  
Mscf/mile/year	
   238.71	
   110.20	
   9.90	
   3.07	
  
Service	
  Lines	
   Cast	
  Iron†	
   Bare	
  Steel	
   Plastic	
   Copper	
  
Mscf/service/year	
   3.61	
   1.66	
   0.01	
   0.26	
  
	
  (a)	
  Derived	
  from	
  figures	
  in	
  40	
  CFR	
  §98	
  Subpart-­‐W	
  Table	
  W-­‐7;	
  †	
  See	
  methodology	
  below	
  
  34	
  
middle,	
   and	
   downstream	
   GHG	
   emissions.	
   Information	
   derived	
   from	
   the	
   EPA/GRI	
  
study	
   has	
   been	
   the	
   basis	
   of	
   numerous	
   peer-­‐reviewed	
   studies	
   examining	
   national	
  
scale	
  methane	
  emissions	
  and	
  was	
  used	
  in	
  developing	
  methodologies	
  used	
  to	
  create	
  
the	
   EPA	
   Greenhouse	
   Gas	
   Inventory	
   from	
   natural	
   gas	
   systems.	
   This	
   paper	
   uses	
  
default	
  methane	
  emission	
  factors	
  for	
  natural	
  gas	
  distribution	
  that	
  were	
  principally	
  
derived	
  from	
  the	
  EPA/GRI	
  study.	
  	
  (40	
  C.F.R.	
  §98	
  Subpart-­‐W,	
  Table	
  W-­‐7,	
  2011)	
  
	
  
	
   Fugitive	
  emissions	
  can	
  calculated	
  by	
  the	
  following	
  equation:	
  
𝐸 = 𝐴𝐹  ×  𝐸𝐹	
  
Where	
  E	
  is	
  the	
  emissions	
  for	
  a	
  specific	
  material	
  (e.g.,	
  cast	
  iron	
  distribution	
  main),	
  AF	
  
is	
  the	
  activity	
  factor	
  (e.g.,	
  miles	
  of	
  cast	
  iron	
  distribution	
  main),	
  and	
  EF	
  is	
  the	
  volume	
  
of	
  fugitive	
  emissions	
  per	
  unit	
  of	
  time.	
  (EPA/GRI,	
  1996)	
  
	
   The	
   EPA/GRI	
   study	
   determined	
   emissions	
   factor	
   measurements	
   for	
  
distribution	
   mains	
   by	
   first	
   locating	
   leaking	
   infrastructure	
   using	
   a	
   portable	
  
hydrocarbon	
   analyzer	
   that	
   detects	
   methane	
   levels	
   above	
   natural	
   background	
  
concentrations.	
  	
  After	
  the	
  leaking	
  segment	
  was	
  isolated	
  and	
  disconnected	
  on	
  either	
  
side	
   of	
   the	
   leak,	
   one	
   end	
   of	
   the	
   affected	
   section	
   was	
   sealed	
   while	
   the	
   other	
   was	
  
connected	
   to	
   an	
   auxiliary	
   gas	
   supply.	
   The	
   targeted	
   pipe	
   segment	
   was	
   then	
  
repressurized	
   to	
   the	
   system’s	
   standard	
   operating	
   pressure,	
   and	
   the	
   rate	
   of	
   gas	
  
leakage	
  was	
  measured	
  using	
  a	
  calibrated	
  measurement	
  device.	
  	
  
	
   Measurement	
   procedures	
   for	
   cast	
   iron	
   mains	
   were	
   conducted	
   along	
   entire	
  
segments	
   rather	
   than	
   isolating	
   individual	
   leaks	
   because	
   of	
   the	
   propensity	
   of	
   cast	
  
iron	
  mains	
  to	
  leak	
  gas	
  from	
  the	
  multitude	
  of	
  bell	
  and	
  spigot	
  joints.	
  Cast	
  iron	
  test	
  
  35	
  
segments	
  were	
  isolated	
  and	
  pressurized	
  to	
  maintain	
  standard	
  operating	
  pressure	
  
and	
   leakage	
   rates	
   across	
   the	
   entire	
   segment	
   were	
   determined.	
   Customer	
   service	
  
lines	
  sometimes	
  have	
  multiple	
  gas	
  leaks	
  that	
  are	
  often	
  imperceptible	
  requiring	
  that	
  
services	
  also	
  be	
  tested	
  along	
  the	
  entire	
  segment.	
  	
  
	
   Emissions	
  factors	
  are	
  those	
  used	
  by	
  the	
  EPA	
  for	
  mandatory	
  GHG	
  reporting	
  
requirements	
   for	
   distribution	
   companies	
   emitting	
   over	
   25,000	
   metric	
   tonnes	
   of	
  
CO2e	
  annually	
  and	
  are	
  derived	
  from	
  U.S.	
  Code	
  of	
  Federal	
  Regulations	
  §98	
  Subpart	
  W,	
  
Table	
  W-­‐7	
  with	
  the	
  following	
  caveat	
  regarding	
  emissions	
  from	
  cast	
  iron	
  services.	
  
	
   Emissions	
  factor	
  values	
  for	
  cast	
  iron	
  service	
  lines	
  are	
  not	
  present	
  in	
  the	
  1996	
  
GRI/EPA	
  Study	
  -­‐	
  Volume	
  9:	
  Underground	
  Pipelines,	
  U.S.	
  CFR	
  §92	
  Subpart-­‐W,	
  nor	
  the	
  
2009	
  API	
  Greenhouse	
  Gas	
  Compendium.	
  This	
  is	
  likely	
  because,	
  on	
  a	
  national	
  scale,	
  
the	
  impact	
  of	
  methane	
  lost	
  from	
  cast	
  iron	
  services	
  is	
  of	
  marginal	
  consequence,	
  since	
  
fewer	
   than	
   12,000	
   active	
   cast	
   iron	
   services	
   remain	
   in	
   the	
   United	
   States.	
   (PHMSA	
  
2014)	
  Despite	
  the	
  low	
  number	
  of	
  cast	
  iron	
  service	
  lines	
  nationally,	
  more	
  than	
  half	
  of	
  
the	
   service	
   lines	
   that	
   do	
   continue	
   to	
   operate	
   are	
   found	
   in	
   the	
   territories	
   of	
   two	
  
minor	
  gas	
  distribution	
  companies	
  in	
  upstate	
  New	
  York	
  and	
  are,	
  therefore,	
  required	
  
for	
   the	
   prospective	
   emissions	
   model	
   in	
   this	
   paper.	
   	
   To	
   generate	
   an	
   appropriate	
  
emissions	
  factor	
  for	
  cast	
  iron	
  service	
  lines	
  this	
  model	
  takes	
  the	
  equivalent	
  emissions	
  
factor	
  ratio	
  between	
  bare	
  steel	
  and	
  cast	
  iron	
  gas	
  mains	
  and	
  then	
  applies	
  the	
  ratio	
  to	
  
bare	
   steel	
   and	
   cast	
   iron	
   services.	
   While	
   it	
   is	
   likely	
   that	
   the	
   application	
   of	
   this	
  
methodology	
  to	
  some	
  extent	
  underrepresents	
  actual	
  methane	
  emissions	
  from	
  cast	
  
iron	
  services	
  because	
  smaller	
  diameter	
  service	
  lines	
  lack	
  the	
  structural	
  integrity	
  of	
  
  36	
  
their	
  larger	
  diameter	
  counterpart,	
  but	
  for	
  the	
  purposes	
  of	
  this	
  model,	
  the	
  application	
  
this	
  ratio	
  was	
  more	
  suitable	
  than	
  ignoring	
  the	
  emissions	
  category	
  altogether.	
  
Forecasted	
  Natural	
  Gas	
  Prices	
  
	
  
	
   The	
   forecasted	
   price	
   of	
   natural	
   gas	
   for	
   each	
   state	
   was	
   derived	
   from	
   data	
  
provided	
  by	
  the	
  U.S.	
  Energy	
  Information	
  Administration	
  (EIA)	
  2014	
  National	
  Energy	
  
Modeling	
   System	
   (NEMS).	
   	
   The	
   NEMS	
   uses	
   modules	
   for	
   each	
   energy	
   resource	
   to	
  
produce	
   short	
   and	
   long-­‐term	
   regional	
   energy	
   projections	
   by	
   analyzing	
   trends	
  
surrounding	
  the	
  interaction	
  of	
  supply	
  and	
  demand	
  fundamentals.	
  	
  Key	
  inputs	
  used	
  
in	
   the	
   natural	
   gas	
   module	
   include	
   domestic	
   natural	
   gas	
   production	
   rates,	
   current	
  
and	
   forecasted	
   macroeconomic	
   conditions,	
   international	
   and	
   domestic	
   market	
  
trends,	
   emerging	
   technologies,	
   regional	
   demographics,	
   pipeline	
   tariffs,	
   etc.	
   These	
  
inputs	
   are	
   used	
   to	
   generate	
   Henry	
   Hub	
   natural	
   gas	
   price	
   forecasts	
   and	
   regional	
  
residential,	
  commercial,	
  and	
  industrial	
  price	
  estimates.	
  3	
  	
  The	
  public	
  NEMS	
  natural	
  
gas	
  module,	
  however,	
  does	
  not	
  provide	
  the	
  city	
  gate	
  price	
  forecasts	
  that	
  are	
  needed	
  
to	
  determine	
  the	
  cost	
  of	
  leaked	
  methane	
  emissions.	
  	
  
	
   In	
  order	
  to	
  construct	
  city	
  gate	
  price	
  forecasts	
  for	
  each	
  utility	
  company,	
  the	
  
model	
  uses	
  historical	
  natural	
  gas	
  data	
  from	
  the	
  EIA	
  to	
  calculate	
  average	
  monthly	
  
premium	
  of	
  city	
  gate	
  prices	
  over	
  the	
  Henry	
  Hub	
  price	
  between	
  Jan	
  2010	
  to	
  Jan	
  2014.	
  	
  
While	
  a	
  longer	
  time	
  frame	
  could	
  have	
  been	
  used	
  to	
  determine	
  the	
  city	
  gate	
  /	
  Henry	
  
Hub	
  price	
  differential,	
  using	
  a	
  more	
  recent	
  time	
  frame	
  is	
  likely	
  to	
  more	
  accurately	
  
reflect	
  the	
  current	
  and	
  future	
  pricing	
  trends	
  within	
  the	
  natural	
  gas	
  industry.	
  	
  After	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Henry	
  Hub	
  is	
  a	
  major	
  natural	
  gas	
  distribution	
  hub	
  through	
  which	
  gas	
  futures	
  contracts	
  are	
  
traded	
  on	
  the	
  New	
  York	
  Mercantile	
  Exchange	
  
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF
Andy Ray - Capstone Paper Final PDF

More Related Content

What's hot

Nuclear Power – the cons in the debate
Nuclear Power – the cons in the debateNuclear Power – the cons in the debate
Nuclear Power – the cons in the debateSabyasachi Gupta
 
The Benefits of Hydraulic Fracturing
The Benefits of Hydraulic FracturingThe Benefits of Hydraulic Fracturing
The Benefits of Hydraulic FracturingRobert Edgar
 
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014Sayed Farid
 
Light Water Hydrogen and Carbon Dioxide
Light Water Hydrogen and Carbon DioxideLight Water Hydrogen and Carbon Dioxide
Light Water Hydrogen and Carbon DioxideHariprasad Narayanan
 
R Street Institute Report: The Green Side of Fracking
R Street Institute Report: The Green Side of FrackingR Street Institute Report: The Green Side of Fracking
R Street Institute Report: The Green Side of FrackingMarcellus Drilling News
 
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...George Dumitrache
 
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...George Dumitrache
 
Deanna Hanes
Deanna HanesDeanna Hanes
Deanna HanesCCCASTAFF
 
The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...Nitin Sukh
 
2014/07/20 能源與科學研討會 邱教授的投影片
2014/07/20 能源與科學研討會 邱教授的投影片2014/07/20 能源與科學研討會 邱教授的投影片
2014/07/20 能源與科學研討會 邱教授的投影片Nuclear Myth Buster
 
CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...
CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...
CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...George Dumitrache
 
The Hydrological Impacts of Climate Change in the Dominican Republic
The Hydrological Impacts of Climate Change in the Dominican RepublicThe Hydrological Impacts of Climate Change in the Dominican Republic
The Hydrological Impacts of Climate Change in the Dominican RepublicCarlos Rymer
 
Environment issues in world presentation by Allah Dad Khan
Environment issues  in world presentation by Allah Dad Khan Environment issues  in world presentation by Allah Dad Khan
Environment issues in world presentation by Allah Dad Khan Mr.Allah Dad Khan
 
Energyemergingissuestus
EnergyemergingissuestusEnergyemergingissuestus
EnergyemergingissuestusVictor Van Rij
 

What's hot (19)

Nuclear Power – the cons in the debate
Nuclear Power – the cons in the debateNuclear Power – the cons in the debate
Nuclear Power – the cons in the debate
 
The Benefits of Hydraulic Fracturing
The Benefits of Hydraulic FracturingThe Benefits of Hydraulic Fracturing
The Benefits of Hydraulic Fracturing
 
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
ASEE-Hydrogen-FiberComposite-Fort_Smith-2014
 
Light Water Hydrogen and Carbon Dioxide
Light Water Hydrogen and Carbon DioxideLight Water Hydrogen and Carbon Dioxide
Light Water Hydrogen and Carbon Dioxide
 
R Street Institute Report: The Green Side of Fracking
R Street Institute Report: The Green Side of FrackingR Street Institute Report: The Green Side of Fracking
R Street Institute Report: The Green Side of Fracking
 
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: THE MANAGEMENT OF...
 
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...
CAMBRIDGE GEOGRAPHY A2 REVISION - ENVIRONMENTAL MANAGEMENT: SUSTAINABLE ENERG...
 
Why I Choose Nuke Power
Why I Choose Nuke PowerWhy I Choose Nuke Power
Why I Choose Nuke Power
 
Deanna Hanes
Deanna HanesDeanna Hanes
Deanna Hanes
 
The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...
 
ILETS Essays accumulated
ILETS Essays accumulatedILETS Essays accumulated
ILETS Essays accumulated
 
2014/07/20 能源與科學研討會 邱教授的投影片
2014/07/20 能源與科學研討會 邱教授的投影片2014/07/20 能源與科學研討會 邱教授的投影片
2014/07/20 能源與科學研討會 邱教授的投影片
 
CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...
CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...
CAMBRIDGE GEOGRAPHY A2 - ENVIRONMENTAL MANAGEMENT: FACTORS AFFECTING THE DEMA...
 
The Hydrological Impacts of Climate Change in the Dominican Republic
The Hydrological Impacts of Climate Change in the Dominican RepublicThe Hydrological Impacts of Climate Change in the Dominican Republic
The Hydrological Impacts of Climate Change in the Dominican Republic
 
Keystone
KeystoneKeystone
Keystone
 
Environment issues in world presentation by Allah Dad Khan
Environment issues  in world presentation by Allah Dad Khan Environment issues  in world presentation by Allah Dad Khan
Environment issues in world presentation by Allah Dad Khan
 
Energyemergingissuestus
EnergyemergingissuestusEnergyemergingissuestus
Energyemergingissuestus
 
Walter w.w.public comentary on EISIA report on coal fired plant
Walter w.w.public comentary on EISIA report on coal fired plantWalter w.w.public comentary on EISIA report on coal fired plant
Walter w.w.public comentary on EISIA report on coal fired plant
 
H42023442
H42023442H42023442
H42023442
 

Viewers also liked

¿Dónde viven los reyes magos?
¿Dónde viven los reyes magos?¿Dónde viven los reyes magos?
¿Dónde viven los reyes magos?sandracabello
 
El encuentro educativo sofia
El encuentro   educativo sofiaEl encuentro   educativo sofia
El encuentro educativo sofiaSofia1789
 
Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...
Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...
Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...Jorge Luis Alonso
 
Cómo comunicar lo que se quiere decir.
Cómo comunicar lo que se quiere decir.Cómo comunicar lo que se quiere decir.
Cómo comunicar lo que se quiere decir.aguirrealma0120
 
Light Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASHLight Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASHUnited States Air Force Academy
 
An overview of marketing
An overview of marketingAn overview of marketing
An overview of marketingDania Kadi
 
Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)
Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)
Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)DrMarkHogan
 
Business Plan Básico Brox Technology
Business Plan Básico Brox Technology Business Plan Básico Brox Technology
Business Plan Básico Brox Technology Brox Technology
 
Pacientes empoderados | Esther Sabando
 Pacientes empoderados | Esther Sabando Pacientes empoderados | Esther Sabando
Pacientes empoderados | Esther SabandoCOM SALUD
 
El método del centro de gravedad
El método del centro de gravedadEl método del centro de gravedad
El método del centro de gravedadAngel Rodriguez S
 
El perfil del victimólogo
El perfil del victimólogoEl perfil del victimólogo
El perfil del victimólogoJane Alina
 
Importance of agricultural statistics for estimating GHG emissions from Agric...
Importance of agricultural statistics for estimating GHG emissions from Agric...Importance of agricultural statistics for estimating GHG emissions from Agric...
Importance of agricultural statistics for estimating GHG emissions from Agric...FAO
 
Ch. 5.4 -alexander-empire builder
Ch. 5.4 -alexander-empire builderCh. 5.4 -alexander-empire builder
Ch. 5.4 -alexander-empire builderJohn Hext
 

Viewers also liked (20)

¿Dónde viven los reyes magos?
¿Dónde viven los reyes magos?¿Dónde viven los reyes magos?
¿Dónde viven los reyes magos?
 
El encuentro educativo sofia
El encuentro   educativo sofiaEl encuentro   educativo sofia
El encuentro educativo sofia
 
Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...
Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...
Conceptos, pautas y herramientas. Enfoque participativo en cadenas productiva...
 
Cómo comunicar lo que se quiere decir.
Cómo comunicar lo que se quiere decir.Cómo comunicar lo que se quiere decir.
Cómo comunicar lo que se quiere decir.
 
Light Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASHLight Weight Fingerprinting for Video Playback Verification in MPEG DASH
Light Weight Fingerprinting for Video Playback Verification in MPEG DASH
 
Variedades sedum Emmanuel Baghin
Variedades sedum Emmanuel BaghinVariedades sedum Emmanuel Baghin
Variedades sedum Emmanuel Baghin
 
An overview of marketing
An overview of marketingAn overview of marketing
An overview of marketing
 
Tp de cojinetes
Tp de cojinetesTp de cojinetes
Tp de cojinetes
 
Emprendimiento
EmprendimientoEmprendimiento
Emprendimiento
 
Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)
Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)
Functionalizing a dentin bonding resin to become bioactive (Tobias Tauböck)
 
28 de septiembre
28 de septiembre28 de septiembre
28 de septiembre
 
Opa Artists Profile
Opa Artists ProfileOpa Artists Profile
Opa Artists Profile
 
SANDEEP SINGH KOLI
SANDEEP SINGH KOLISANDEEP SINGH KOLI
SANDEEP SINGH KOLI
 
Tasa tobin
Tasa tobinTasa tobin
Tasa tobin
 
Business Plan Básico Brox Technology
Business Plan Básico Brox Technology Business Plan Básico Brox Technology
Business Plan Básico Brox Technology
 
Pacientes empoderados | Esther Sabando
 Pacientes empoderados | Esther Sabando Pacientes empoderados | Esther Sabando
Pacientes empoderados | Esther Sabando
 
El método del centro de gravedad
El método del centro de gravedadEl método del centro de gravedad
El método del centro de gravedad
 
El perfil del victimólogo
El perfil del victimólogoEl perfil del victimólogo
El perfil del victimólogo
 
Importance of agricultural statistics for estimating GHG emissions from Agric...
Importance of agricultural statistics for estimating GHG emissions from Agric...Importance of agricultural statistics for estimating GHG emissions from Agric...
Importance of agricultural statistics for estimating GHG emissions from Agric...
 
Ch. 5.4 -alexander-empire builder
Ch. 5.4 -alexander-empire builderCh. 5.4 -alexander-empire builder
Ch. 5.4 -alexander-empire builder
 

Similar to Andy Ray - Capstone Paper Final PDF

Last Updated October 31, 2011Hydrofracking Is hydraulic fractu.docx
Last Updated October 31, 2011Hydrofracking Is hydraulic fractu.docxLast Updated October 31, 2011Hydrofracking Is hydraulic fractu.docx
Last Updated October 31, 2011Hydrofracking Is hydraulic fractu.docxsmile790243
 
Franklin Town Council Presentation - 01/06/16
Franklin Town Council Presentation - 01/06/16Franklin Town Council Presentation - 01/06/16
Franklin Town Council Presentation - 01/06/16Franklin Matters
 
Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...
Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...
Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...Marcellus Drilling News
 
Forgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate JusticeForgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate Justiceen3pro
 
Forgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate JusticeForgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate Justiceen3pro
 
Fracking Technology On Extraction Of Shale Gas And Oil Essay
Fracking Technology On Extraction Of Shale Gas And Oil EssayFracking Technology On Extraction Of Shale Gas And Oil Essay
Fracking Technology On Extraction Of Shale Gas And Oil EssayMiles Priar
 
C A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docx
C A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docxC A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docx
C A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docxclairbycraft
 
Science and advances of knowledge in energy
Science and advances of knowledge in energyScience and advances of knowledge in energy
Science and advances of knowledge in energyFernando Alcoforado
 
Hydraulic fracturing group final
Hydraulic fracturing group finalHydraulic fracturing group final
Hydraulic fracturing group finalcconway2
 
Energy 101 - natural gas
Energy 101 - natural gasEnergy 101 - natural gas
Energy 101 - natural gasTrumanEnergy
 
Algae is the_new_green
Algae is the_new_greenAlgae is the_new_green
Algae is the_new_greenAtheaTubo
 
THE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdf
THE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdfTHE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdf
THE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdfFaga1939
 
The imperative of third energy revolution in the world
The imperative of third energy revolution in the worldThe imperative of third energy revolution in the world
The imperative of third energy revolution in the worldFernando Alcoforado
 
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docxJournal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docxcroysierkathey
 
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docxJournal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docxtawnyataylor528
 
Environmental Disasters -- Human FailuresOn March 28, 1979, as t.docx
Environmental Disasters -- Human FailuresOn March 28, 1979, as t.docxEnvironmental Disasters -- Human FailuresOn March 28, 1979, as t.docx
Environmental Disasters -- Human FailuresOn March 28, 1979, as t.docxSALU18
 

Similar to Andy Ray - Capstone Paper Final PDF (20)

Last Updated October 31, 2011Hydrofracking Is hydraulic fractu.docx
Last Updated October 31, 2011Hydrofracking Is hydraulic fractu.docxLast Updated October 31, 2011Hydrofracking Is hydraulic fractu.docx
Last Updated October 31, 2011Hydrofracking Is hydraulic fractu.docx
 
Franklin Town Council Presentation - 01/06/16
Franklin Town Council Presentation - 01/06/16Franklin Town Council Presentation - 01/06/16
Franklin Town Council Presentation - 01/06/16
 
Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...
Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...
Letter from Dr. Larry Cathles to Gov. Andrew Cuomo Urging End to Moratorium o...
 
Forgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate JusticeForgotten People and NGS: Securing Environmental and Climate Justice
Forgotten People and NGS: Securing Environmental and Climate Justice
 
Forgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate JusticeForgotten People and NGS - Securing Economic & Climate Justice
Forgotten People and NGS - Securing Economic & Climate Justice
 
Fracking Technology On Extraction Of Shale Gas And Oil Essay
Fracking Technology On Extraction Of Shale Gas And Oil EssayFracking Technology On Extraction Of Shale Gas And Oil Essay
Fracking Technology On Extraction Of Shale Gas And Oil Essay
 
C A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docx
C A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docxC A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docx
C A S E W E S T E R N R E S E R V E LAW R E V I E W • VOLUME 6.docx
 
u 1 ppt 1.doc
u 1 ppt 1.docu 1 ppt 1.doc
u 1 ppt 1.doc
 
Science and advances of knowledge in energy
Science and advances of knowledge in energyScience and advances of knowledge in energy
Science and advances of knowledge in energy
 
Hydraulic fracturing group final
Hydraulic fracturing group finalHydraulic fracturing group final
Hydraulic fracturing group final
 
Shale fracking gas english
Shale fracking gas english Shale fracking gas english
Shale fracking gas english
 
Energy 101 - natural gas
Energy 101 - natural gasEnergy 101 - natural gas
Energy 101 - natural gas
 
Algae is the_new_green
Algae is the_new_greenAlgae is the_new_green
Algae is the_new_green
 
How Renewables are Winning - Report
How Renewables are Winning - ReportHow Renewables are Winning - Report
How Renewables are Winning - Report
 
THE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdf
THE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdfTHE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdf
THE FUTURE OF ENERGY REQUIRED FOR THE WORLD.pdf
 
The imperative of third energy revolution in the world
The imperative of third energy revolution in the worldThe imperative of third energy revolution in the world
The imperative of third energy revolution in the world
 
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docxJournal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
 
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docxJournal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
Journal of Economic Perspectives—Volume 30, Number 1—Winter 20.docx
 
Energy Crisis Essay
Energy Crisis EssayEnergy Crisis Essay
Energy Crisis Essay
 
Environmental Disasters -- Human FailuresOn March 28, 1979, as t.docx
Environmental Disasters -- Human FailuresOn March 28, 1979, as t.docxEnvironmental Disasters -- Human FailuresOn March 28, 1979, as t.docx
Environmental Disasters -- Human FailuresOn March 28, 1979, as t.docx
 

Andy Ray - Capstone Paper Final PDF

  • 1.   1             Improving  Public  Safety  &  Reducing   Greenhouse  Gas  Emissions  by  Replacing   Vintage  Gas  Distribution  Pipelines  in   Michigan,  New  York,  Pennsylvania,  and  Ohio           Andrew  Ray       The  Johns  Hopkins  University           10/14/14      
  • 2.   2   Summary         On   March   12,   2014,   eight   New   York   City   residents   lost   their   lives   and   48   others   were   seriously   injured   when   a   violent   explosion   destroyed   two   five-­‐story   tenements  in  the  densely  populated  borough  of  East  Harlem.    Just  three  years  prior,   the   Commonwealth   of   Pennsylvania   was   shocked   when,   within   a   span   of   three   weeks,  two  separate  explosions  left  six  people  dead.    The  connection  between  these   tragic  and  deadly  explosions:  vintage  natural  gas  pipelines.       Massive   quantities   of   vintage   natural   gas   pipelines   lie   nestled   beneath   the   sidewalks  and  streets  of  New  York,  Boston,  Chicago,  Cleveland,  Philadelphia,  Detroit,   and  Washington  D.C.,  and  dozens  of  other  major  American  cities.    These  aging  gas   mains  are  made  of  cast  iron  and  bare  steel  pipes  that  have  inferior  connection  joints   and   were   installed   without   protective   measures   shielding   them   from   caustic   soil   conditions.    As  such,  vintage  gas  lines  are  far  more  vulnerable  to  corrosion,  leaks,   and  catastrophic  failure  than  modern  day  pipeline  materials.       Safely  transporting  natural  gas  in  a  cost-­‐effective  manner  has  been  an  issue   that  has  confronted  the  gas  industry  since  its  inception.  Preventing  gas  leaks  across   the   millions   of   miles   of   local   distribution   mains   and   customer   service   lines   constantly  challenges  the  utility  companies  and  government  regulators  responsible   for  overseeing  the  country’s  gas  distribution  infrastructure.  In  an  effort  to  improve   the   safety   of   the   United   States   distribution   network,   natural   gas   utilities   are   replacing   thousands   of   miles   of   vintage   natural   gas   pipelines   each   year.     Nevertheless,   more   work   needs   to   be   done.     Since   2006,   the   number   of   people   seriously  injured  because  of  our  aging  distribution  system  has  risen  considerably.  
  • 3.   3   And  at  the  current  replacement  levels,  it  will  be  more  than  a  half-­‐century  before  the   last  of  the  highest  risk  gas  mains  are  eliminated.  But  the  ever-­‐present  threat  of  a   natural  gas  explosion  is  not  the  only  hazard  created  by  the  unintended  release  of   natural  gas.       Natural  gas  has  a  composition  that  is  roughly  95  percent  methane  –  a  potent   greenhouse   gas   (GHG)   and   a   primary   driver   of   global   climate   change.   As   atmospheric  GHG  concentrations  climb,  it  is  probable  that  trillions  of  dollars  of  low   lying  costal  infrastructure  will  be  threatened  by  rising  sea  levels,  and  much  of  the   world’s   crop   supply   may   be   jeopardized   by   altered   precipitation   patterns.   (IPCC,   2014)     Accelerating   the   pace   of   vintage   pipeline   modernization   efforts   is   an   issue   positioned   squarely   at   the   nexus   of   pubic   safety   and   climate   policy.     This   paper   seeks   to   provide   a   brief   historical   context   of   vintage   pipeline   infrastructure   and   highlight   the   threat   they   pose   to   public   safety.   It   also   presents   a   prospective   emissions   model   that   attempts   to   quantify   the   volume   of   methane   emissions   avoided  by  the  twenty-­‐eight  natural  gas  utility  companies  participating  in  pipeline   replacement   programs   in   Michigan,   New   York,   Ohio,   and   Pennsylvania   between   2014  and  the  end  of  2040.                
  • 4.   4   Introduction       Locked   within   the   geologic   formations   beneath   the   United   States   are   vast   reserves   of   natural   gas.     Abundant   throughout   large   swaths   of   the   country,   these   supplies  have  been  exploited  for  more  than  150  years  and  have  become  a  highly   versatile   and   valuable   fuel   source   used   across   a   diverse   array   of   applications   —   applications  that  affect  nearly  every  facet  of  our  modern  industrial  society.    In  the   early   days   of   natural   gas   production,   the   role   of   this   fossil   fuel   was   limited,   with   most  being  used  to  illuminate  the  streets  of  19th  century  America.  Over  the  following   century,   the   use   of   natural   gas   became   more   widespread   as   production   methods   improved  and  as  the  network  of  transportation  and  distribution  pipelines  expanded.       Today  natural  gas  is  a  prominent  fuel  source  that  has  become  so  vital,  and  so   deeply  woven  into  the  fabric  of  our  modern-­‐day  society,  that  it  is  inexorably  linked   to   the   economic   well   being   of   the   United   States.   Millions   of   residences   rely   on   natural  gas  for  home  heating  and  cooking,  and  hundreds  of  power  plants  to  use  it  to   efficiently  generate  low-­‐carbon  electricity.  The  primary  component  of  natural  gas,   methane,  is  also  an  invaluable  petrochemical  building  block  used  to  produce  a  wide   variety  of  chemicals  and  compounds  that  we  rely  upon  every  day,  including  plastics,   solvents,  and  fertilizers.  But  because  the  vast  majority  of  the  nation’s  natural  gas   distribution  network  is  buried  out  of  sight  beneath  the  soil,  the  aging  network  of   pipelines  that  bring  heat  to  our  homes  and  supply  fuel  to  the  country’s  industrial   base  largely  goes  unnoticed.    As  such,  few  realize  that  massive  volume  of  natural  gas   that  is  lost  from  leaking  vintage  cast  iron,  unprotected  steel,  and  copper  natural  gas   pipeline  infrastructure.    
  • 5.   5     Last   year   in   2013,   there   were   91,857   miles   of   leak   prone   natural   gas   distribution   mains   and   approximately   4.61   million   vintage   customer   service   lines   dispersed  throughout  the  United  States.  (PHMSA,  2014)  It  is  estimated  that  more   than  20  million  Mscf  (one  thousand  standard  cubic  feet)  of  natural  gas  was  lost  from   the  network  of  vintage  pipeline  infrastructure  in  2013  alone.  (EPA  GHG  Inventory,   2014)  Michigan,  New  York,  Ohio,  and  Pennsylvania  accounted  for  31  percent  of  the   national  total  as  those  states  have  some  of  the  highest  concentrations  of  leak  prone   pipelines  in  the  country.1  Nationally  gas  lost  from  vintage  pipelines  costs  consumers   hundreds   of   millions   of   dollars   annually.   However,   the   harm   caused   by   leaking   vintage  pipelines  extends  well  beyond  the  financial  burden  that  is  passed  along  to   the  ratepayers  that  must  cover  the  expense  of  natural  gas  which  never  reaches  the   meter.       The   methane   contained   in   natural   gas   also   has   a   notable   impact   on   anthropogenic   climate   disruption.   As   the   second   most   influential   forcer   of   global   climate  change,  and  possessing  a  global  warming  potential  (GWP)  30  times  greater   than  carbon  dioxide  over  a  100-­‐year  timeframe,  fugitive  methane  emissions  from   the   natural   gas   supply   chain,   including   those   from   vintage   pipelines,   have   helped   exacerbate  the  rise  of  global  temperatures  over  the  past  century.  (IPCC,  2014)  Over   shorter  durations,  the  impact  of  incrementally  rising  greenhouse  gas  concentrations   may  seem  distant  or  even  imperceptible.  But  recent  scientific  research  has  made  it   increasingly   clear   that   even   a   nominal   growth   of   atmospheric   GHG   levels   beyond   those  presently  observed  would  almost  assuredly  have  long-­‐term  consequences  that                                                                                                                   1  Extrapolated  using  leakage  factors  from  40  CFR  98,  Subpart  W  and  PHMSA  Distribution,   Transmission  &  Gathering,  LNG,  and  Liquid  Annual  Data    (2013)  
  • 6.   6   are   widespread   and   very   real.   Altered   precipitation   patterns,   rising   sea   levels,   diminished  crop  productivity,  and  the  spread  of  vector-­‐borne  diseases  are  but  a  few   of   the   many   adverse   conditions   that   threaten   the   global   community   if   significant   reductions   are   not   soon   made   to   international   budget   of   carbon   dioxide   and   methane  emissions.  (IPCC,  2014)     But  the  most  obvious  hazard  posed  by  systemic  pipeline  leakage  originates   from   the   explosive   nature   of   natural   gas.   On   the   morning   of   March   12,   2014,   the   citizens  of  New  York  were  painfully  reminded  of  that  fact.  That  morning  a  sudden   and   violent   gas   explosion   ripped   through   a   densely   populated   East   Harlem   neighborhood.  The  force  of  the  blast  and  the  fire  that  ensued  destroyed  two  five-­‐ story  multi-­‐purpose  buildings  and  left  several  other  tenements  severely  damaged.   This  tragic  event  killed  eight  people,  seriously  injured  48  others,  and  caused  $2.8   million   dollars   of   property   damage.   The   explosion,   the   most   deadly   on   the   U.S.   distribution  system  in  over  27  years,  is  thought  to  have  been  caused  by  natural  gas   leaking  from  a  crack  in  an  8-­‐inch  low-­‐pressure  cast  iron  gas  main  installed  in  1887.   (NTSB,  2014)  (PHMSA,  2014)       The  disaster  in  East  Harlem  serves  as  a  powerful  and  vivid  reminder  of  the   potential   dangers   presented   with   the   continued   operation   of   vintage   natural   gas   pipelines.   Unfortunately,   it   is   not   practical,   or   even   possible   for   that   matter,   to   design  a  natural  gas  network  where  the  prospect  of  an  explosion  is  fully  eliminated,   as  there  will  always  be  some  degree  of  inherent  risk  involved  with  transporting  and   distributing  an  explosive  gas.    Nor  is  it  possible  to  completely  eliminate  the  harmful   methane   emissions   that   are   helping   disturb   global   climate   dynamics   and   afflict  
  • 7.   7   ratepayers  with  undue  financial  hardship.  But  the  possibility  exists  to  significantly   improve  the  safety  and  efficacy  of  natural  gas  systems,  and  possibly  reduce  long-­‐ term  operational  costs  by  replacing  vintage  natural  gas  pipelines.       Throughout  the  country  efforts  are  underway  to  reduce  the  massive  quantity   of   vintage   natural   gas   mains   and   customer   service   lines.   In   the   decade   between   2004  and  the  end  of  2013,  twenty-­‐three  percent  of  the  nation’s  vintage  gas  mains   were  upgraded  or  retired  from  service.  (PHMSA,  2014)  It  is  very  likely  that  these   efforts  have  prevented  an  unknown  number  of  deaths  and  injuries.  Nonetheless,  it  is   becoming  apparent  that  more  assertive  action  needs  to  taken  as  the  rate  of  pipeline   replacement  has  not  effectively  keep  pace  with  the  decay  of  vintage  infrastructure.       Leak  Prone  Pipeline  Infrastructure           Natural   gas   distribution   infrastructure   is   constantly   subjected   to   a   wide   variety   of   events   and   forces   that   threaten   the   integrity,   reliability,   and   safety   of   natural  gas  delivery.    Corrosion,  ground  movement,  and  improper  installation  can   cause  the  unintended  release  of  gas  from  any  pipeline.  But  vintage  gas  mains,  made   of   cast   iron   and   unprotected   steel,   are   far   more   prone   to   leaks   and   catastrophic   failure  than  modern  pipeline  materials.   Cast  and  Wrought  Iron  Pipe       The  earliest  natural  gas  pipeline  networks  were  laid  beneath  the  major  cities   along   the   eastern   seaboard   of   the   United   States   and   were   composed   of   cast   or  
  • 8.   8   wrought  iron  pipes.  These  systems  were  extensively  used  to  feed  the  gas  lamps  that   illuminated   the   streets   of   mid-­‐19th   century   America.     At   that   time   pipeline   technology  made  it  difficult  to  efficiently  transport  gas  over  long  distances  –  so  early   pipelines   usually   carried   syngas,   or   manufactured   gas,   produced   in   gasification   plants  located  near  city  centers  that  collected  the  flammable  gases  released  when   coal  is  heated  in  the  absence  of  oxygen.  Cast  and  wrought  iron  pipe  continued  to  be   used   into   the   mid-­‐20th   century   because   it   was   cheap   and   easy   to   install.   But   the   durability  of  cast  iron  mains,  and  the  composition  of  the  joints,  are  not  comparable   to  present-­‐day  materials,  and  therefore,  are  poorly  suited  for  modern  natural  gas   distribution  systems.       Cast  iron  gas  mains  were  constructed  using  sections  of  pipe  roughly  ten  to   fourteen   feet   long   connected   by   a   bell   and   spigot   union.   (EPA/GRI,   1996)     When   joining  the  sections  end  to  end,  it  was  common  practice  to  tightly  pack  hemp  rope   and  molten  lead  into  the  bell  joint  to  form  a  tight  seal.  Hemp  seals,  also  known  as   jute   or   oakum   seals,   worked   reasonably   well   when   higher   moisture   syngas   was   used.  But  as  natural  gas,  which  possesses  a  lower  moisture  content  became  more   prevalent,  the  hemp  seals  dried  out  permitting  gas  to  escape.  (U.S.  DOT,  2014)     Cast   iron   is   also   a   brittle   material   -­‐   and   although   it   has   a   relatively   high   compressive   strength,   its   tensile   strength   is   intrinsically   low   -­‐   making   cast   iron   vulnerable  to  the  sheering  forces  generated  by  ground  movements.  Moreover,  cast   iron  can  undergo  graphitization,  “a  natural  process  in  which  iron  degrades  to  softer   elements,  making  iron  pipelines  more  susceptible  to  cracking”.  (U.S.  DOT,  2014) As   a   result   of   its   brittleness   and   the   large   number   of   leak-­‐prone   joints   on   cast   iron  
  • 9.   9   mains,  it  has  the  highest  overall  leakage  rate  of  all  gas  pipeline  materials  with  each   mile  emitting  an  average  of  239  Mscf  of  natural  gas  annually.  (EPA  GHG  Inventory,   2014)     The  poor  resistance  to  ground  disruptions  and  the  high  number  of  gas  leaks   found  on  cast  iron  mains  also  makes  them  more  prone  to  the  catastrophic  failures   that   often   lead   to   serious   injury   or   death.   In   fact,   the   frequency   of   accidents   occurring   on   cast   iron   segments   of   the   U.S.   gas   distribution   system   is   four   times   greater   than   that   of   modern   pipeline   materials.   (PHMSA,   2014)   In   this   light,   regulators  and  utilities  are  focusing  on  eliminating  cast  iron  pipes  from  the  nation’s   gas  distribution  networks.           Nationwide,  there  were  30,888  miles  of  cast  iron  gas  distribution  mains  that   comprised  approximately  2.4  percent  of  the  U.S.  gas  distribution  system  at  the  end   of  2013.  (PHMSA,  2014)    In  thirty-­‐four  states  and  the  District  of  Columbia  cast  iron   distribution   infrastructure   is   still   in   service.   More   than   40   percent   of   this   infrastructure   is   installed   in   the   states   of   New   Jersey,   New   York,   Massachusetts,   Pennsylvania,  and  Michigan.  (PHMSA,  2014)  The  majority  of  the  nation’s  cast  iron   service  lines  have  been  replaced  over  the  past  decades  and  fewer  than  12,000  of   these  services  lines  remain  in  operation  today,  most  in  upstate  New  York.  (PHMSA,   2014)   Bare  Steel  Pipe         Bare  steel  pipe  has  been  used  for  natural  gas  distribution  for  more  than  one   hundred  years;  and  while  it  is  stronger  than  cast  iron,  and  able  to  withstand  higher  
  • 10.   10   pressures,   under   certain   soil   conditions,   it   is   highly   vulnerable   to   corrosion.     Damage  from  corrosion  is  the  pathway  that  most  commonly  allows  natural  gas  to   leak   from   bare   steel   infrastructure.   While   not   all   bare   steel   pipes   will  experience   corrosion  –  as  even  those  buried  in  soils  that  are  known  to  be  corrosive  will  not   necessarily  degrade  –  corrosion  is  stochastic  in  nature  and  it  is  difficult  to  predict   what  segments  of  pipeline  will  be  affected,  or  when  they  will  become  structurally   compromised.  Many  variables  influence  the  rate  that  which  unprotected  steel  pipe   will  corrode.  These  variables  include:  soil  moisture  content,  aeration,  drainage;  and   most  importantly,  the  chemical  composition  of  the  soil  itself.    Retroactive  protection   measures  are  costly  to  implement  and  their  effectiveness  is  often  marginal  because   it  is  impossible  to  restore  pipelines  already  damaged  by  corrosion.  Consequently,   unprotected  metallic  gas  mains  have  been  slated  for  removal  in  many  states.         Unprotected   steel   pipes   were   installed   extensively   throughout   the   United   States  before  federal  regulations  were  instituted  in  1970  mandating  that  cathodic   protection   (CP)   and   protective   coatings   be   applied   to   all   new   steel   pipes.     In   the   United  States  there  are  55,556  miles  of  unprotected  steel  pipelines  and  over  2.33   million   bare   steel   service   lines   in   operation   as   of   January   2014.   (PHMSA,   2014)   More   than   half   of   the   unprotected   steel   infrastructure   is   located   in   Pennsylvania,   Ohio,   Texas,   New   York,   and   Kansas.     Each   mile   of   bare   steel   pipeline   emits   an   average  of  110  Mscf  of  natural  gas  per  year,  and  each  individual  bare  steel  service   line  leaks  an  average  of  1.66  Mscf  annually.  (EPA  GHG  Inventory,  2014)  The  relative   rate  of  methane  emissions  leaked  from  bare  steel  infrastructure  in  the  United  States   is  less  than  half  of  that  leaked  from  cast  iron.  Despite  this,  the  absolute  volume  GHG  
  • 11.   11   emissions   escaping   from   bare   steel   distribution   lines   is   greater   than   its   cast   iron   counterpart  due  to  the  large  volume  of  bare  steel  infrastructure.     Copper  Pipe       Copper  piping  is  now  used  almost  exclusively  for  customer  service  lines  and   is  also  a  candidate  for  replacement  in  some  pipeline  modernization  programs.  Since   copper  is  a  relatively  soft  and  malleable  material,  it  can  be  easily  damaged.  Ground   movements  may  cause  pliable  copper  service  lines  to  kink  and  reduce  or  cut  off  the   flow  of  gas  to  the  customer.  Corrosion  typically  is  not  an  issue  with  copper  lines,  but   can  occur  under  certain  soil  conditions.  Corrosion  may  also  appear  if  at  some  point   of  during  the  gas  line’s  service  life  the  sulfide  content  of  the  natural  gas  exceeded   specifications,  although  this  is  more  of  a  concern  for  collection  lines  that  transport   unprocessed   natural   gas.   Issues   also   can   arise   if   copper   service   lines   are   coupled   with  unprotected  metallic  gas  mains  with  improper  fittings,  whereby  a  galvanic  cell   is  created  and  increasing  the  prospect  of  corrosive  damage  on  the  adjoining  metal   line.       Although  copper  is  superior  to  cast  iron  and  unprotected  steel  in  terms  of   annual  gas  leakage,  copper  gas  lines  are  not  considered  to  be  as  effective  as  modern   plastic  and  protected  steel  gas  lines.  With  more  than  970,000  active  copper  service   lines  in  the  United  States  at  the  end  of  2013,  each  leaking  an  average  of  0.26  Mscf   per   service   annually,   methane   emissions   lost   from   copper   services   are   not   inconsequential.  (EPA  GHG  Inventory,  2014)    
  • 12.   12   Modern  Pipeline  Materials  and  Protection       To  improve  safety  of  gas  distribution  systems  the  natural  gas  industry  has   adopted  the  use  of  plastic  and  cathodically  protected  coated  steel  gas  mains.  These   newer   materials   are   not   immune   from   damage   or   catastrophic   failures,   but   they   represent  major  improvements  in  overall  safety  and  reliability  when  compared  to   the   higher-­‐risk   vintage   cast   iron   and   bare   steel   infrastructure   that   they   replace.   Most  of  the  new  low  to  mid  pressure  distribution  mains  (≤  60  psi)  less  than  12”  in   diameter   are   constructed   from   a   medium   density   polyethylene   plastic   that   is   relatively  cheap,  easy  to  install,  will  not  corrode,  and  possesses  both  the  strength   and   flexibility   to   be   largely   impervious   to   damage   from   moving   ground.     Since   plastic   mains   cannot   be   located   using   a   metal   detector,   a   tracer   wire   is   placed   alongside  the  gas  line  during  installation  so  that  the  lines  can  be  properly  marked  in   order  to  prevent  future  damage  from  third  party  excavation.       Cathodically   protected   coated   steel   lines   are   deployed   in   locations   where   high-­‐pressure   mains   (≥   60   psi)   are   necessary   and   sometimes   in   areas   where   the   likelihood   of   excavation   damage   is   high   such   as   in   dense   urban   environments.   Protected   steel   is   also   utilized   for   above   ground   pipeline   segments   because   long-­‐ term  exposure  to  UV  light  degrades  plastic  gas  lines  causing  them  to  become  brittle.     Both  cathodic  protection  and  epoxy-­‐based  protective  coatings  are  applied  to   modern  metallic  gas  mains  and  components  to  shield  from  the  damaging  effects  of   corrosion.   Two   methods   of   cathodic   protection   are   available:   1)   applying   an   impressed  current  using  a  low-­‐voltage  DC  current  between  a  pipeline  and  an  anode   that  permits  electrons  to  flow  towards  the  pipeline  rather  than  be  stripped  of  them;  
  • 13.   13   and  2)  wiring  a  pipeline  to  sacrificial  anodes  made  from  magnesium,  zinc,  or  other   metal   that   are   more   reactive   than   the   steel   alloys   used   in   pipeline   construction.     (Fessler  &  Baker  Jr.,  Inc.,  2008)       Grading  Natural  Gas  Leaks         Most   states   have   adopted   the   leak   definitions   and   standards   set   by   the   American  Gas  Association’s  Gas  Piping  Technology  Committee  (GPTC).  Natural  gas   leaks   are   classified   into   three   categories   based   on   the   potential   hazard   that   they   present  to  the  public  and  property.  Grade  one  leaks  are  the  most  serious  and  are   defined   as   “leaks   that   represent   an   existing   or   probable   hazard   to   persons   or   Gas  Piping  Technology  Committee  Natural  Gas  Distribution  Leak  Classifications     Definition   Action  Criteria   Example   Grade  1     A  leak  that   represents  an   existing  or   probable  hazard  to   persons  or   property   Immediate  repair  or   continuous  action  until   conditions  are  no  longer   hazardous.  Notify  police   and  fire  departments   • Any  indication  of  gas  that  is,  or  is  likely  to   migrate  into,  under,  or  near  an  outside   wall  of  a  building   • ≥  80%  LEL  reading  in  confined  space   • Any  leak  that  can  be  seen,  heard,  or  felt   that  may  endanger  the  public  or  property   Grade  2   A  leak  that  is   recognized  as  being   non-­‐hazardous  at   the  time  of   detection,  but   requires  scheduled   repair  based  on   probable  future   hazard   Repair  or  clear  within   one  calendar  year,  but   no  later  than  15  months   from  the  date  the  leak   was  reported.  Should  be   reevaluated  at  least  once   every  six  months.  May   vary  greatly  in  degree  of   potential  hazard   • Any  reading  of  40%  LEL,  or  greater,   under  a  sidewalk  in  a  wall-­‐to-­‐wall  paved   area  that  does  not  qualify  as  a  Grade  1   leak   • Any  reading  between  20%  LEL  and  80%   LEL  in  a  confined  space   • Any  leak  which,  in  the  judgment  of   operating  personnel  at  the  scene,  is  of   sufficient  magnitude  to  justify  scheduled   repair   Grade  3   A  leak  that  is  non-­‐ hazardous  at  the   time  of  detection   and  can  be   reasonably   expected  to  remain   non-­‐hazardous   These leaks should be reevaluated during the next scheduled survey, or within15 months of the date reported, whichever occurs first, until the leak is regraded or no longer results in a reading • Any  reading  of  less  than  80%  LEL  in   small  gas  associated  substructures   • Any  reading  under  a  street  in  areas   without  wall-­‐to-­‐wall  paving  where  it  is   unlikely  gas  could  migrate  to  the  outside   wall  of  a  building   • Any  reading  of  less  than  20%  LEL  in  a   confined  space   Source:  GPTC  Guide  For  Gas  Transmission  and  Distribution  Piping  Systems:  2012  Edition   Guide  Material  Appendix  G-­‐192-­‐11  pp.  608-­‐610    
  • 14.   14   property”.   (GPTC,   2012)   These   leaks   must   undergo   immediate   repair.   Under   standard   atmospheric   conditions   natural   gas   will   ignite   at   concentrations   of   five   percent   by   volume.   This   threshold   is   the   lower   explosive   limit   (LEL).   In   order   to   provide  a  margin  of  safety,  grade  one  leaks  include  any  situation  where  gas  exceeds   80%  of  the  LEL  (4.0%  by  volume  or  40,000  parts  per  million).       On  the  other  end  of  the  leak  spectrum  are  non-­‐hazardous  grade  three  leaks.   It  is  here  where  an  overwhelming  majority  of  natural  gas  leaks  are  categorized.  In   most  states,  grade  three  leaks  must  be  reevaluated  every  fifteen  months,  and  if  they   do  not  present  a  threat  to  public  safety,  they  are  sometimes  allowed  to  remain  for   decades  after  their  detection.  Only  in  five  states  are  limits  established  that  dictate   the  amount  of  time  that  these  “lesser”  leaks  are  allowed  to  continue  without  being   repaired.  (NAPSR,  2013)       Gas   operators   often   refer   to   grade   three   leaks,  as  “non-­‐hazardous”  –  but  this  phrase  can  be   misleading   because   it   is   one   that   can   easily   be   misconstrued  to  denote  that  grade  three  leaks  lack   harmful   consequences.   Although   they   are   sometimes  only  pinhole  sized,  their  impact  should   not   be   dismissed,   for   it   is   these   leaks   that   are   responsible  for  a  majority  of  the  lost  gas  from  distribution  pipelines.    PHMSA  data   indicates  that  U.S.  gas  utilities  were  aware  of  105,513  gas  leaks  at  the  end  of  2013.   (PHMSA,  2014)  However,  this  figure  only  accounts  for  the  number  of  reported  leaks,   and  it  is  exceedingly  likely  that  thousands  more  go  undetected.     Reported  Number  of   Unrepaired  Natural  Gas   Leaks    (As  of  12/31/13)   Michigan   5,077   New  York   422   Ohio   8,197   Pennsylvania   3,895   United  States   105,513   Source:  PHMSA  Annual  Pipeline  Data  
  • 15.   15   Methane  Emissions  in  Urban  Environments         Operating   natural   gas   systems   in   America’s   most   densely   populated   urban   environments   involves   a   great   deal   of   intrinsic   risk.     While   many   elements   contribute  to  the  elevated  level  of  risk,  the  most  tangible  originates  from  the  many   individuals   that   may   potentially   be   affected   by   an   unforeseen   outage   or   accident.   Whereas   a   localized   service   disruption   occurring   on   a   rural   network   may   impact   several   dozen   customers,   a   similar   disruption   in   major   metropolitan   area   might   potentially  affect  many  thousands.  And  as  can  be  witnessed  by  the  explosion  in  East   Harlem,  accidents  in  high  population  centers  can  be  catastrophic.  But  in  addition  to   the   high   population   density   of   cities,   there   are   many   other   challenges   presented   with  operating  gas  pipelines  in  urbanized  environments.         A  large  percentage  of  the  nation’s  vintage  pipeline  infrastructure  is  located  in   many  of  America’s  oldest  and  most  populous  cities.    Here,  hundreds,  and  sometimes   thousands,   of   miles   of   the   most   dangerous   leak-­‐prone-­‐pipeline   remains.   Even   though   these   systems   are   remnants   of   a   former   era   their   operation   persists:   For   example,  in  New  York  City,  nearly  3,000  miles  of  cast  iron  pipe  remains;  in  Detroit,   there  are  another  2,000  miles;  and  in  Philadelphia  lies  1,500  more.  (PHMSA,  2014)     In  the  tightly  packed  city  streetscapes,  gas  pipelines  compete  for  space  with   the  myriad  of  water  mains,  sanitary  sewers,  telephone,  fiber  optic  lines,  etc.  situated   below  the  paved  surfaces.  For  natural  gas  pipelines,  this  has  several  implications,   especially   during   the   winter   months,   which   can   be   particularly   troublesome   for   urban  cast  iron  infrastructure.      
  • 16.   16     A   significant   portion   of   the   nation’s   cast   iron   gas   lines   reside   in   northern   latitudes  where  the  formation  of  ground  frost  can  disturb  the  surrounding  ground   through  a  process  known  as  “frost  heave”.    The  forces  generated  by  frost  heave  –  a   result  of  soil  moisture  expanding  as  it  transitions  between  a  liquid  and  frozen  state  –   can  shift  the  ground  and  compromise  the  unreinforced  seals  that  connect  the  short   segments   of   cast   iron   pipe.   Most   leaks   allow   only   small   volumes   of   methane   to   escape   and   do   not   generally   present   a   safety   hazard.   But   intermittently   the   disturbances   created   by   the   freeze/thaw   cycle   will   completely   dislocate   an   unreinforced  bell  and  spigot  joint  of  a  cast  iron  gas  main.    It  is  also  possible  for  these   forces   to   cause   the   brittle   cast   iron   pipe   to   crack.   Both   situations   create   an   exceptionally  dangerous  situation  for  any  persons  and  property  in  the  vicinity.          The   removal   of   snow   from   city   streets   can   also   indirectly   contribute   to   subsurface   pipeline   damage.     The   extent   to   which   a   freezing   surface   will   be   disturbed   is   partially   dependent   on   how   deep   frost   penetrates   into   the   ground.     Because   more   ground   moisture   is   affected,   a   deep   frost   is   apt   to   have   a   more   pronounced  impact.    And  because  snow  is  a  surprisingly  effective  insulator,  when   the  blanket  of  insulating  snow  is  plowed,  the  roads  receive  direct  exposure  to  frigid   air   temperatures,   causing   in   a   deeper   and   longer   lasting   frost   layer   that   is   more   likely  to  the  damage  vintage  cast  iron  pipes.           Broken  water  mains,  be  it  caused  by  a  frozen  pipe,  frost  heave,  or  other  cause   is   another   threat   more   frequently   experienced   during   the   winter.     When   a   water   main  breaks  a  large  volume  of  pressurized  water  is  released.  This  can  quickly  wash   out   roads   and   undermine   natural   gas   pipelines.   If   the   soil   supporting   the   short  
  • 17.   17   segments   of   cast   iron   pipe   is   washed   away,   it   is   virtually   inevitable   that   the   segments  will  either  shift  or  collapse  allowing  natural  gas  to  escape.     Finally,   frozen   ground   creates   an   extremely   effective   barrier   that   leaking   natural  gas  is  unable  to  penetrate.  When  natural  gas  leaks  from  subsurface  pipes,   the  gas  will  gradually  travel  through  the  soil  before  ultimately  dissipating  into  the   atmosphere.   But   when   an   impermeable   covering   such   as   frost,   a   city   street,   or   sidewalk  prevents  the  gas  from  venting  a  hazardous  condition  can  arise.    When  an   overlying   cap   is   in   place,   natural   gas   is   able   to   collect   and   concentrate   in   nearby   cavities,  migrate  horizontally  below  the  surface,  and  potentially  infiltrate  basements   through   cracked   building   foundations.   If   gas   accumulates   in   sewer   manholes,   the   explosive  gas  may  be  able  to  travel  a  considerable  distance.           Leaking   vintage   pipelines   clearly   are   a   known   risk.   As   part   of   a   risk   management   plan,   gas   distribution   companies   perform   regular   leak   detection   surveys   throughout   their   networks   to   preemptively   pinpoint   and   repair   leaking   segments   of   pipe.   During   the   winter   season,   natural   gas   utilities   in   northern   U.S.   states  are  required  to  conduct  frost  patrols   to  monitor  areas  where  cast  iron  gas   mains  are  present  for  elevated  methane  concentrations.  Yet  despite  the  best  efforts   of   the   natural   gas   utilities   to   minimize   leaks   on   their   distribution   systems,   independent   methane   detection   surveys   in   Washington   D.C.   and   Boston   have   demonstrated  that  a  large  number  of  gas  leaks  go  undetected.       A  2014  study  measuring  gas  leaks  in  the  District  of  Columbia  located  5,893   potential  gas  leaks  over  1,500  miles  of  road.  (Jackson,  et  al.,  2014)  Equivalent  to  one  
  • 18.   18   gas  leak  for  every  1,344  feet  of  road  sampled,  the  leak  density  in  Washington,  D.C.   was   only   slightly   less   than   was   observed   the   previous   year   in   Boston,   where   a   related   survey   documented   one   leak   across   every   1,235   feet   of   road   sampled.   (Phillips,  et  al.,  2013)  Since  both  Boston  and  the  District  of  Columbia  possess  a  high   percentage  of  aging  cast  iron  pipelines,  it  is  plausible  that  these  findings  may  mirror   the  leakage  profiles  of  larger  cities  that  too  have  a  significant  quantity  of  cast  iron   gas  mains  including  Detroit,  Philadelphia,  and  New  York  City.       Most  of  leaks  found  in  the  surveys  were  found  to  be  non-­‐hazardous  grade   three  leaks,  but  during  the  Washington  D.C.  survey,  researchers  located  one  dozen   undetected  gas  leaks  that  were  quite  hazardous.  Twelve  manholes  were  found  to   contain  methane  concentrations  that  exceeded  the  explosive  lower  limit  of  40,000   ppm,   and   in   three   of   these   manholes,   methane   concentrations   were   ten   times   greater  than  the  explosive  lower  limit.  (Jackson,  et  al.,  2014)  Shortly  after  they  were   discovered,   the   research   team   notified   the   local   distribution   company.   This   information,   according   to   guidelines   set   by   the   GPTC,   should   have   triggered   the   utility   to   dispatch   an   emergency   response   unit   so   that   each   manhole   would   be   assessed  and  classified  as  a  grade  one  leak  and  be  scheduled  for  immediate  repair.   But   disconcertingly,   when   researchers   returned   four   months   later,   again   they   measured  hazardous  methane  concentrations  in  nine  of  the  twelve  locations.              
  • 19.   19   Regulatory  History       Federal   regulations   concerning   pipeline   integrity   and   safety   were   first   introduced   in   1970   as   a   result   of   the   1968   Natural   Gas   Pipeline   Safety   Act.     Thereafter,   all   new   installations   of   natural   gas   pipeline   on   transmission   and   distribution   networks   in   the   United   States   were   required   to   satisfy   the   minimum   safety  requirements  set  forth  by  the  Department  of  Transportation  (DOT).    Among   the   initial   safety   standards   was   the   requirement   that   cathodic   protection   be   installed  on  new  steel  gas  lines  and  the  collection  of  detailed  records  regarding  the   location,   material   type,   and   installation   date   of   pipe.     The   new   guidelines   also   stipulated  that  future  use  of  cast  iron  pipes  for  the  distribution  of  natural  gas  be   prohibited.  Today,  a  division  within  the  DOT,  the  Pipeline  and  Hazardous  Materials   Administration   (PHMSA),   is   tasked   with   developing   and   enforcing   regulations   to   ensure  the  safe,  reliable,  and  environmentally  responsible  operation  of  the  nation’s   natural  gas  pipelines.    The  PHMSA  maintains  minimum  pipeline  safety  standards  as   outlined  under  U.S.  Code  of  Federal  Regulations  §192  which  covers  interstate  and   distribution   pipelines   in   all   fifty   states,   the   District   of   Columbia,   and   Puerto   Rico.   The  PHMSA  analyzes  pipeline  accidents  and  incident  data  to  evaluate  the  strength  of   current   safety   standards   regarding   design,   construction,   operation,   and   maintenance  practices  of  gas  pipeline  systems.       The  states  also  play  a  vital  regulatory  role  in  natural  gas  operations.  State   legislatures  have  the  authority  to  pass  additional  or  more  rigorous  safety  standards   that  exceed  PHMSA  requirements.  In  fact,  nearly  every  state  has  enacted  legislation   to   implement   policies   and   enhanced   safety   initiatives   that   surpass   specifications  
  • 20.   20   mandated  by  federal  code.    Only  Montana,  North  Dakota,  South  Dakota,  Utah,  and   the  territory  of  Puerto  Rico  have  failed  to  require  additional  safety  requirements  for   natural  gas  systems.  (NAPSR,  2013)       The  enforcement  and  inspection  of  intrastate  pipelines  and  gas  distribution   systems   is   also   a   task   frequently   performed   by   state   inspectors.   This   is   accomplished  through  a  federal/state  agreement  where  an  agent  of  the  state  acts  on   behalf   of   the   DOT   to   monitor   and   oversee   safety   federal   regulations   while   also   enforcing  additional  state  requirements.    For  their  part  in  safety  enforcement,  the   PHMSA   is   authorized   to   reimburse   state   agencies   up   to   80   percent   of   the   costs   required  to  carry  out  inspection  and  enforcement  activities  of  intrastate  pipelines   and  local  distribution  systems.  (NAPSR,  2013,  p.  11)     Overseeing  the  requests  of  individual  gas  distribution  utilities  are  the  state   public   utility   commissions.     Because   natural   gas   companies   operate   monopoly   franchises,   each   state’s   public   utility   commission   is   granted   the   sole   authority   to   approve   or   deny   proposals,   rates,   and   financial   expenditures   of   distribution   operators  located  within  their  jurisdictional  territory.    The  primary  duty  of  utility   commissions  is  to  determine  and  set  just  and  prudent  rates  that  enable  utilities  to   safely  and  reliably  deliver  natural  gas  while  also  affording  utilities  an  opportunity  to   recover   a   reasonable   return   on   their   investment.   Costs   incurred   by   distribution   companies   are   usually   recovered   through   two   mechanisms:   a)   gas   cost   recovery,   and  b)  base  rates.     Natural  gas  utilities  do  not  generate  profit  on  gas  purchased  from  interstate   pipelines.   Instead,   the   cost   of   gas   is   directly   passed   along   to   ratepayers   via   a  
  • 21.   21   volumetric  gas  cost  recovery  charge.  The  volumetric  charge  on  a  customer’s  utility   bill   is   automatically   adjusted   on   a   monthly   basis   based   upon   a   predetermined   formula  because  the  price  of  natural  gas  is  subject  to  a  large  number  of  dynamic   market  forces  and  is  often  highly  volatile.       Base   rates   allowing   utilities   to   recover   the   costs   associated   with   the   operation   of   distribution   systems   are   negotiated   through   formal   rate   case   proceedings.  During  these  proceedings,  state  utility  commissions  rely  on  the  LDC’s   and   intrastate   pipeline   operators   to   deliver   comprehensive   and   transparent   information  pertaining  to  the  cost  of  operation,  the  utility’s  customer  base,  detailed   financial   statements,   and   other   applicable   information   as   requested   by   the   commission   so   that   base   rates   can   be   approved.     Long-­‐term   capital   investments,   operations   and   maintenance   costs,   debt   payments,   other   fixed   costs,   as   well   as   a   reasonable  margin  of  profit  are  determined  during  the  base  rate  ruling.    Many  states   have   elected   to   use   the   base   rate   mechanism   to   recover   costs   associated   with   accelerated  pipeline  programs,  while  others  have  chosen  alternative  rate  designs.     Pipeline  Replacement  Programs       The   first   national   scale   effort   to   remove   cast   iron   pipe   began   in   1991   following  the  investigation  of  a  fatal  gas  explosion  in  Allentown,  PA.    Based  upon  the   recommendations  presented  by  the  National  Safety  Transportation  Board  (NTSB),   the  Research  and  Special  Programs  Administration,  the  predecessor  agency  of  the   PHMSA,  issued  an  alert  notice  to  operators  of  cast  iron  pipe  advising  that  “each  gas   operator  implement  a  program,  based  on  factors  such  as  age,  pipe  diameter,  operating  
  • 22.   22   pressure,  soil  corrosiveness,  existing  graphitic  damage,  leak  history,  burial  depth,  and   external  loading,  to  identify  and  replace  in  a  planed,  timely  manner  cast  iron  piping   systems   that   may   threaten   public   safety.”   (RSPA,   1991)     Following   the   advisory,   operators  began  the  removal  of  the  highest  risk  cast  iron  mains  from  their  systems,   eliminating  over  15,000  miles  of  cast  iron  mains  between  1992  and  the  end  of  2003.   (PHMSA,  2014)  These  early  replacement  programs  have  been  cited  as  contributing   to  the  improving  safety  on  the  U.S.  distribution  system.       In  2006,  the  U.S.  Congress  took  further  action  to  enhance  pipeline  safety  by   passing  the  Pipeline  Inspection,  Protection,  Enforcement,  and  Safety  Act.    This  bill   directed   the   PHMSA   to   begin   formulating   guidelines   to   implement   distribution   integrity  management  programs  (DIMP)  for  operators  of  gas  distribution  systems.     In  December  of  2009,  the  PHMSA  promulgated  final  DIMP  rules  aimed  at  reducing   the  frequency  and  severity  of  pipeline  incidents  on  the  U.S.  distribution  system.    The   PHMSA  allowed  distribution  operators  eighteen  months  to  plan,  write,  and  submit   individualized  DIMP  protocols  that  were  to  be  implemented  by  August  of  2011.     While   crafting   DIMP   procedures   the   PHMSA   explicitly   avoided   inflexible   mandates  for  the  1,400  plus  gas  distribution  operators  in  the  United  States  because   the  requirements  of  these  companies  can  be  highly  variable  –  some  have  customer   bases   of   fewer   than   one   hundred   and   the   largest   serve   well   over   one   million.     Natural  gas  distribution  networks  can  vary  wildly  in  age,  size,  pipeline  composition   and   design;   they   operate   in   both   rural   environments   and   in   the   most   densely   populated   cities;   and   operate   in   differing   geographical   locations   that   sometimes   require   unique   maintenance   and   quality   control   procedures.     Given   the   diversity  
  • 23.   23   and   individualized   requirements   of   the   nation’s   natural   gas   companies,   enforcing   mandated  safety  procedures  through  prescriptive  policies  would  have  likely  been   unduly  burdensome  and  expensive  for  many  operators.  Instead  the  PHMSA  outlined   seven  key  steps  affording  operators  latitude  in  order  to  address  company/location   specific  safety  needs  and  requirements.  State  regulators  may  choose  to  additionally   implement  further  requirements  for  distribution  operators.         PHMSA  Requirements  for  Distribution  Integrity  Management  Programs     1) Develop  and  implement  a  written  distribution  integrity  management  plan   2) Engage  in  opportunities  to  improve  knowledge  of  system  infrastructure   3) Identify  existing  and  future  threats   4) Analyze,  assess,  and  rank  risks  and  safety  threats   5) Identify  and  implement  risk  mitigation  measures   6) Measure,  monitor,  and  evaluate  program  performance   7) Report  DIMP  results  annually  to  state  pipeline  regulatory  authorities       To   satisfy   risk   assessment   and   ranking   requirements   of   DIMP,   utility   companies   rely   on   risk   analysis   software   packages   tailored   specifically   for   DIMP   analysis.    Theses  specialized  programs  utilize  customized  algorithms  to  analyze  data   inputs   incorporating   pipe   material,   diameter,   age,   pressure,   leak   history,   and   relevant   system   performance   metrics   to   identify   and   rank   at-­‐risk   locations.   By   calculating  localized  risk  profiles  and  the  corresponding  level  of  consequence  of  an   incident   on   each   distribution   segment,   engineers   can   identify   the   highest   risk   infrastructure  and  can  proactively  engage  in  risk  mitigation  activities.      
  • 24.   24     One   of   the   integral   components   of   the   integrity   management   rules   was   designed  to  address  an  information  gap  that  could  result  in  operators  overlooking   opportunities  that  address  significant  safety  threats.    Prior  to  the  implementation  of   minimum  federal  safety  standards  set  in  1970,  pipeline  operators  were  not  required   to  retain  detailed  records  identifying  the  location,  material  type,  or  instillation  date   of  gas  mains  and  service  lines.    At  the  beginning  of  2014,  PHMSA  records  show  over   30  percent  of  the  gas  distribution  mains  predate  the  federal  safety  standards  and   that  gas  distribution  companies  were  unable  to  definitively  ascertain  during  which   decade  more  than  96,000  miles  of  natural  gas  mains  were  installed.  (PHMSA,  2014)   This  is  not  because  distribution  operators  were  necessarily  careless  in  their  efforts   to  maintain  accurate  information  prior  to  federal  requirements,  but  rather  that  in   the   absence   of   federal   law,   this   indispensible   information   was   more   apt   to   be   inaccurate,  misplaced,  or  simply  unrecorded  without  penalty  or  consequence.         Although   it   is   uncommon,   companies   are   sometimes   unable   to   verify   the   location   of   underground   gas   mains   due   to   incomplete   or   inaccurate   records.     Inaccurate   records   endanger   construction   crews   engaging   in   underground   excavation,  as  well  as  the  public  as  a  whole.    If  a  utility  is  unable  to  locate  gas  lines  or   does  not  have  proper  knowledge  of  the  pipe’s  material  makeup,  it  is  impossible  to   determine   appropriate   risk   identification   procedures   or   develop   preventative   mitigation  options.    By  narrowing  the  gap  between  what  is  known  and  unknown,   DIMP   should   substantially   decrease   the   number   of   unidentified   risks   on   our   gas   distribution  system  and  thereby  bolster  safety  across  the  network.        
  • 25.   25     Call  to  Action       Between  1994  and  2006,  the  number  of  injuries  on  U.S.  distribution  systems   had   been   in   a   variable   but   steady   state   of   decline.   In   2007,   that   trend   suddenly   reversed.  As  a  result,  in  the  years  since  then,  the  number  of  individuals  hurt  by  gas   distribution  accidents  has  significantly  grown  and  continues  to  accelerate.    Then  in   late  2010  and  early  2011,  a  series  of  major  accidents  on  U.S.  natural  gas  distribution   systems  further  reinforced  the  need  to  improve  the  safety  and  integrity  of  the  entire   U.S.  pipeline  network:     0   20   40   60   80   100   120   1994   1995   1996   1997   1998   1999   2000   2001   2002   2003   2004   2005   2006   2007   2008   2009   2010   2011   2012   2013   2014   U.S.  Gas  Distribution  –  Fatalities  &  Injuries:     January  1994  –  August  2014   Source:  PHMSA  Serious  Pipeline  Incident  Data  (Updated  8/31/14)     Fatalities     Injuries     5  Year   Average  
  • 26.   26   • On  December  29th,  2010,  a  gas  explosion  at  a  Wayne,  MI  furniture  store  killed   two  employees  and  seriously  injured  two  others.    Although  investigators  were   unable   to   conclusively   determine   the   cause   of   the   explosion,   investigators   believe  that  gas  released  by  a  sudden  joint  separation  on  a  nearby  two-­‐inch   bare  steel  distribution  main  installed  in  1940  migrated  through  a  sewer  line  to   the  store  prior  to  the  explosion.     • On  January  18th,  2011,  one  member  of  a  local  utility  gas  response  crew  was   killed  and  three  others  injured  while  attempting  to  repair  a  major  gas  leak  in   Northeast   Philadelphia.   A   crack   found   on   the   body   of   a   12-­‐inch   cast   iron   distribution   main   installed   in   1942   was   determined   to   be   the   cause   of   the   explosion.       • On   February   9th,   2011,   a   gas   explosion   in   Allentown,   PA   resulted   in   five   fatalities  and  seriously  injured  three  others.    The  initial  explosion  leveled  two   townhomes   and   the   subsequent   fire   destroyed   six   others.     The   cause   of   the   explosion  was  eventually  found  to  be  a  crack  in  12-­‐inch  low-­‐pressure  cast  iron   distribution  main  installed  1928.         Alarmed   by   the   sequence   and   severity   of   these   accidents   on   the   aging   gas   network,  then  Secretary  of  Transportation,  Ray  LaHood,  issued  a  “Call  to  Action”  for   industry   representatives,   researchers,   regulatory   officials,   and   public   safety   advocates   to   assemble   at   a   pipeline   safety   forum   in   April   of   2011   to   identify   potential  gaps  in  industry  practices  and  shortcomings  of  current  regulatory  regimes.     Following  this  forum,  the  Department  of  Transportation  issued  an  updated  advisory   bulletin  again  urging  owners  and  operators  of  distribution  pipelines  of  the  need  to   conduct  a  comprehensive  review  of  cast  iron  and  bare  steel  distribution  mains  and  
  • 27.   27   further   accelerate   pipeline   repair   and   replacement   programs   for   high-­‐risk   infrastructure.  (U.S.  GPO,  2012)   Acceleration  of  Pipeline  Replacement  Programs       Proactively   engaging   in   actions   that   limit   fugitive   methane   emissions   from   natural  gas  lines  is  a  fundamental  requisite  in  providing  safe  and  reliable  natural  gas   service.  Removing  or  retiring  cast  iron  and  bare  steel  distribution  lines  from  service   is  the  most  reliable  method  to  eliminate  methane  leakage  from  vintage  pipelines.   Unfortunately,   doing   so   can   be   prohibitively   expensive.   Due   to   the   high   cost   of   replacement,   regulators   have   historically   been   reluctant   to   approve   large-­‐scale   modernization   efforts.   But   an   analysis   of   publicly   available   rate   filings   and   documents  filed  following  the  DOT  advisory  bulletin  indicates  that  state  regulators   are   becoming   more   supportive   of   the   rate   hikes   that   are   necessary   to   more   aggressively   fund   robust   pipeline   replacement   schedules.     In   Michigan,   Pennsylvania,   and   New   York   infrastructure   modernization   investment   has   grown   substantially   since   2011   for   the   gas   utilities   with   the   greatest   amount   of   vintage   infrastructure  –  in  some  instances  replacement  schedules  seeing  a  twofold  increase   from   previous   rate   filings.   In   Ohio,   pipeline   replacement   rates   have   held   steady   during  that  time  because  the  state  public  utility  commission  began  approving  very   ambitious  replacement  schedules  for  the  largest  gas  distribution  companies  in  2001.    
  • 28.   28   Cost  of  Programs     The  economics  surrounding  the  replacement  of  underground  pipelines  is  a   barrier   limiting   the   rate   of   pipeline   modernization.   The   amount   of   capital   investment   required   to   modernize   aging   gas   main   infrastructure   is   closely   correlated   to   the   population   density   of   the   replacement   area.     For   example,   upgrading   a   single   mile   of   gas   main   and   adjacent   customer   service   lines   usually   ranges   between   $300,000   and   $1,000,000,   but   in   dense   urban   environments   like   Manhattan,  replacement  projects  may  be  as  high  as  $10.56  million/  mile,  or  $  2000   per  foot  of  gas  main.  (New  York  State  PSC,  2014)  Tearing  out,  and  then  replacing  the   sidewalks,  streets,  and  other  infrastructure  after  the  vintage  pipelines  are  removed   drives   up   the   cost   of   pipeline   replacement   a   great   degree.   Sometimes   the   cost   of   restoring   the   surrounding   infrastructure   on   a   project   can   equal,   or   may   even   be   greater  than  the  actual  cost  of  installing  new  pipelines.  (NY  State  Assembly,  2014)   With  larger  distribution  companies  replacing  upwards  of  50  miles  or  more  annually,   it  is  not  difficult  to  see   that  replacement  programs  can  present  a  strong  financial   burden.   Additional  Benefits  of  Pipeline  Replacement  Programs       Accelerated  pipeline  replacement  programs  will  produce  benefits  that  extend   beyond   the   primary   purpose   of   enhancing   public   safety.     With   the   installation   of   newer  and  less  leak-­‐prone  gas  lines  the  costs  of  frequent  leak  repair  will  be  avoided,   service   quality   of   a   given   system   will   be   improved   as   the   amount   of   unplanned   service  interruptions  from  leak  repairs  is  reduced,  and  the  number  of  personnel  and  
  • 29.   29   equipment   needed   to   perform   leak   repair   and   maintenance   duties   will   decrease.     Further  workforce  reductions  can  be  realized  once  all  cast  iron  mains  are  removed   from  a  gas  network,  as  winter  frost  patrols  are  no  longer  necessary.      With  a  leaner   workforce,   a   company’s   operational   and   maintenance   costs   can   be   curtailed,   benefiting  both  the  ratepayer  and  the  utility.       Replacing  cast  iron  infrastructure  with  newer  plastic  and  CP  steel  mains  can   also  increase  the  gas  throughput  of  local  gas  networks  because  modern  materials   are  able  to  operate  at  far  higher  maximum  allowable  operating  pressures  (MAOP).  2     Segments   of   distribution   networks   with   cast   iron   mains   are   ordinarily   limited   to   operating  pressures  below  25  psig  by  federal  code  to  prevent  the  sudden  separation   of  unreinforced  bell  and  spigot  joints.    As  low-­‐pressure  segments  are  upgraded  with   new  gas  mains  having  a  greater  MAOP,  the  capacity  of  the  upgraded  system  can  be   increased,  thereby  opening  up  previously  unavailable  expansion  opportunities  and   providing  new  revenue  streams  for  utility  companies.    With  this  expanded  network,   more   customers   will   be   provided   an   additional   choice   in   how   they   chose   to   heat   their  homes.    Consumers  that  switch  from  fuel  oil  or  propane  to  the  newly  available   natural  gas  will  also  likely  benefit  from  lower  monthly  energy  bills.     Another  advantage  of  updating  vintage  cast  iron  mains  with  higher-­‐pressure   lines  is  that  it  can  lead  to  a  more  uniform  and  streamlined  gas  network  because  the   number   of   pressure   regulators   and   step   down   valves   within   the   system   can   be   substantially   reduced.   This   carries   the   benefit   of   further   improving   reliability,                                                                                                                   2  Plastic  gas  mains  are  generally  limited  to  60  psig  while  CP  steel  distribution  pipes  can  be   engineered  to  withstand  pressures  up  to  400  psig  
  • 30.   30   increasing  overall  safety,  and  lowering  system  wide  GHG  emissions.  (PA  PUC,  2013,   p.  41)       Further  benefits  of  modernizing  gas  distribution  systems  include:   • Decreased  probability  of  catastrophic  incidents   • Reduction  in  emergency  response  costs  and  evacuations   • Fewer  fines/penalties  associated  with  natural  gas  accidents   • Fewer  legal  settlements  with  injured  parties  and  families  of  victims     • Reduced  insurance  premiums  for  the  utility  companies   • Direct  and  indirect  creation  of  employment  opportunities     • Significant  reduction  of  GHG  emissions      
  • 31.   31   Prospective  Emissions  Model         This   prospective   emissions   model   attempts   to   quantify   the   future   direct   methane  emissions  from  cast  iron,  bare  steel,  and  copper  natural  gas  infrastructure   from   the   28   natural   gas   utility   companies   with   mandatory   pipeline   replacement   programs  operating  in  Michigan,  New  York,  Ohio,  and  Pennsylvania  between  2014   and   the   end   2040.   Although   the   primary   impetus   behind   the   implementation   of   pipeline   modernization   efforts   stems   from   the   need   to   enhance   pubic   safety   and   welfare,   the   removal   of   leak   prone   vintage   gas   main   will   nonetheless   produce   substantial  reductions  of  GHG  emissions  in  the  natural  gas  distribution  sector.    The   model  also  presents  an  analysis  of  the  marginalized  cost  of  fugitive  CH4  abatement   in  terms  of  dollars  per  metric  tonne  of  CO2e  reduced  for  each  utility  and  for  each   state  and  in  aggregate.       Prospective  Model  Methodology       Pipeline  mileage  and  methane  emissions  estimates  from  2013  are  used  as  the   baseline  for  the  prospective  emissions  model.    Pipeline  mileage  was  gathered  from   the   2013   PHMSA   distribution   annual   data   reports.   Company   specific   pipeline   replacement   rates   and   capital   investment   data   used   in   the   prospective   emissions   model   was   primarily   compiled   from   publicly   available   rate   case   filings   gathered   from   the   regulatory   commission   websites   for   each   state.     Where   replacement   schedules   or   capital   information   was   either   incomplete   or   unavailable,   multiple   inquiries  were  sent  to  each  respective  company  in  order  to  fill  information  gaps.    
  • 32.   32     Public   utility   commissions   typically   designate   the   minimum   amount   of   at-­‐ risk   gas   main   to   be   replaced/removed   in   each   year   of   a   pipeline   replacement   program.  However,  the  specific  length  of  each  material  type  to  be  removed  is  not   always  indicated.  Where  specific  material  replacement  schedules  were  not  publicly   available,   the   model   assumes   that   the   replacement   rate   for   each   material   is   equivalent   to   the   utility’s   ratio   of   cast   iron   and   bare   steel   mains.     For   companies   with   multiple   service   line   material   types   targeted   for   replacement,   the   model   assumes   that   the   annual   removal   rate   for   each   material   is   also   equivalent   to   the   ratio  of  each  material  within  the  utility’s  system.  When  the  removal  schedules  for   higher  risk  customer  service  lines  was  unavailable,  unless  indicated  otherwise,  the   model   applies   the   greater   removal   rate   of   the   following   scenarios:   A)   the   final   removal  of  targeted  service  lines  coincides  with  the  final  removal  of  targeted  gas   main;  or  B)  the  average  service  removal  rate  between  the  years  2010  and  2013  as   indicated  by  PHMSA  data.       Methane  Emissions       Based  on  data  from  the  5th  IPCC  Assessment  Report,  the  model  incorporates   a  GWP  of  30  to  convert  fossil  methane  emissions  into  CO2  equivalents.      The  model   does  not  subtract  the  impact  GWP  of  CO2  emissions  that  would  have  been  produced   by  the  combustion  of  methane  had  the  leaks  not  been  present.    This  determination   was   made   because   only   during   extraordinary   circumstances   do   natural   gas   networks   operate   at   maximum   capacity.   So   at   any   given   moment,   any   party   in   possession  of  a  firm  delivery  contract  (this  includes  residential  customers)  will  have   access  to  an  adequate  gas  supply.    Therefore,  the  marginal  loss  of  natural  gas  supply  
  • 33.   33   due   to   leaking   pipelines   should   have   negligible   impact   on   levels   of   natural   gas   consumption  and  the  resulting  CO2  emissions  from  the  combustion  of  this  gas.         It  is  noted  that  natural  gas  leaks  create  operational  inefficiencies  that  require   greater   volumes   of   natural   gas   be   produced   and   processed,   and   that   additional   energy  is  used  to  transport  the  gas,  which  does  result  in  increased  levels  of  GHG   emissions.    However,  quantifying  these  emissions  is  beyond  the  scope  of  this  model   and  are  consequently  not  included.           The   emissions   factors   used   to   calculate   the   estimated   reduction   of   direct   methane  emissions  from  pipeline  replacement  programs  are  those  used  by  the  EPA   to   generate   the   U.S.   GHG   inventory.     Emissions   factors   are   a   commonly   used   in   bottom-­‐up  studies  to  quantify  sectoral  GHG  emissions  by  applying  a  representative   emissions  rate  for  an  individual  component  type  and  scaling  it  by  the  activity  data  of   each  component  type  across  an  industry.       In  1996  the  EPA  and  the  Gas  Research  Institute  (GRI)  released  a  study  that   quantified   annual   GHG   emissions   throughout   the   natural   gas   supply   chain.   The   purpose  of  the  study  was  to  develop  a  nationwide  methane  budget  and  compare  the   relative   global   warming   impact   of   natural   gas   vis-­‐à-­‐vis   coal   and   oil.   Individual   industry   segments   were   analyzed   to   develop   a   comprehensive   model   of   upper,   Emissions  Factors  for  Natural  Gas  Distribution  Lines  (a)   Gas  Mains   Cast  Iron   Bare  Steel   Plastic   CP  Steel   Mscf/mile/year   238.71   110.20   9.90   3.07   Service  Lines   Cast  Iron†   Bare  Steel   Plastic   Copper   Mscf/service/year   3.61   1.66   0.01   0.26    (a)  Derived  from  figures  in  40  CFR  §98  Subpart-­‐W  Table  W-­‐7;  †  See  methodology  below  
  • 34.   34   middle,   and   downstream   GHG   emissions.   Information   derived   from   the   EPA/GRI   study   has   been   the   basis   of   numerous   peer-­‐reviewed   studies   examining   national   scale  methane  emissions  and  was  used  in  developing  methodologies  used  to  create   the   EPA   Greenhouse   Gas   Inventory   from   natural   gas   systems.   This   paper   uses   default  methane  emission  factors  for  natural  gas  distribution  that  were  principally   derived  from  the  EPA/GRI  study.    (40  C.F.R.  §98  Subpart-­‐W,  Table  W-­‐7,  2011)       Fugitive  emissions  can  calculated  by  the  following  equation:   𝐸 = 𝐴𝐹  ×  𝐸𝐹   Where  E  is  the  emissions  for  a  specific  material  (e.g.,  cast  iron  distribution  main),  AF   is  the  activity  factor  (e.g.,  miles  of  cast  iron  distribution  main),  and  EF  is  the  volume   of  fugitive  emissions  per  unit  of  time.  (EPA/GRI,  1996)     The   EPA/GRI   study   determined   emissions   factor   measurements   for   distribution   mains   by   first   locating   leaking   infrastructure   using   a   portable   hydrocarbon   analyzer   that   detects   methane   levels   above   natural   background   concentrations.    After  the  leaking  segment  was  isolated  and  disconnected  on  either   side   of   the   leak,   one   end   of   the   affected   section   was   sealed   while   the   other   was   connected   to   an   auxiliary   gas   supply.   The   targeted   pipe   segment   was   then   repressurized   to   the   system’s   standard   operating   pressure,   and   the   rate   of   gas   leakage  was  measured  using  a  calibrated  measurement  device.       Measurement   procedures   for   cast   iron   mains   were   conducted   along   entire   segments   rather   than   isolating   individual   leaks   because   of   the   propensity   of   cast   iron  mains  to  leak  gas  from  the  multitude  of  bell  and  spigot  joints.  Cast  iron  test  
  • 35.   35   segments  were  isolated  and  pressurized  to  maintain  standard  operating  pressure   and   leakage   rates   across   the   entire   segment   were   determined.   Customer   service   lines  sometimes  have  multiple  gas  leaks  that  are  often  imperceptible  requiring  that   services  also  be  tested  along  the  entire  segment.       Emissions  factors  are  those  used  by  the  EPA  for  mandatory  GHG  reporting   requirements   for   distribution   companies   emitting   over   25,000   metric   tonnes   of   CO2e  annually  and  are  derived  from  U.S.  Code  of  Federal  Regulations  §98  Subpart  W,   Table  W-­‐7  with  the  following  caveat  regarding  emissions  from  cast  iron  services.     Emissions  factor  values  for  cast  iron  service  lines  are  not  present  in  the  1996   GRI/EPA  Study  -­‐  Volume  9:  Underground  Pipelines,  U.S.  CFR  §92  Subpart-­‐W,  nor  the   2009  API  Greenhouse  Gas  Compendium.  This  is  likely  because,  on  a  national  scale,   the  impact  of  methane  lost  from  cast  iron  services  is  of  marginal  consequence,  since   fewer   than   12,000   active   cast   iron   services   remain   in   the   United   States.   (PHMSA   2014)  Despite  the  low  number  of  cast  iron  service  lines  nationally,  more  than  half  of   the   service   lines   that   do   continue   to   operate   are   found   in   the   territories   of   two   minor  gas  distribution  companies  in  upstate  New  York  and  are,  therefore,  required   for   the   prospective   emissions   model   in   this   paper.     To   generate   an   appropriate   emissions  factor  for  cast  iron  service  lines  this  model  takes  the  equivalent  emissions   factor  ratio  between  bare  steel  and  cast  iron  gas  mains  and  then  applies  the  ratio  to   bare   steel   and   cast   iron   services.   While   it   is   likely   that   the   application   of   this   methodology  to  some  extent  underrepresents  actual  methane  emissions  from  cast   iron  services  because  smaller  diameter  service  lines  lack  the  structural  integrity  of  
  • 36.   36   their  larger  diameter  counterpart,  but  for  the  purposes  of  this  model,  the  application   this  ratio  was  more  suitable  than  ignoring  the  emissions  category  altogether.   Forecasted  Natural  Gas  Prices       The   forecasted   price   of   natural   gas   for   each   state   was   derived   from   data   provided  by  the  U.S.  Energy  Information  Administration  (EIA)  2014  National  Energy   Modeling   System   (NEMS).     The   NEMS   uses   modules   for   each   energy   resource   to   produce   short   and   long-­‐term   regional   energy   projections   by   analyzing   trends   surrounding  the  interaction  of  supply  and  demand  fundamentals.    Key  inputs  used   in   the   natural   gas   module   include   domestic   natural   gas   production   rates,   current   and   forecasted   macroeconomic   conditions,   international   and   domestic   market   trends,   emerging   technologies,   regional   demographics,   pipeline   tariffs,   etc.   These   inputs   are   used   to   generate   Henry   Hub   natural   gas   price   forecasts   and   regional   residential,  commercial,  and  industrial  price  estimates.  3    The  public  NEMS  natural   gas  module,  however,  does  not  provide  the  city  gate  price  forecasts  that  are  needed   to  determine  the  cost  of  leaked  methane  emissions.       In  order  to  construct  city  gate  price  forecasts  for  each  utility  company,  the   model  uses  historical  natural  gas  data  from  the  EIA  to  calculate  average  monthly   premium  of  city  gate  prices  over  the  Henry  Hub  price  between  Jan  2010  to  Jan  2014.     While  a  longer  time  frame  could  have  been  used  to  determine  the  city  gate  /  Henry   Hub  price  differential,  using  a  more  recent  time  frame  is  likely  to  more  accurately   reflect  the  current  and  future  pricing  trends  within  the  natural  gas  industry.    After                                                                                                                   3  Henry  Hub  is  a  major  natural  gas  distribution  hub  through  which  gas  futures  contracts  are   traded  on  the  New  York  Mercantile  Exchange