SlideShare a Scribd company logo
1 of 55
Direct vasodilatory effects of sodium glucose co-
transporter 2 inhibitors (SGLT2is) and the underlying
molecular mechanisms in resistance mesenteric arteries
Ahasanul Hasan
• CVDs include hypertension, coronary artery disease, diabetes, stroke etc.
• CVDs ranked No. 1 cause of death globally
• In the USA
• 1 person dies every 37 seconds
• 1 person has a heart attack every 40 seconds
• 1 in every 4 deaths is due to CVD
• Hypertension is the primary contributor to all CVDs
• Approximately 20% of patients with hypertension also have T2DM and 50% of
T2DM patients have hypertension
Cardiovascular diseases (CVDs) facts
Center for Disease Control and Prevention, 2019; Tatsumi et al., 2017; World Health Organization, 2017
• New class of orally active anti-diabetic drugs used in T2DM.
• They are derivatives of glucoside phlorizin (a type of flavonoid)
• Inhibits sodium glucose co-transporter2 (SGLT2) in proximal tubule
• Canagliflozin (2013)
• Empagliflozin (2014)
• Dapagliflozin (2014)
• Ertugliflozin (2017)
• Bexagliflozin (2023)
Fediuk et al., 2020; Giugliano et al., 2019; Haider et al., 2019
Sodium glucose co-transporter 2 inhibitors
(SGLT2is)
Giugliano et al., 2019; van Bommel et al., 2017
Mechanism of action of SGLT2is
SGLT2 Inhibitors (SGLT2is)
Systemic Effects
↑ Glycosuria ↑ Natriuresis
Direct Effects
↓ Inflammation ↓ Oxidative Stress ↓ Apoptosis
↓ Autophagy ↓ Mitochondrial
Dysfunction
↓ Ionic
Dyshomeostasis
↓Gluocotoxicity
↑Insulin sensitivity
↑Glucagon
↑Fuel shift to lipid
↑Ketone bodies
↓Body weight
↓Fat mass
↓ Plasma volume
↓ Blood pressure
↓ Arterial stiffness
↓ Albuminuria
↓ Glomerular
hyperfiltration
↓ NLRP3
inflammasome
↓ IL-1β, IL-18
+M2 macrophage
↓ Macrophage
infiltration
↓ Fibrosis
+STAT3 activation
↓ Superoxide
↓ Nitrotyrosine
↓ Malondialdehyde
↓ Inflammation
↓ Apoptosis
↓ ERS
↓ Bax/Bcl-2 ratio
↓ Caspase activity
↓ Apoptosis
↓ Anomalies
↓ Swelling
↑ PGC1-α, CPT1
↓ Fission, Fusion
↑ Energy
Production
↓ ROS
+NHE inhibition
↓[Na+]c, [Ca2+]c
↑[Ca2+]m
↑ Ca2+ handling
↑ SERCA activity
↑ Rhythm
↑ Contraction
+NHE inhibition
While these effects can occur upon long-term use of SGLT2is, it is not known if acute
SGLT2is application has any effects on the regulation of systemic blood pressure.
Pleiotropic effects of SGLT2is
Lahnwong et al., 2018
• Several cardiovascular outcome trials (CVOTs) namely EMPA-REG, CANVAS and
DECLARE-TIMI have shown that SGLT-2is reduce heart failure, hospitalization and
related death (Zinman et al., 2015; Neal et al., 2017; Wiviott et al., 2019)
• Hypertension has been linked in numerous studies to the development and progression of
cardiovascular disease in diabetics (Long & Dagogo-Jack, 2011; Yamazaki, Hitomi, &
Nishiyama, 2018)
Therefore, it is important to understand whether SGLT-2is have a blood pressure
lowering action in diabetic patients to explain for the favorable outcomes in CVOTs
Cardio-protective effects of SGLT2is
Several pre-clinical studies have suggested that SGLT2is have anti-hypertensive action.
Proposed mechanisms that have been linked to the antihypertensive action involve:
• Diuresis (Briasoulis, Al Dhaybi, & Bakris, 2018)
• Modulation of sympathetic nervous system (Wan, Rahman, Hitomi, & Nishiyama,
2018)
• Increased nitric oxide (NO) production (Han et al., 2015)
• Reversal of renal dysfunction (Kelly, Lewis, Huntsberry, Dea, & Portillo, 2019)
• Inhibition of oxidative stress (Yaribeygi, Panahi, Javadi, & Sahebkar, 2018), etc.
Our study examined the direct effects of three SGLT-2is on the contractility of
resistance mesenteric arteries that regulate vascular resistance and systemic blood
pressure
Antihypertensive effects of SGLT-2is
Cardiac
Output
Peripheral
Resistance
Blood
Pressure
X
=
Regulation of blood pressure
Marieb et al., 2019
Arterial diameter regulates peripheral
resistance
Klabunde, 2012
General architecture of the artery
Marieb et al., 2019
Ion Intracellular
Concentration
(mM)
Extracellular
concentration
(mM)
Membrane
Permeability
at rest
K+ 140 4 1
Na+ 15 145 0.05
Cl+ 4 110 0.1
Ca2+ 0.0001 5 0
Resting membrane
potential = -70 mV
Hyperpolarization, < -70 mV
K+ efflux
Depolarization > -70 mV
Ca2+, Na+ influx, Cl- efflux
Contraction
Relaxation
Depolarization
Membrane potential controls the
activity of Ca2+ channels to
regulate SMC contractility
Membrane potential and SMC contractility
Slide courtesy: Dr. Hasan
MLCK: myosin light chain kinase; MLCP: myosin light chain phosphatase; SR: sarcoplasmic reticulum;
eNOS: endothelial nitric oxide synthase; PKG: protein kinase G, GC: guanylate cyclase, LTCC: L-type Ca2+
channel
Ca2+
Ca2+
Ca2+
Ca2+
SR
LTCC
Ca2+
Ca2+
Ca2+
Ca2+
Ca2+ Calmodulin
MLCK
Contraction
Myosin
Myosin-p
Smooth muscle cell Endothelial cell
NO
eNOS
L-arginine
sGC
cGMP
PKG
MLCP
Myosin
Relaxation
Mechanism of SM contraction and relaxation
Slide courtesy: Dr. Hasan
Originality of this research
Recently, pre-clinical studies using rabbit aorta have shown that SGLT-2is relax aorta.
However, aorta is a conduit vessel that does not control systemic blood pressure (Li et al.,
2018; Seo et al., 2020; Seo et al., 2021).
Research using resistance arteries, which play a crucial role in regulating systemic blood
pressure by regulating peripheral resistance, is necessary.
Klabunde, 2012
Specific aims
[1]. We examined whether SGLT2is have direct vasodilatory effects in resistance
mesenteric arteries
[2]. We investigated if SGLT2is stimulate endothelial signaling to induce vasodilation in
mesenteric arteries
[3]. We investigated if SGLT2is act on a smooth muscle target(s) to induce vasodilation in
mesenteric arteries
Experimental tools
• Experimental technique: Pressure Myography
• Animal: Normotensive, Sprague Dawley Rat (SD, 7-10 weeks)
• Tissue: Resistance mesenteric arteries (1-2 mm segment, 150-250 µm in diameter)
• Drugs to be investigated: SGLT2is (Canagliflozin, Empagliflozin, and Dapagliflozin)
• Dose range for concentration curve: 0.001 – 100 µM
• Dose for mechanistic study: 100 µM
Typical pressure myography trace
Time (ms)
Vessel
diameter
(µm)
% 𝑀𝑦𝑜𝑔𝑒𝑛𝑖𝑐 𝑇𝑜𝑛𝑒 = (1 −
𝐷𝑎𝑐𝑡𝑖𝑣𝑒
(80 𝑚𝑚𝐻𝑔)
𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒
(80 𝑚𝑚𝐻𝑔)
) 𝑥 100
Dactive = Active diameter at 80 mmHg
Dpassive = Passive diameter at 80 mmHg
Data processing
% 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = (
𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝐷𝑟𝑢𝑔 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑀𝑇
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑀𝑇
) 𝑥 100
% 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = (
𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝐷𝑟𝑢𝑔 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑃𝐸
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑃𝐸
) 𝑥 100
Results
Results for Aim 1
Aim 1: To examine whether SGLT2is (Cana, Empa, and Dapa) have direct
vasodilatory effects in resistance mesenteric arteries
Experiment 1A: Determination of direct effect of SGLT2is on the contractility of
resistance mesenteric arteries under myogenic vasoconstriction
Experiment 1B: Determination of direct effect of SGLT2is on the contractility of
phenylephrine (PE) pre-constricted mesenteric arteries
Experiment 1C: To determine whether the vasomodulatory effects of SGLT2is are
mediated by the inhibition of SGLT2
Experiment 1A
Determination of direct effect of SGLT2is (Cana, Empa, and Dapa) on the
contractility of resistance mesenteric arteries under myogenic vasoconstriction
Drugs: Cana, Empa, and Dapa
Dose: 0.001-100 µM
Cumulative drug application
Results 1A
SGLT2is (Cana, Empa, and Dapa) vasodilates pressurized myogenic toned artery
1A 2A 3A
1B 2B 3B
Results 1A (continued)
SGLT2is (Cana, Empa, and Dapa) vasodilates pressurized myogenic toned artery
Cana > Empa > Dapa
at 100 µM: 24.37% > 13.31% > 12.68%
at 100 µM: 85 µm > 60 µm > 43 µm
1A 2A 3A
Experiment 1B
Determination of direct effect of SGLT2is (Cana, Empa, and Dapa) on the
contractility of phenylephrine (PE) pre-constricted mesenteric arteries
0 1000 2000 3000 4000 5000
250
300
350
400
B
A
B
Baseline (40 mmHg)
PE-baseline
Cumulative drug application
Drugs: Cana, Empa, and Dapa
Dose: 0.001-100 µM
Results 1B
SGLT2is (Cana, Empa, and Dapa) vasodilates PE-preconstricted arteries
1A 2A 3A
1B 2B 3B
Results 1B (continued)
SGLT2is (Cana, Empa, and Dapa) vasodilates PE-preconstricted arteries
Cana > Empa > Dapa
at 100 µM: 95.60% > 72.24% > 62.52%
at 100 µM: 120 µm > 102 µm > 93 µm
Cana 10 µM > Empa 1 µM > Dapa 0.5 µM
62 µm > 25 µm > 15 µm
1A 2A 3A
Experiment 1C
To determine whether the vasomodulatory effects of SGLT2is (Cana, Empa, and
Dapa) are mediated by the inhibition of SGLT2
Baseline
(40 mmHg)
PE
SGLT2is +
PE
PE
Phlorizin+
PE
PE
SGLT2is +
Phlorizin +
PE
Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa)
Group 2: Phlorizin (1 µM)
Group 3: SGLT2is + Phlorizin
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Results 1C
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of SGLT-2
inhibition
1A 2A 3A
1B 2B 3B
Conclusion 1
23
• SGLT2is (Cana, Empa, and Dapa) dilate pressurized resistance mesenteric arteries in a
dose-dependent manner.
• SGLT2is (Cana, Empa, and Dapa) dilate PE-preconstricted resistance mesenteric arteries
in a dose-dependent manner.
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is
independent of SGLT2 inhibition.
• Cana as a vasodilator is superior to either Empa or Dapa.
Results for Aim 2
Aim 2: To investigate if SGLT2is (Cana, Empa, and Dapa) stimulate endothelial
signaling to induce vasodilation in mesenteric arteries
Experiment 2A: To determine the role of NO-sGC-PKG signaling axis in SGLT2is-mediated
vasodilation in PE pre-constricted mesenteric arteries
Experiment 2B: To determine the role of prostacyclin I2 (PGI2) in SGLT2is-mediated
vasodilation in PE pre-constricted mesenteric arteries
Experiment 2C: To determination the role of endothelium in SGLT-2is-mediated
vasodilation in PE pre-constricted mesenteric arteries
23
Experiment 2A
To determine the role of NO-sGC-PKG signaling axis in SGLT2is (Cana, Empa, and
Dapa)- mediated vasodilation in PE pre-constricted mesenteric arteries
PE
SGLT2is +
PE
PE
Inhibitor +
PE
SGLT2is +
Inhibitor +
PE
Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa)
Group 2: SGLT2is + Inhibitors
eNOS inhibitor: L-NNA (10 µM)
sGC inhibitor: ODQ (10 µM)
PKG inhibitor: KT5823 (1 µM)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Results 2A
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of NO-sGC-
PKG signaling axis
1A 2A 3A
1B 2B 3B
Experiment 2B
To determine the role of prostacyclin I2 (PGI2) in SGLT2is (Cana, Empa, and Dapa)-
mediated vasodilation in PE pre-constricted mesenteric arteries
PE
SGLT2is +
PE
PE
Inhibitor +
PE
SGLT2is +
Inhibitor +
PE
Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa)
Group 2: SGLT2is + Inhibitor
COX inhibitor: Indomethacin (10 µM)
25
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Results 2B
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of PGI2
signaling axis
1A 2A 3A
1B 2B 3B
Experiment 2C
To determine the role of endothelium in SGLT2is (Cana, Empa, and Dapa)-mediated
vasodilation in PE pre-constricted mesenteric arteries
PE
SGLT2is +
PE
PE
SGLT2is +
PE
Endo-intact artery Endo-denuded artery
Denudation Process: Passage of air bubble through the lumen of artery
SGLT2is: Cana, Empa, and Dapa (100 µM)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Results 2C
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of endothelium
1A 2A 3A
1B 2B 3B
Results 2C (continued)
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of endothelium
1A 2A 3A
1B 2B 3B
Conclusion 2
23
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is
independent of NO-sGC-PKG signaling axis.
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is
independent of endothelial PGI2 synthesis.
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is
independent of endothelium denudation and thus, cancels out the role of EDHF or
endothelial SKCa and IKCa channels in vasodilation.
Results for Aim 3
Aim 3: To investigate if SGLT2is (Cana, Empa, and Dapa) act on a smooth muscle
target(s) to induce vasodilation in mesenteric arteries
Experiment 3A: To determine the role of smooth muscle cells voltage gated potassium (KV)
channels in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries
Experiment 3B: To determine the role of calcium activated potassium (KCa) channels
(BKCa) and ATP-sensitive K+ (KATP) channels in SGLT2is-mediated vasodilation in PE pre-
constricted mesenteric arteries
Experiment 3C: To determine the role of calcium activated potassium (KCa) channels IKCa
and SKCa channels in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric
arteries
Experiment 3D: To determine the role of Ca2+-ATPase (SERCA) pump in SGLT2is-
mediated vasodilation in PE pre-constricted mesenteric arteries
Experiment 3A
To determine the role of smooth muscle cells voltage gated potassium (KV) channels in
SGLT2is (Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted
mesenteric arteries
PE
SGLT2is +
PE
PE
Inhibitor +
PE
SGLT2is +
Inhibitor +
PE
Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa)
Group 2: SGLT2is + Inhibitors
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Non-selective Kv channel inhibitor: 4-AP (1 mM)
Kv1.3 channel inhibitor: Psora-4 (100 nM)
Kv1.5 channel inhibitor: DPO-1 (1 µM)
Kv2.1 channel inhibitor: Guangxitoxin (100 nM)
Kv7 channel Inhibitor: Linopirdine (10 µM)
Results 3A
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation involves SMC Kv channels
1A 2A 3A
1B 2B 3B
Results 3A (continued)
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation involves SMC Kv1.5, Kv2.1,
and Kv7.x channels
1A 2A 3A
1B 2B 3B
Experiment 3B
To determine the role of calcium activated potassium (KCa) channels (BKCa) in SGLT2is
(Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted mesenteric
arteries
PE
SGLT2is +
PE
PE
Inhibitor +
PE
SGLT2is +
Inhibitor +
PE
Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa)
Group 2: SGLT2is + Inhibitors
BKCa channel inhibitor: Paxilline (10 µM)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Results 3B
SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of SMC BKCa
and KATP channels
1A 2A 3A
1B 2B 3B
Experiment 3C
To determine the role of calcium activated potassium (KCa) channels (IKCa and SKCa) in
SGLT2is (Cana)-mediated vasodilation in PE pre-constricted mesenteric arteries
PE
SGLT2is +
PE
PE
Inhibitor +
PE
SGLT2is +
Inhibitor +
PE
Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa)
Group 2: SGLT2is + Inhibitors
IKCa channel inhibitor: TRAM-34 (10 µM)
SKCa channel inhibitor: Apamin (1 µM)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Results 3C
SGLT2is (Cana)-induced vasodilation is independent of SMC IKCa and SKCa channels
1A 1B
Experiment 3D
To determine the role of Ca2+-ATPase (SERCA) pump in SGLT2is (Cana)-mediated
vasodilation in PE pre-constricted mesenteric arteries
PE
SGLT2is +
PE
PE
Inhibitor +
PE
SGLT2is +
Inhibitor +
PE
Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa)
Group 2: SGLT2is + Inhibitors
SERCA pump inhibitor: Thapsigargin (0.1 µM)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Baseline
(40 mmHg)
Results 3D
SGLT2is (Cana)-induced vasodilation is independent of SMC SERCA pumps
1A 1B
Conclusion 3
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is
dependent on activation of smooth muscle cells voltage gated potassium (Kv) channels.
• Cana activates Kv1.5, Kv2.1, and Kv7.x; Empa activates Kv1.5, and Kv7.x; Dapa
activates Kv7.x.
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is
independent of SMC BKCa and KATP channels.
• SGLT2is (Cana)-induced vasodilation of resistance mesenteric arteries is independent of
SMC SKCa and IKCa channels.
• SGLT2is (Cana)-induced vasodilation of resistance mesenteric arteries is independent of
SMC SERCA pumps.
Summary
• SGLT2is (Cana, Empa, and Dapa) dilate pressurized and Pe-preconstricted resistance
mesenteric arteries in a dose-dependent manner and independent of both SGLT2 inhibition
and endothelial signals.
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is
dependent on activation of smooth muscle cells voltage gated potassium (Kv) channels.
However, SGLT2is vary in specificity as Cana activates Kv1.5, Kv2.1, and Kv7.x; Empa
activates Kv1.5, and Kv7.x; Dapa activates Kv7.x.
• SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is a ‘class effect’ and Cana as a
vasodilator is superior to either Empa or Dapa.
Summary
Future directions
• To extend this study using diabetic animal models
• To conduct preliminary pre-clinical studies including blood pressure measurement in
ambulatory animals and in vivo blood flow monitoring
• To conduct preliminary clinical studies using human vasculature and measuring blood flow
and blood pressure in humans
• Finally, to extend our mechanistic experiments using electrophysiology, membrane
potential monitoring, and isoform-specific knockdown of Kv channels.
35
References
• Briasoulis, A., Al Dhaybi, O., & Bakris, G. L. (2018). SGLT2 Inhibitors and Mechanisms of Hypertension. Curr Cardiol Rep, 20(1), 1.
doi:10.1007/s11886-018-0943-5
• Center for Disease Control and Prevention (CDC), 2019
• Fediuk, D. J., Nucci, G., Dawra, V. K., Cutler, D. L., Amin, N. B., Terra, S. G., Boyd, R. A., Krishna, R., & Sahasrabudhe, V. (2020,
2020/08/01). Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor.
Clinical Pharmacokinetics, 59(8), 949-965. https://doi.org/10.1007/s40262-020-00875-1
• Giugliano, D., Esposito, K. (2019). “Class effect for SGLT-2 inhibitors: a tale of 9 drugs”. Cardiovasc Diabetol. 18: 94.
• Haider, K., Pathak, A., Rohilla, A., Haider, M. R., Ahmad, K., & Yar, M. S. (2019, 2019/12/15/). Synthetic strategy and SAR studies of
C-glucoside heteroaryls as SGLT2 inhibitor: A review. European Journal of Medicinal Chemistry, 184, 111773.
https://doi.org/https://doi.org/10.1016/j.ejmech.2019.111773
• Han, Y., Cho, Y. E., Ayon, R., Guo, R., Youssef, K. D., Pan, M., . . . Makino, A. (2015). SGLT inhibitors attenuate NO-dependent
vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol, 309(9), L1027-1036.
doi:10.1152/ajplung.00167.2015
• Kelly, M. S., Lewis, J., Huntsberry, A. M., Dea, L., & Portillo, I. (2019). Efficacy and renal outcomes of SGLT2 inhibitors in patients
with type 2 diabetes and chronic kidney disease. Postgrad Med, 131(1), 31-42. doi:10.1080/00325481.2019.1549459
• Klabunde, Richard E. (2012). Cardiovascular Physiology Concepts. Second ed. Philadelphia, PA :Lippincott Williams &
Wilkins/Wolters Kluwer.
References
• Lahnwong, S et al. (2018). “Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2
inhibitors”. Cardiovascular Diabetology. 17(1):101.
• Li, H., Shin, S. E., Seo, M. S., An, J. R., Choi, I. W., Jung, W. K., . . . Park, W. S. (2018). The anti-diabetic drug dapagliflozin induces
vasodilation via activation of PKG and Kv channels. Life Sci, 197, 46-55. doi:10.1016/j.lfs.2018.01.032
• Long, A. N., & Dagogo-Jack, S. (2011). Comorbidities of diabetes and hypertension: mechanisms and approach to target organ
protection. J Clin Hypertens (Greenwich), 13(4), 244-251. doi:10.1111/j.1751-7176.2011.00434.x
• Marieb E. N., & Hoehn, K. (2019) Human Anatomy & Physiology. Eleventh ed. Hoboken New Jersey: Pearson Education.
• Neal, B., Perkovic, V., Mahaffey, K. W., de Zeeuw, D., Fulcher, G., Erondu, N., . . . Matthews, D. R. (2017). Canagliflozin and
Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med, 377(7), 644-657. doi:10.1056/NEJMoa1611925
• Rosenstock, J., Jelaska, A., Frappin, G., Salsali, A., Kim, G., Woerle, H. J., & Broedl, U. C. (2014). Improved glucose control with
weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin
in obese inadequately controlled type 2 diabetes. Diabetes Care, 37(7), 1815-1823. doi:10.2337/dc13-3055
• Seo, M. S., An, J. R., Kang, M., Heo, R., Park, H., Han, E. T., . . . Park, W. S. (2021). Mechanisms underlying the vasodilatory effects of
canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels. Life Sci, 287, 120101.
doi:10.1016/j.lfs.2021.120101
• Seo, M. S., Jung, H. S., An, J. R., Kang, M., Heo, R., Li, H., . . . Park, W. S. (2020). Empagliflozin dilates the rabbit aorta by activating
PKG and voltage-dependent K(+) channels. Toxicol Appl Pharmacol, 403, 115153. doi:10.1016/j.taap.2020.115153
References
• Tatsumi, Y.; Ohkubo, T. Hypertension with diabetes mellitus: significance from an epidemiological perspective for Japanese. Hypertens
Res. 2017, 40(9), 795-806
• van Bommel EJM, et al. (2017). “SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome.” Clinical Journal
of the American Society of Nephrology. 12(4):700-710.
• Wan, N., Rahman, A., Hitomi, H., & Nishiyama, A. (2018). The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic
Nervous Activity. Front Endocrinol (Lausanne), 9, 421. doi:10.3389/fendo.2018.00421
• World Health Organization (WHO), 2017
• Wiviott, S. D., Raz, I., Bonaca, M. P., Mosenzon, O., Kato, E. T., Cahn, A., . . . Sabatine, M. S. (2019). Dapagliflozin and
Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med, 380(4), 347-357. doi:10.1056/NEJMoa1812389
• Yamazaki, D., Hitomi, H., & Nishiyama, A. (2018). Hypertension with diabetes mellitus complications. Hypertens Res, 41(3), 147-156.
doi:10.1038/s41440-017-0008-y
• Yaribeygi, H., Panahi, Y., Javadi, B., & Sahebkar, A. (2018). The Underlying Role of Oxidative Stress in Neurodegeneration: A
Mechanistic Review. CNS Neurol Disord Drug Targets, 17(3), 207-215. doi:10.2174/1871527317666180425122557
• Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Inzucchi, S. E. (2015). Empagliflozin, Cardiovascular
Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med, 373(22), 2117-2128. doi:10.1056/NEJMoa1504720
DISSERTATION DEFENSE_AHASANUL HASAN_PRESENTATION.pptx

More Related Content

Similar to DISSERTATION DEFENSE_AHASANUL HASAN_PRESENTATION.pptx

Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...
Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...
Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...
rdaragnez
 
SGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdf
SGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdfSGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdf
SGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdf
ParikshitMishra15
 
Diuretics in hypertension 2015 by Dr Abhishek Rathore
Diuretics in hypertension 2015 by Dr Abhishek RathoreDiuretics in hypertension 2015 by Dr Abhishek Rathore
Diuretics in hypertension 2015 by Dr Abhishek Rathore
drabhishekbabbu
 

Similar to DISSERTATION DEFENSE_AHASANUL HASAN_PRESENTATION.pptx (20)

SGLT 2 inhibitors
SGLT 2 inhibitorsSGLT 2 inhibitors
SGLT 2 inhibitors
 
1090116-二型糖尿病用藥預防併發症提供器官保護作用的重要性!
1090116-二型糖尿病用藥預防併發症提供器官保護作用的重要性!1090116-二型糖尿病用藥預防併發症提供器官保護作用的重要性!
1090116-二型糖尿病用藥預防併發症提供器官保護作用的重要性!
 
Dapa ckd journal club
Dapa ckd journal clubDapa ckd journal club
Dapa ckd journal club
 
Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...
Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...
Simposio ALAD Avances en la prevención y el tratamiento de la diabetes tipo 2...
 
SGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdf
SGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdfSGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdf
SGLT2 HF CKD Presentation NYSCHP Maya Chilbert.pdf
 
Diuretics in hypertension 2015 by Dr Abhishek Rathore
Diuretics in hypertension 2015 by Dr Abhishek RathoreDiuretics in hypertension 2015 by Dr Abhishek Rathore
Diuretics in hypertension 2015 by Dr Abhishek Rathore
 
Canagliflozin - Dr Shaz Pamangadan
Canagliflozin - Dr Shaz PamangadanCanagliflozin - Dr Shaz Pamangadan
Canagliflozin - Dr Shaz Pamangadan
 
Sglt2i Empagliflogin canagliflogin dapagliflogin- beyond glycemic control
Sglt2i Empagliflogin canagliflogin dapagliflogin- beyond glycemic controlSglt2i Empagliflogin canagliflogin dapagliflogin- beyond glycemic control
Sglt2i Empagliflogin canagliflogin dapagliflogin- beyond glycemic control
 
Rafael Carmena Rodriguéz en Clinicardio09: Novedades en práctica clínica sobr...
Rafael Carmena Rodriguéz en Clinicardio09: Novedades en práctica clínica sobr...Rafael Carmena Rodriguéz en Clinicardio09: Novedades en práctica clínica sobr...
Rafael Carmena Rodriguéz en Clinicardio09: Novedades en práctica clínica sobr...
 
021018 IQVIA_SGLT2 CVOT Discussion Stimuli_ENG.pptx
021018 IQVIA_SGLT2 CVOT Discussion Stimuli_ENG.pptx021018 IQVIA_SGLT2 CVOT Discussion Stimuli_ENG.pptx
021018 IQVIA_SGLT2 CVOT Discussion Stimuli_ENG.pptx
 
Empagliflozin in Heart Failure with a Preserved Ejection Fraction
Empagliflozin in Heart Failure with a Preserved Ejection FractionEmpagliflozin in Heart Failure with a Preserved Ejection Fraction
Empagliflozin in Heart Failure with a Preserved Ejection Fraction
 
Acute hyperglycemia and cardiac events
Acute hyperglycemia and cardiac eventsAcute hyperglycemia and cardiac events
Acute hyperglycemia and cardiac events
 
Acute Heart Failure – The road to where
Acute Heart Failure – The road to whereAcute Heart Failure – The road to where
Acute Heart Failure – The road to where
 
Linagliptin in DKD.pptx
Linagliptin in DKD.pptxLinagliptin in DKD.pptx
Linagliptin in DKD.pptx
 
Azelnidipine
AzelnidipineAzelnidipine
Azelnidipine
 
UPDATES OF RENIN ANGIOTENSIN SYTEM INTERVENTION
UPDATES OF RENIN ANGIOTENSIN SYTEM INTERVENTIONUPDATES OF RENIN ANGIOTENSIN SYTEM INTERVENTION
UPDATES OF RENIN ANGIOTENSIN SYTEM INTERVENTION
 
Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosi...
Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosi...Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosi...
Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosi...
 
1090807 -糖尿病盛行率&治療概況
1090807 -糖尿病盛行率&治療概況1090807 -糖尿病盛行率&治療概況
1090807 -糖尿病盛行率&治療概況
 
Atorvastatin
AtorvastatinAtorvastatin
Atorvastatin
 
NephMadness 2017: Diabetic Nephropathy Region
NephMadness 2017: Diabetic Nephropathy RegionNephMadness 2017: Diabetic Nephropathy Region
NephMadness 2017: Diabetic Nephropathy Region
 

Recently uploaded

If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New Nigeria
Kayode Fayemi
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
raffaeleoman
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
Sheetaleventcompany
 

Recently uploaded (20)

If this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New NigeriaIf this Giant Must Walk: A Manifesto for a New Nigeria
If this Giant Must Walk: A Manifesto for a New Nigeria
 
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara ServicesVVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
VVIP Call Girls Nalasopara : 9892124323, Call Girls in Nalasopara Services
 
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptxChiulli_Aurora_Oman_Raffaele_Beowulf.pptx
Chiulli_Aurora_Oman_Raffaele_Beowulf.pptx
 
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdfAWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
AWS Data Engineer Associate (DEA-C01) Exam Dumps 2024.pdf
 
Dreaming Music Video Treatment _ Project & Portfolio III
Dreaming Music Video Treatment _ Project & Portfolio IIIDreaming Music Video Treatment _ Project & Portfolio III
Dreaming Music Video Treatment _ Project & Portfolio III
 
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
Busty Desi⚡Call Girls in Sector 51 Noida Escorts >༒8448380779 Escort Service-...
 
ICT role in 21st century education and it's challenges.pdf
ICT role in 21st century education and it's challenges.pdfICT role in 21st century education and it's challenges.pdf
ICT role in 21st century education and it's challenges.pdf
 
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptxMohammad_Alnahdi_Oral_Presentation_Assignment.pptx
Mohammad_Alnahdi_Oral_Presentation_Assignment.pptx
 
SaaStr Workshop Wednesday w/ Lucas Price, Yardstick
SaaStr Workshop Wednesday w/ Lucas Price, YardstickSaaStr Workshop Wednesday w/ Lucas Price, Yardstick
SaaStr Workshop Wednesday w/ Lucas Price, Yardstick
 
Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)Introduction to Prompt Engineering (Focusing on ChatGPT)
Introduction to Prompt Engineering (Focusing on ChatGPT)
 
lONG QUESTION ANSWER PAKISTAN STUDIES10.
lONG QUESTION ANSWER PAKISTAN STUDIES10.lONG QUESTION ANSWER PAKISTAN STUDIES10.
lONG QUESTION ANSWER PAKISTAN STUDIES10.
 
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort ServiceBDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
BDSM⚡Call Girls in Sector 93 Noida Escorts >༒8448380779 Escort Service
 
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
Re-membering the Bard: Revisiting The Compleat Wrks of Wllm Shkspr (Abridged)...
 
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdfThe workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
The workplace ecosystem of the future 24.4.2024 Fabritius_share ii.pdf
 
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
No Advance 8868886958 Chandigarh Call Girls , Indian Call Girls For Full Nigh...
 
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docxANCHORING SCRIPT FOR A CULTURAL EVENT.docx
ANCHORING SCRIPT FOR A CULTURAL EVENT.docx
 
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
Governance and Nation-Building in Nigeria: Some Reflections on Options for Po...
 
Causes of poverty in France presentation.pptx
Causes of poverty in France presentation.pptxCauses of poverty in France presentation.pptx
Causes of poverty in France presentation.pptx
 
Presentation on Engagement in Book Clubs
Presentation on Engagement in Book ClubsPresentation on Engagement in Book Clubs
Presentation on Engagement in Book Clubs
 
My Presentation "In Your Hands" by Halle Bailey
My Presentation "In Your Hands" by Halle BaileyMy Presentation "In Your Hands" by Halle Bailey
My Presentation "In Your Hands" by Halle Bailey
 

DISSERTATION DEFENSE_AHASANUL HASAN_PRESENTATION.pptx

  • 1. Direct vasodilatory effects of sodium glucose co- transporter 2 inhibitors (SGLT2is) and the underlying molecular mechanisms in resistance mesenteric arteries Ahasanul Hasan
  • 2. • CVDs include hypertension, coronary artery disease, diabetes, stroke etc. • CVDs ranked No. 1 cause of death globally • In the USA • 1 person dies every 37 seconds • 1 person has a heart attack every 40 seconds • 1 in every 4 deaths is due to CVD • Hypertension is the primary contributor to all CVDs • Approximately 20% of patients with hypertension also have T2DM and 50% of T2DM patients have hypertension Cardiovascular diseases (CVDs) facts Center for Disease Control and Prevention, 2019; Tatsumi et al., 2017; World Health Organization, 2017
  • 3. • New class of orally active anti-diabetic drugs used in T2DM. • They are derivatives of glucoside phlorizin (a type of flavonoid) • Inhibits sodium glucose co-transporter2 (SGLT2) in proximal tubule • Canagliflozin (2013) • Empagliflozin (2014) • Dapagliflozin (2014) • Ertugliflozin (2017) • Bexagliflozin (2023) Fediuk et al., 2020; Giugliano et al., 2019; Haider et al., 2019 Sodium glucose co-transporter 2 inhibitors (SGLT2is)
  • 4. Giugliano et al., 2019; van Bommel et al., 2017 Mechanism of action of SGLT2is
  • 5. SGLT2 Inhibitors (SGLT2is) Systemic Effects ↑ Glycosuria ↑ Natriuresis Direct Effects ↓ Inflammation ↓ Oxidative Stress ↓ Apoptosis ↓ Autophagy ↓ Mitochondrial Dysfunction ↓ Ionic Dyshomeostasis ↓Gluocotoxicity ↑Insulin sensitivity ↑Glucagon ↑Fuel shift to lipid ↑Ketone bodies ↓Body weight ↓Fat mass ↓ Plasma volume ↓ Blood pressure ↓ Arterial stiffness ↓ Albuminuria ↓ Glomerular hyperfiltration ↓ NLRP3 inflammasome ↓ IL-1β, IL-18 +M2 macrophage ↓ Macrophage infiltration ↓ Fibrosis +STAT3 activation ↓ Superoxide ↓ Nitrotyrosine ↓ Malondialdehyde ↓ Inflammation ↓ Apoptosis ↓ ERS ↓ Bax/Bcl-2 ratio ↓ Caspase activity ↓ Apoptosis ↓ Anomalies ↓ Swelling ↑ PGC1-α, CPT1 ↓ Fission, Fusion ↑ Energy Production ↓ ROS +NHE inhibition ↓[Na+]c, [Ca2+]c ↑[Ca2+]m ↑ Ca2+ handling ↑ SERCA activity ↑ Rhythm ↑ Contraction +NHE inhibition While these effects can occur upon long-term use of SGLT2is, it is not known if acute SGLT2is application has any effects on the regulation of systemic blood pressure. Pleiotropic effects of SGLT2is Lahnwong et al., 2018
  • 6. • Several cardiovascular outcome trials (CVOTs) namely EMPA-REG, CANVAS and DECLARE-TIMI have shown that SGLT-2is reduce heart failure, hospitalization and related death (Zinman et al., 2015; Neal et al., 2017; Wiviott et al., 2019) • Hypertension has been linked in numerous studies to the development and progression of cardiovascular disease in diabetics (Long & Dagogo-Jack, 2011; Yamazaki, Hitomi, & Nishiyama, 2018) Therefore, it is important to understand whether SGLT-2is have a blood pressure lowering action in diabetic patients to explain for the favorable outcomes in CVOTs Cardio-protective effects of SGLT2is
  • 7. Several pre-clinical studies have suggested that SGLT2is have anti-hypertensive action. Proposed mechanisms that have been linked to the antihypertensive action involve: • Diuresis (Briasoulis, Al Dhaybi, & Bakris, 2018) • Modulation of sympathetic nervous system (Wan, Rahman, Hitomi, & Nishiyama, 2018) • Increased nitric oxide (NO) production (Han et al., 2015) • Reversal of renal dysfunction (Kelly, Lewis, Huntsberry, Dea, & Portillo, 2019) • Inhibition of oxidative stress (Yaribeygi, Panahi, Javadi, & Sahebkar, 2018), etc. Our study examined the direct effects of three SGLT-2is on the contractility of resistance mesenteric arteries that regulate vascular resistance and systemic blood pressure Antihypertensive effects of SGLT-2is
  • 9. Arterial diameter regulates peripheral resistance Klabunde, 2012
  • 10. General architecture of the artery Marieb et al., 2019
  • 11. Ion Intracellular Concentration (mM) Extracellular concentration (mM) Membrane Permeability at rest K+ 140 4 1 Na+ 15 145 0.05 Cl+ 4 110 0.1 Ca2+ 0.0001 5 0 Resting membrane potential = -70 mV Hyperpolarization, < -70 mV K+ efflux Depolarization > -70 mV Ca2+, Na+ influx, Cl- efflux Contraction Relaxation Depolarization Membrane potential controls the activity of Ca2+ channels to regulate SMC contractility Membrane potential and SMC contractility Slide courtesy: Dr. Hasan
  • 12. MLCK: myosin light chain kinase; MLCP: myosin light chain phosphatase; SR: sarcoplasmic reticulum; eNOS: endothelial nitric oxide synthase; PKG: protein kinase G, GC: guanylate cyclase, LTCC: L-type Ca2+ channel Ca2+ Ca2+ Ca2+ Ca2+ SR LTCC Ca2+ Ca2+ Ca2+ Ca2+ Ca2+ Calmodulin MLCK Contraction Myosin Myosin-p Smooth muscle cell Endothelial cell NO eNOS L-arginine sGC cGMP PKG MLCP Myosin Relaxation Mechanism of SM contraction and relaxation Slide courtesy: Dr. Hasan
  • 13. Originality of this research Recently, pre-clinical studies using rabbit aorta have shown that SGLT-2is relax aorta. However, aorta is a conduit vessel that does not control systemic blood pressure (Li et al., 2018; Seo et al., 2020; Seo et al., 2021). Research using resistance arteries, which play a crucial role in regulating systemic blood pressure by regulating peripheral resistance, is necessary. Klabunde, 2012
  • 14. Specific aims [1]. We examined whether SGLT2is have direct vasodilatory effects in resistance mesenteric arteries [2]. We investigated if SGLT2is stimulate endothelial signaling to induce vasodilation in mesenteric arteries [3]. We investigated if SGLT2is act on a smooth muscle target(s) to induce vasodilation in mesenteric arteries
  • 15. Experimental tools • Experimental technique: Pressure Myography • Animal: Normotensive, Sprague Dawley Rat (SD, 7-10 weeks) • Tissue: Resistance mesenteric arteries (1-2 mm segment, 150-250 µm in diameter) • Drugs to be investigated: SGLT2is (Canagliflozin, Empagliflozin, and Dapagliflozin) • Dose range for concentration curve: 0.001 – 100 µM • Dose for mechanistic study: 100 µM
  • 16. Typical pressure myography trace Time (ms) Vessel diameter (µm)
  • 17. % 𝑀𝑦𝑜𝑔𝑒𝑛𝑖𝑐 𝑇𝑜𝑛𝑒 = (1 − 𝐷𝑎𝑐𝑡𝑖𝑣𝑒 (80 𝑚𝑚𝐻𝑔) 𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒 (80 𝑚𝑚𝐻𝑔) ) 𝑥 100 Dactive = Active diameter at 80 mmHg Dpassive = Passive diameter at 80 mmHg Data processing % 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = ( 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝐷𝑟𝑢𝑔 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑀𝑇 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑀𝑇 ) 𝑥 100 % 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = ( 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝐷𝑟𝑢𝑔 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑃𝐸 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑃𝐸 ) 𝑥 100
  • 19. Results for Aim 1 Aim 1: To examine whether SGLT2is (Cana, Empa, and Dapa) have direct vasodilatory effects in resistance mesenteric arteries Experiment 1A: Determination of direct effect of SGLT2is on the contractility of resistance mesenteric arteries under myogenic vasoconstriction Experiment 1B: Determination of direct effect of SGLT2is on the contractility of phenylephrine (PE) pre-constricted mesenteric arteries Experiment 1C: To determine whether the vasomodulatory effects of SGLT2is are mediated by the inhibition of SGLT2
  • 20. Experiment 1A Determination of direct effect of SGLT2is (Cana, Empa, and Dapa) on the contractility of resistance mesenteric arteries under myogenic vasoconstriction Drugs: Cana, Empa, and Dapa Dose: 0.001-100 µM Cumulative drug application
  • 21. Results 1A SGLT2is (Cana, Empa, and Dapa) vasodilates pressurized myogenic toned artery 1A 2A 3A 1B 2B 3B
  • 22. Results 1A (continued) SGLT2is (Cana, Empa, and Dapa) vasodilates pressurized myogenic toned artery Cana > Empa > Dapa at 100 µM: 24.37% > 13.31% > 12.68% at 100 µM: 85 µm > 60 µm > 43 µm 1A 2A 3A
  • 23. Experiment 1B Determination of direct effect of SGLT2is (Cana, Empa, and Dapa) on the contractility of phenylephrine (PE) pre-constricted mesenteric arteries 0 1000 2000 3000 4000 5000 250 300 350 400 B A B Baseline (40 mmHg) PE-baseline Cumulative drug application Drugs: Cana, Empa, and Dapa Dose: 0.001-100 µM
  • 24. Results 1B SGLT2is (Cana, Empa, and Dapa) vasodilates PE-preconstricted arteries 1A 2A 3A 1B 2B 3B
  • 25. Results 1B (continued) SGLT2is (Cana, Empa, and Dapa) vasodilates PE-preconstricted arteries Cana > Empa > Dapa at 100 µM: 95.60% > 72.24% > 62.52% at 100 µM: 120 µm > 102 µm > 93 µm Cana 10 µM > Empa 1 µM > Dapa 0.5 µM 62 µm > 25 µm > 15 µm 1A 2A 3A
  • 26. Experiment 1C To determine whether the vasomodulatory effects of SGLT2is (Cana, Empa, and Dapa) are mediated by the inhibition of SGLT2 Baseline (40 mmHg) PE SGLT2is + PE PE Phlorizin+ PE PE SGLT2is + Phlorizin + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: Phlorizin (1 µM) Group 3: SGLT2is + Phlorizin Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  • 27. Results 1C SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of SGLT-2 inhibition 1A 2A 3A 1B 2B 3B
  • 28. Conclusion 1 23 • SGLT2is (Cana, Empa, and Dapa) dilate pressurized resistance mesenteric arteries in a dose-dependent manner. • SGLT2is (Cana, Empa, and Dapa) dilate PE-preconstricted resistance mesenteric arteries in a dose-dependent manner. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of SGLT2 inhibition. • Cana as a vasodilator is superior to either Empa or Dapa.
  • 29. Results for Aim 2 Aim 2: To investigate if SGLT2is (Cana, Empa, and Dapa) stimulate endothelial signaling to induce vasodilation in mesenteric arteries Experiment 2A: To determine the role of NO-sGC-PKG signaling axis in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 2B: To determine the role of prostacyclin I2 (PGI2) in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 2C: To determination the role of endothelium in SGLT-2is-mediated vasodilation in PE pre-constricted mesenteric arteries 23
  • 30. Experiment 2A To determine the role of NO-sGC-PKG signaling axis in SGLT2is (Cana, Empa, and Dapa)- mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors eNOS inhibitor: L-NNA (10 µM) sGC inhibitor: ODQ (10 µM) PKG inhibitor: KT5823 (1 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  • 31. Results 2A SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of NO-sGC- PKG signaling axis 1A 2A 3A 1B 2B 3B
  • 32. Experiment 2B To determine the role of prostacyclin I2 (PGI2) in SGLT2is (Cana, Empa, and Dapa)- mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitor COX inhibitor: Indomethacin (10 µM) 25 Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  • 33. Results 2B SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of PGI2 signaling axis 1A 2A 3A 1B 2B 3B
  • 34. Experiment 2C To determine the role of endothelium in SGLT2is (Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE SGLT2is + PE Endo-intact artery Endo-denuded artery Denudation Process: Passage of air bubble through the lumen of artery SGLT2is: Cana, Empa, and Dapa (100 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  • 35. Results 2C SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of endothelium 1A 2A 3A 1B 2B 3B
  • 36. Results 2C (continued) SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of endothelium 1A 2A 3A 1B 2B 3B
  • 37. Conclusion 2 23 • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of NO-sGC-PKG signaling axis. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of endothelial PGI2 synthesis. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of endothelium denudation and thus, cancels out the role of EDHF or endothelial SKCa and IKCa channels in vasodilation.
  • 38. Results for Aim 3 Aim 3: To investigate if SGLT2is (Cana, Empa, and Dapa) act on a smooth muscle target(s) to induce vasodilation in mesenteric arteries Experiment 3A: To determine the role of smooth muscle cells voltage gated potassium (KV) channels in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 3B: To determine the role of calcium activated potassium (KCa) channels (BKCa) and ATP-sensitive K+ (KATP) channels in SGLT2is-mediated vasodilation in PE pre- constricted mesenteric arteries Experiment 3C: To determine the role of calcium activated potassium (KCa) channels IKCa and SKCa channels in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 3D: To determine the role of Ca2+-ATPase (SERCA) pump in SGLT2is- mediated vasodilation in PE pre-constricted mesenteric arteries
  • 39. Experiment 3A To determine the role of smooth muscle cells voltage gated potassium (KV) channels in SGLT2is (Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg) Non-selective Kv channel inhibitor: 4-AP (1 mM) Kv1.3 channel inhibitor: Psora-4 (100 nM) Kv1.5 channel inhibitor: DPO-1 (1 µM) Kv2.1 channel inhibitor: Guangxitoxin (100 nM) Kv7 channel Inhibitor: Linopirdine (10 µM)
  • 40. Results 3A SGLT2is (Cana, Empa, and Dapa)-induced vasodilation involves SMC Kv channels 1A 2A 3A 1B 2B 3B
  • 41. Results 3A (continued) SGLT2is (Cana, Empa, and Dapa)-induced vasodilation involves SMC Kv1.5, Kv2.1, and Kv7.x channels 1A 2A 3A 1B 2B 3B
  • 42. Experiment 3B To determine the role of calcium activated potassium (KCa) channels (BKCa) in SGLT2is (Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors BKCa channel inhibitor: Paxilline (10 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  • 43. Results 3B SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of SMC BKCa and KATP channels 1A 2A 3A 1B 2B 3B
  • 44. Experiment 3C To determine the role of calcium activated potassium (KCa) channels (IKCa and SKCa) in SGLT2is (Cana)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors IKCa channel inhibitor: TRAM-34 (10 µM) SKCa channel inhibitor: Apamin (1 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  • 45. Results 3C SGLT2is (Cana)-induced vasodilation is independent of SMC IKCa and SKCa channels 1A 1B
  • 46. Experiment 3D To determine the role of Ca2+-ATPase (SERCA) pump in SGLT2is (Cana)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors SERCA pump inhibitor: Thapsigargin (0.1 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  • 47. Results 3D SGLT2is (Cana)-induced vasodilation is independent of SMC SERCA pumps 1A 1B
  • 48. Conclusion 3 • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is dependent on activation of smooth muscle cells voltage gated potassium (Kv) channels. • Cana activates Kv1.5, Kv2.1, and Kv7.x; Empa activates Kv1.5, and Kv7.x; Dapa activates Kv7.x. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of SMC BKCa and KATP channels. • SGLT2is (Cana)-induced vasodilation of resistance mesenteric arteries is independent of SMC SKCa and IKCa channels. • SGLT2is (Cana)-induced vasodilation of resistance mesenteric arteries is independent of SMC SERCA pumps.
  • 49. Summary • SGLT2is (Cana, Empa, and Dapa) dilate pressurized and Pe-preconstricted resistance mesenteric arteries in a dose-dependent manner and independent of both SGLT2 inhibition and endothelial signals. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is dependent on activation of smooth muscle cells voltage gated potassium (Kv) channels. However, SGLT2is vary in specificity as Cana activates Kv1.5, Kv2.1, and Kv7.x; Empa activates Kv1.5, and Kv7.x; Dapa activates Kv7.x. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is a ‘class effect’ and Cana as a vasodilator is superior to either Empa or Dapa.
  • 51. Future directions • To extend this study using diabetic animal models • To conduct preliminary pre-clinical studies including blood pressure measurement in ambulatory animals and in vivo blood flow monitoring • To conduct preliminary clinical studies using human vasculature and measuring blood flow and blood pressure in humans • Finally, to extend our mechanistic experiments using electrophysiology, membrane potential monitoring, and isoform-specific knockdown of Kv channels. 35
  • 52. References • Briasoulis, A., Al Dhaybi, O., & Bakris, G. L. (2018). SGLT2 Inhibitors and Mechanisms of Hypertension. Curr Cardiol Rep, 20(1), 1. doi:10.1007/s11886-018-0943-5 • Center for Disease Control and Prevention (CDC), 2019 • Fediuk, D. J., Nucci, G., Dawra, V. K., Cutler, D. L., Amin, N. B., Terra, S. G., Boyd, R. A., Krishna, R., & Sahasrabudhe, V. (2020, 2020/08/01). Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor. Clinical Pharmacokinetics, 59(8), 949-965. https://doi.org/10.1007/s40262-020-00875-1 • Giugliano, D., Esposito, K. (2019). “Class effect for SGLT-2 inhibitors: a tale of 9 drugs”. Cardiovasc Diabetol. 18: 94. • Haider, K., Pathak, A., Rohilla, A., Haider, M. R., Ahmad, K., & Yar, M. S. (2019, 2019/12/15/). Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. European Journal of Medicinal Chemistry, 184, 111773. https://doi.org/https://doi.org/10.1016/j.ejmech.2019.111773 • Han, Y., Cho, Y. E., Ayon, R., Guo, R., Youssef, K. D., Pan, M., . . . Makino, A. (2015). SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol, 309(9), L1027-1036. doi:10.1152/ajplung.00167.2015 • Kelly, M. S., Lewis, J., Huntsberry, A. M., Dea, L., & Portillo, I. (2019). Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med, 131(1), 31-42. doi:10.1080/00325481.2019.1549459 • Klabunde, Richard E. (2012). Cardiovascular Physiology Concepts. Second ed. Philadelphia, PA :Lippincott Williams & Wilkins/Wolters Kluwer.
  • 53. References • Lahnwong, S et al. (2018). “Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2 inhibitors”. Cardiovascular Diabetology. 17(1):101. • Li, H., Shin, S. E., Seo, M. S., An, J. R., Choi, I. W., Jung, W. K., . . . Park, W. S. (2018). The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci, 197, 46-55. doi:10.1016/j.lfs.2018.01.032 • Long, A. N., & Dagogo-Jack, S. (2011). Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J Clin Hypertens (Greenwich), 13(4), 244-251. doi:10.1111/j.1751-7176.2011.00434.x • Marieb E. N., & Hoehn, K. (2019) Human Anatomy & Physiology. Eleventh ed. Hoboken New Jersey: Pearson Education. • Neal, B., Perkovic, V., Mahaffey, K. W., de Zeeuw, D., Fulcher, G., Erondu, N., . . . Matthews, D. R. (2017). Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med, 377(7), 644-657. doi:10.1056/NEJMoa1611925 • Rosenstock, J., Jelaska, A., Frappin, G., Salsali, A., Kim, G., Woerle, H. J., & Broedl, U. C. (2014). Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care, 37(7), 1815-1823. doi:10.2337/dc13-3055 • Seo, M. S., An, J. R., Kang, M., Heo, R., Park, H., Han, E. T., . . . Park, W. S. (2021). Mechanisms underlying the vasodilatory effects of canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels. Life Sci, 287, 120101. doi:10.1016/j.lfs.2021.120101 • Seo, M. S., Jung, H. S., An, J. R., Kang, M., Heo, R., Li, H., . . . Park, W. S. (2020). Empagliflozin dilates the rabbit aorta by activating PKG and voltage-dependent K(+) channels. Toxicol Appl Pharmacol, 403, 115153. doi:10.1016/j.taap.2020.115153
  • 54. References • Tatsumi, Y.; Ohkubo, T. Hypertension with diabetes mellitus: significance from an epidemiological perspective for Japanese. Hypertens Res. 2017, 40(9), 795-806 • van Bommel EJM, et al. (2017). “SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome.” Clinical Journal of the American Society of Nephrology. 12(4):700-710. • Wan, N., Rahman, A., Hitomi, H., & Nishiyama, A. (2018). The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity. Front Endocrinol (Lausanne), 9, 421. doi:10.3389/fendo.2018.00421 • World Health Organization (WHO), 2017 • Wiviott, S. D., Raz, I., Bonaca, M. P., Mosenzon, O., Kato, E. T., Cahn, A., . . . Sabatine, M. S. (2019). Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med, 380(4), 347-357. doi:10.1056/NEJMoa1812389 • Yamazaki, D., Hitomi, H., & Nishiyama, A. (2018). Hypertension with diabetes mellitus complications. Hypertens Res, 41(3), 147-156. doi:10.1038/s41440-017-0008-y • Yaribeygi, H., Panahi, Y., Javadi, B., & Sahebkar, A. (2018). The Underlying Role of Oxidative Stress in Neurodegeneration: A Mechanistic Review. CNS Neurol Disord Drug Targets, 17(3), 207-215. doi:10.2174/1871527317666180425122557 • Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Inzucchi, S. E. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med, 373(22), 2117-2128. doi:10.1056/NEJMoa1504720

Editor's Notes

  1. Explain this from my recording
  2. Explain this from my recording