SlideShare a Scribd company logo
1 of 15
Download to read offline
Background
BLOCK COPOLYMERS (BCP): class of macromolecules produced by covalently
bonding two or more chemically distinct polymer blocks.
S.B. Darling / Prog. Polym. Sci. 32 (2007) 1152–1204
rochester.edu, empirenews.net,brunton.com
Some applications of BCP
thin films:
• Nanolithography
• High-density information
storage media
• Nanofilters
Gradient Surface Energy Substrate
UV LIGHT
Si
SAM (F-OTS)
LVNDF
Si
SAM (F-OTS)
o LVNDF – Linear variable neutral density filter
44.09 mJ m-215.26 mJ m-2
o SAM (F-OTS) – Self assembled monolayer
(fluoride octyltrichlorosilane)
o Si – Silicon Wafer
STRUCTURE OF STABLE BCP FILMS
- Polystryrene (PS)
- Polymethylmethacrylate (PMMA)
Annealing
DIA/Thermal
Si
SAM (OTS)
Si
SAM (OTS)
Direct Immersion Annealing (DIA)
A. Modi, S. M. Bhaway, B. D. Vogt, J. F. Douglas, A. Al-Enizi, A. Elzatahry, A. Sharma, and A. Karim, ACS Appl. Mater. Interfaces ACS Applied Materials &Amp; Interfaces 7,
21639 (2015).
As Cast
Pre-annealed Film
Objective : Use a gradient surface energy to determine stable to unstable transition point of
BCP thin film
Polymer: Poly(styrene-b-methyl methacrylate)
Mn: PS (33000) – PMMA (33000)
Annealing method: DIA – 10 min
45.68 mJ m-2
15.26 mJ m-2
DIA – 50 min
DIA – 30 min
Polymer: Poly(methyl methcrylate)
Mn: PMMA (24000)
Aneling method: DIA – 10 min
44.09 mJ m-2
17.25 mJ m-2
DIA – 50 min
DIA – 30 min
0
5
10
15
20
25
14.00 24.00 34.00 44.00
DewettingArea[%]
Surface Energy [mJ m-2]
PMMA
10 min
30 min
50 min
γc-exp = 22.10 mJ m-2
0
5
10
15
20
25
30
15.00 20.00 25.00 30.00 35.00 40.00 45.00
DewettingArea[%] Surface Energy [mJ m-2]
PS-PMMA
10 min
30 min
50 min
γc-exp = 22.38 mJ m-2
Dewetting Area (%)
0
5
10
15
20
25
15.00 16.00 17.00 18.00 19.00 20.00 21.00
DewettingArea(%)
Surface Energy [mJ m-2]
PMMA
10 min
30 min
50 min
0
5
10
15
20
25
30
15.00 16.00 17.00 18.00 19.00 20.00 21.00
DewettingArea(%)
Surface Energy [mJ m-2]
PS-PMMA
10 min
30 min
50 min
Unstable region : From 15 to 21 mJ m-2
0
5
10
15
20
25
21.00 26.00 31.00 36.00 41.00 46.00
DewettingArea(%)
Surface Energy [mJ m-2]
PMMA
10 min
30 min
50 min
0
5
10
15
20
25
21.00 26.00 31.00 36.00 41.00 46.00
DewettingArea(%)
Surface Energy [mJ m-2]
PS-PMMA
10 min
20 min
30 min
Stable region: From 21 to 46 mJ m-2
Surface energies (γ):
• Heptane = 28.4 mJ m-2
• Acetone = 25.2 mJ m-2
• Toluene = 20.14 mJ m-2
γ 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 =
𝑉𝑜𝑙𝑢𝑚𝑒ℎ𝑒𝑝𝑡𝑎𝑛𝑒
𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
γℎ𝑒𝑝𝑡𝑎𝑛𝑒 +
𝑉𝑜𝑙𝑢𝑚𝑒 𝑎𝑐𝑒𝑡𝑜𝑛𝑒
𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
γ 𝑎𝑐𝑒𝑡𝑜𝑛𝑒+
𝑉𝑜𝑙𝑢𝑚𝑒 𝑡𝑜𝑙𝑢𝑒𝑛𝑒
𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒
γ𝑡𝑜𝑙𝑢𝑒𝑛𝑒
γ 𝑐 = 𝟐𝟏. 𝟕
𝒎𝑱
𝒎 𝟐
≅ γ 𝒄𝒆𝒙𝒑
Data Analysis
Solvent mixture used: 71.4 % Heptene, 23.8 % Acetone, 4.8 % Toluene
Conclusions
• PMMA determined as the wetting block of the BCP
• Direct immersion annealing (DIA) is highly dependent of the surface energy of the
substrate and of the solvent mixture
• Correlation found between solvent mixture surface energy and film stability
- Specifically: determined γc = 22.38 mJ m-2 correlated to theoretical γc from solvent
mixture solvent energy,
Future works
• Perform DIA with different solvent mixtures in order to obtain different γc
• Perform optimization studies on DIA by taking in consideration the
dewetting kinetics together with the ordering kinetics.
Acknowledgments

More Related Content

Similar to Final Presentation-1

636883main fdr talk_niac_2012_final
636883main fdr talk_niac_2012_final636883main fdr talk_niac_2012_final
636883main fdr talk_niac_2012_final
Clifford Stone
 
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Daniel Riley
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ Films
Alokmay Datta
 
mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
juby5
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
Jeslin Mattam
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
saromemarzadeh
 

Similar to Final Presentation-1 (20)

Surface and Materials Analysis Techniques
Surface and Materials Analysis TechniquesSurface and Materials Analysis Techniques
Surface and Materials Analysis Techniques
 
Event 30
Event 30Event 30
Event 30
 
636883main fdr talk_niac_2012_final
636883main fdr talk_niac_2012_final636883main fdr talk_niac_2012_final
636883main fdr talk_niac_2012_final
 
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
Toward an Electrically-Pumped Silicon Laser Modeling and Optimization_Thesis_...
 
Isp module slides 093016
Isp module slides 093016Isp module slides 093016
Isp module slides 093016
 
CrO2 – low temperature thin film growth, structural and physical properties
CrO2 – low temperature thin film growth, structural and physical propertiesCrO2 – low temperature thin film growth, structural and physical properties
CrO2 – low temperature thin film growth, structural and physical properties
 
Ping Du's Research Highlight
Ping Du's Research HighlightPing Du's Research Highlight
Ping Du's Research Highlight
 
07Higgins.ppt
07Higgins.ppt07Higgins.ppt
07Higgins.ppt
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ Films
 
mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
 
A0360105
A0360105A0360105
A0360105
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
 
K010436772
K010436772K010436772
K010436772
 
Metallization techniques for high efficiency solar cells
Metallization techniques for high efficiency solar cellsMetallization techniques for high efficiency solar cells
Metallization techniques for high efficiency solar cells
 
Dfb
DfbDfb
Dfb
 
S5.2_Buitrago
S5.2_BuitragoS5.2_Buitrago
S5.2_Buitrago
 
Doering
DoeringDoering
Doering
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
262 presentation1
262 presentation1262 presentation1
262 presentation1
 
Manufacturing of Electronics
Manufacturing of ElectronicsManufacturing of Electronics
Manufacturing of Electronics
 

Final Presentation-1

  • 1.
  • 2. Background BLOCK COPOLYMERS (BCP): class of macromolecules produced by covalently bonding two or more chemically distinct polymer blocks. S.B. Darling / Prog. Polym. Sci. 32 (2007) 1152–1204 rochester.edu, empirenews.net,brunton.com Some applications of BCP thin films: • Nanolithography • High-density information storage media • Nanofilters
  • 3. Gradient Surface Energy Substrate UV LIGHT Si SAM (F-OTS) LVNDF Si SAM (F-OTS) o LVNDF – Linear variable neutral density filter 44.09 mJ m-215.26 mJ m-2 o SAM (F-OTS) – Self assembled monolayer (fluoride octyltrichlorosilane) o Si – Silicon Wafer
  • 4. STRUCTURE OF STABLE BCP FILMS - Polystryrene (PS) - Polymethylmethacrylate (PMMA) Annealing DIA/Thermal Si SAM (OTS) Si SAM (OTS)
  • 5. Direct Immersion Annealing (DIA) A. Modi, S. M. Bhaway, B. D. Vogt, J. F. Douglas, A. Al-Enizi, A. Elzatahry, A. Sharma, and A. Karim, ACS Appl. Mater. Interfaces ACS Applied Materials &Amp; Interfaces 7, 21639 (2015). As Cast Pre-annealed Film Objective : Use a gradient surface energy to determine stable to unstable transition point of BCP thin film
  • 6. Polymer: Poly(styrene-b-methyl methacrylate) Mn: PS (33000) – PMMA (33000) Annealing method: DIA – 10 min 45.68 mJ m-2 15.26 mJ m-2
  • 7. DIA – 50 min DIA – 30 min
  • 8. Polymer: Poly(methyl methcrylate) Mn: PMMA (24000) Aneling method: DIA – 10 min 44.09 mJ m-2 17.25 mJ m-2
  • 9. DIA – 50 min DIA – 30 min
  • 10. 0 5 10 15 20 25 14.00 24.00 34.00 44.00 DewettingArea[%] Surface Energy [mJ m-2] PMMA 10 min 30 min 50 min γc-exp = 22.10 mJ m-2 0 5 10 15 20 25 30 15.00 20.00 25.00 30.00 35.00 40.00 45.00 DewettingArea[%] Surface Energy [mJ m-2] PS-PMMA 10 min 30 min 50 min γc-exp = 22.38 mJ m-2 Dewetting Area (%)
  • 11. 0 5 10 15 20 25 15.00 16.00 17.00 18.00 19.00 20.00 21.00 DewettingArea(%) Surface Energy [mJ m-2] PMMA 10 min 30 min 50 min 0 5 10 15 20 25 30 15.00 16.00 17.00 18.00 19.00 20.00 21.00 DewettingArea(%) Surface Energy [mJ m-2] PS-PMMA 10 min 30 min 50 min Unstable region : From 15 to 21 mJ m-2
  • 12. 0 5 10 15 20 25 21.00 26.00 31.00 36.00 41.00 46.00 DewettingArea(%) Surface Energy [mJ m-2] PMMA 10 min 30 min 50 min 0 5 10 15 20 25 21.00 26.00 31.00 36.00 41.00 46.00 DewettingArea(%) Surface Energy [mJ m-2] PS-PMMA 10 min 20 min 30 min Stable region: From 21 to 46 mJ m-2
  • 13. Surface energies (γ): • Heptane = 28.4 mJ m-2 • Acetone = 25.2 mJ m-2 • Toluene = 20.14 mJ m-2 γ 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 = 𝑉𝑜𝑙𝑢𝑚𝑒ℎ𝑒𝑝𝑡𝑎𝑛𝑒 𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 γℎ𝑒𝑝𝑡𝑎𝑛𝑒 + 𝑉𝑜𝑙𝑢𝑚𝑒 𝑎𝑐𝑒𝑡𝑜𝑛𝑒 𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 γ 𝑎𝑐𝑒𝑡𝑜𝑛𝑒+ 𝑉𝑜𝑙𝑢𝑚𝑒 𝑡𝑜𝑙𝑢𝑒𝑛𝑒 𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 γ𝑡𝑜𝑙𝑢𝑒𝑛𝑒 γ 𝑐 = 𝟐𝟏. 𝟕 𝒎𝑱 𝒎 𝟐 ≅ γ 𝒄𝒆𝒙𝒑 Data Analysis Solvent mixture used: 71.4 % Heptene, 23.8 % Acetone, 4.8 % Toluene
  • 14. Conclusions • PMMA determined as the wetting block of the BCP • Direct immersion annealing (DIA) is highly dependent of the surface energy of the substrate and of the solvent mixture • Correlation found between solvent mixture surface energy and film stability - Specifically: determined γc = 22.38 mJ m-2 correlated to theoretical γc from solvent mixture solvent energy, Future works • Perform DIA with different solvent mixtures in order to obtain different γc • Perform optimization studies on DIA by taking in consideration the dewetting kinetics together with the ordering kinetics.