SlideShare a Scribd company logo
1 of 11
PENGENALAN SISTEM-SISTEM KONTROL
Sistem Kontrol Terbuka/Open-Loop
INPUT OUTPUT
- output tidak diukur maupun di –feedback-kan
- bergantung pada kalibrasi
- hubungan antara output dan input diketahui
- tidak ada ‘internal disturbance’ maupun ‘eksternal disturbance’
Contoh : - kontrol traffic (lalu lintas)
- mesin cuci
Keuntungan : mudah terjadi kestabilan
Kekurangan : komponen-komponen relatif mahal dan memiliki akurasi tinggi
Sistem Kontrol Tertutup / Close-Loop
INPUT OUTPUT
→Terdapat ‘feedback’ untuk mengurangi ‘error’
A. Manual Feedback Control / Manual Close-Loop Control System
Blok Diagram : ‘Manual Feedback Control’ dari sebuah sistem thermal
B. Automatic Feedback Control / Automatic Close-Loop Control System
CONTROLLER
ER
PLANT / PROCESS
CONTROLLER
ER
PLANT / PROCESS
ELEMEN
PENGUKUR
Blok Diagram :
Kelebihan : komponen-komponen relatif lebih murah dan cukup akurat
Kekurangan : stabilitas menjadi persoalan utama
TRANSFORMASI LAPLACE
∫
∞
−
==
0
st
.dtf(t).eF(s)α[f(t)]
A. Fungsi Step
F(t) = 0 untuk t < 0
= A untuk t > 0
A
0 t
∫
∞
∞−−=−=
0
0
|ste
s
A
.dtstA.eF(s)
= 1)(0
s
A
−−
=
s
A
B. Fungsi Pulse
F(t) = 0 untuk t < 0 & t >T
= A untuk 0 ≤ t ≤ T
A
0 T t
∫
∞
−=
0
.dtstf(t).eF(s)
)ste(1
s
A
1)st(e
s
A
T
0
|st.e
s
A
T
0
.dtstA.e
−−=
−−−=
−−=
−= ∫
Fungsi Unit Step : f(t) = 1 (t) →F(s) = 1/s
C. Fungsi Impulse
to
A
0to
limf(t)
→
= untuk 0 < t < to
= 0 untuk t < 0 & to < t
)o
st
e(1
s
0
t
A
0
t
limF(s)
−
−
∞→
=
s
s
A
(tos)
dto
d
)]stoe[A(1
dto
d
0to
lim
=
−−
→
=
= A
Fungsi Unit-Impulse : f(t) = δ(t)
F(s) = 1
D. Fungsi Ramp
F(t) = 0 untuk t < 0
= At untuk t ≥ 0
A
0 1 t
.dtstA.t.e
0
F(s) −
∫
∞
=
2s
A
0
.dtste
s
A
dt
0 s
stA.e
0
|
s
ste
A.t.
0
.dtst-t.eA
=
∫
∞
−=
∫
∞
−
−
−∞
−
−
=
∫
∞
=
E. Fungsi Eksponensiil
F(t) = o untuk t < 0
= A αte− untuk t ≥ 0
F(s) ∫
∞
−−=
0
.dtst.eαtA.e
αs
A
1)(0
αs
A
0
|
α)t(s
e
αs
A
0
.dt
s)t(α
eA
+
=
−
+
−=
∞+−
+
−=
∫
∞ +−
=
F. Fungsi Sinus
f(t) = A sin ωt
∫
∞
−=
0
.dtstA.sinω.siF(s)
22
22
ωs
ω
A.
ωs
jωsjωs
.
2j
A
]
jωs
1
jωs
1
[
2j
A
0
]
s)t(jω
e
sjω
1s)t(jω
e
sjω
1
[
2j
A
0
)dt
s)t(jω
e
s)t(jω
(e
2j
A
0
)dtst.e
tj
est.e
tj
(e
2j
A
dt
0
st.e
2j
tj
e
tj
e
A.
+
=
+
+−+
=
+
−
−
=
∞+−
+
+
−
−
=
∫
∞ +−
−
−
=
∫
∞
−−
−−=
∫
∞
−
−
−
=
ωω
ωω
G. Fungsi Cosinus
f(t) = A cos ωt
F(s) = A. 22
ωs
s
+
TEOREMA-TEOREMA TRANSFORMASI LAPLACE
1. Teorema Translasi
Bila F(s) = L [ f(t) ],
Maka L [f (t - α)] = .F(s)α.se−
Bukti :
L [ f ( t - α ) ] ∫
∞
−−=
0
.dtstα)ef(t
.F(s)αse
0
dtstf(t).eαse
α
dτsτf(τ(τ)αse
α
dτsτf(τ(τ
0
α)s(t
.eαsα)ef(t
−=
∫
∞
−−=
∫
∞
−
−−=
∫
∞
−
−=
∫
∞ −−−−=
2. Teorema Perkalian Dengan αte−
Bila F(s) = L [ f(t) ],
Maka : L [ αte− .f(t) ] = F ( s + α )
Bukti :
L [ αte− .f(t) ] = ∫
∞
−−
0
.dtstf(t)eαte
α)F(s
0
.dt
α)t(s
f(t).e
+=
∫
∞ +−
=
3. Teorema Diferensiasi
Bila F(s) = L [ f(t) ],
Maka : L [
dt
df(t)
] = sF(s) – f(0)
Dimana f(0) adalah harga f(t) untuk t=0
L [
2dt
f(t)2d
] = s2
F(s) - sf(0) – fI
(0)
L [
3dt
f(t)3d
] = s3
F(s) – s2
f(0) – sfI
(0) – fii
(0)
Bukti :
L [
dt
df(t)
] = ∫
∞
−
0
.dtst)e
dt
df(t)
(
sF(s)f(0)
0
dtstf(t).esf(0)0
0
stf(t)de
0
|.f(t)ste
df(t)
0
ste
+−=
∫
∞
−+−=
∫
∞
−−∞−=
∫
∞
−=
4. Teorema Integrasi
Bila F(s) = L [ f(t) ],
Maka : L [ ∫f(t)dt ] =
s
(0)1f
s
F(s) −
+
Dimana f-1
(0) adalah ∫f(t)dt untuk t = 0
Bukti :
L [ ∫f(t)dt ] ∫
∞
∫
−=
0
dtstf(t)dt]e[
s
(0)1f
s
F(s)
F(s)](0)1f[0
s
1
]
0
f(t)dtste
0
|f(t)dtst[e
s
1
0
stf(t)dt]de[
s
1
−
+=
−−−−=
∫ ∫
∞
−−∞−−=
∫
∞
∫
−−=
∴ L [ ∫∫ f(t)dt)dt( ] =
s
(0)iif
2s
(0)if
2s
F(s) −
+
−
+
5. Teorema Harga Awal Dan Harga Akhir
A. sF(s)
s
limf(t)
0t
lim
∞→
=
→
B. sF(s)
0s
limf(t)
t
lim
→
=
∞→
Bukti :
A. ∫
∞
=−
∞→ 0
0dtst]e
dt
df(t)
[
s
lim
0f(0)sF(s)
s
lim =−
∞→
sF(s)
s
limf(t)
0t
limf(0)
∞→
=
→
=
B. f(0)][sF(s)
0s
lim]
dt
df(t)
L[
0s
lim −
→
=
→
f(0)sF(s)
0s
lim −
→
=
karena 1ste
0s
lim =−
→
∫
∞
∞=
0
0
|f(t)]dt
dt
df(t)
[
f(0)-sF(s)
0s
lim
f(0))f(
→
=
−∞=
∴ sF(s)
0s
limf(t)
t
lim)f(
→
=
∞→
=∞
INVERSI TRANSFORMASI LAPLACE
Untuk mencari fungsi waktu f(t) dari transformasi laplacenya
L-I
[ F(s) ] = f(t)
Metode Ekspansi Pembagian Parsial (Partial Fraction Expantion)
F(s) = F1(s) + F2(s) + ….. + Fn(s)
L-I
[ F(s) ] = L-I
[ F1(s) ] + L-I
[ F2(s) ] + ….. + L-I
[ Fn(s) ]
F(t) = f1(t) + f2(t) + ….. + fn(t)
Contoh :
1. F(s) =
2)1)(s(s
3s
++
+
F(s) =
2)1)(s(s
3s
++
+
=
2s
a
1s
a 21
+
+
+
a1 =
2
1s
1)](s
2)1)(s(s
3s
[ =
−=
+
++
+
a2 = 1
2s
2)](s
2)1(s(s
3s
[ −=
−=
+
++
+
f(t) = L-1
[ F(s) ]
= L-1
[
1s
2
+
] + L-1
[
2
1
+
−
s
]
= 2. 2tete −−−
2. G(s) =
2)1)(s(s
79s5ss 23
++
+++
G(s) = s + 2 +
2)1)(s(s
3s
++
+
G(t) =
2tet2e(t)2δ(t)
dt
d −−−++ δ
3. F(s) =
1)ss(s
1s
2
++
+
F(s) =
1)ss(s
1s
2
++
+
=
s
a
1s2s
2
αs
1
α
+
++
+
Untuk mendapatkan α1 dan α2 :
1)ss(s
1s
2
++
+
=
s
a
1s2s
2
αs
1
α
+
++
+
1)ss(s
1s
2
++
+
=
1s2s
2
αs
1
α
++
+
1)ss(s
1s
2
++
+
. s2
+ s + 1 = j0,8660,5s
|
2
αs
1
α
−−=
+
2
αj0,866)0,5(
1
α
j0,8660,5
j0,8660,5
+−−=
−−
−
0,5 – j0.866 = α1 (0,25 + j0,866 – 0,75) + α2 (-0,5 – j0,866)
Real : 0,5 = -0,5α1 – 0,5α2 → α1 + α2 = -1
Imajiner : -0,866 = 0,866α1 – 0,866α2 → α1 + α2 = -1
α1 = -1 , α2 = 0
Untuk mendapatkan a :
1
0s
]
1)s2s(s
1)s(s
[a =
=
++
+
=
F(s) =
s
1
1s2s
s
+
++
−
= 20,86620,5)(s
0,5
2o,86620,5)(s
0,5s
s
1
++
+
++
+
−
f(t) = L-1
[ F(s) ]
= 1 – sin0,866t0,5t0,578ecos0,866t0,5te −+
4. F(s) = 31)(s
32s2s
+
++
F(s) = 1)(s
b1
21)(s
b2
31)(s
b3
+
+
+
+
+
b3 = [
31).(s
31)(s
32s2s
+
+
++
]s= -1
= (s2
+ 2s + 3)s= -1
= 2
b2 = 1s
]}31).(s
31)(s
32s2s
[
ds
d
{
1!
1
−=
+
+
++
= (2s +2)s= -1
= 0
b1 = 1s
]}31).(s
31)(s
32s2s
[
2ds
2d
{
2!
1
−=
+
+
++
= ½ . (2)
= 1
f(t) = L-1
[ F(s) ]
= L-1
[ 31)(s
2
+
] + L-1
[
1s
1
+
]
= t2
. e-t
+ e-t
SOAL LATIHAN
1. F(s) =
65s2s
1s
++
+
→f(t) = … ?
2. F(s) =
5)s23)(s(s31)(s
2)5(s
++++
+
→f(t) = … ?
3. f(t) = A cos (ωt + ϕ) →F(s)= … ?
4. f(t) = 0 untuk t < 0 & t > 2T
-A untuk 0 ≤ t < T → F(s) = … ?
A untuk T ≤ t ≤ 2T
5.
A → F(s) = …
?
T 2T t
PENYELESAIAN PERSAMAAN DIFFERENSIAL
Contoh :
1. Selesaikan persamaan differensial berikut :
3(0)
.
x0,x(0)0,6x
.
x3
..
x ===++
Transformasi laplace dari persamaan differential diatas menghasilkan :
s2
X(s) – sx(0) - .
x
(0) + 3(sX(s) – x(0)) + 6X(s) = 0
s2
X(s) – 0 – 3 + 3 (sX(s) – 0) + 6X(s) = 0
X(s) (s2
+ 3s + 6) = 3
X(s) =
63s2s
3
++
Untuk mendapatkan x(t) :
X(s) =
6
4
9
4
9
3ss
3
2
+−++
=
15/43/2)(s
3
2
++
= 22
)15
2
1
(3/2)(s
3
++
= 22
)15(1/23/4)(s
151/2
15
6
++
∴ x(t) = )t]15.Sin[(1/23/2te15
5
2 −

More Related Content

What's hot (7)

halaman 8
halaman 8halaman 8
halaman 8
 
Matematika dopunski
Matematika dopunskiMatematika dopunski
Matematika dopunski
 
Fma mj 05
Fma mj 05Fma mj 05
Fma mj 05
 
Fmp mj 05
Fmp mj 05Fmp mj 05
Fmp mj 05
 
Fmp mj 06
Fmp mj 06Fmp mj 06
Fmp mj 06
 
Mathematics 3 handwritten classes notes (study materials) for IES PSUs GATE
Mathematics 3 handwritten classes notes (study materials) for IES PSUs GATEMathematics 3 handwritten classes notes (study materials) for IES PSUs GATE
Mathematics 3 handwritten classes notes (study materials) for IES PSUs GATE
 
Java oop
Java oopJava oop
Java oop
 

Viewers also liked (13)

Chpt13 laplacetransformsmatlab
Chpt13 laplacetransformsmatlabChpt13 laplacetransformsmatlab
Chpt13 laplacetransformsmatlab
 
Contoh soal
Contoh soalContoh soal
Contoh soal
 
Analisis respon transien orde2
Analisis respon transien orde2Analisis respon transien orde2
Analisis respon transien orde2
 
Fungsi alih
Fungsi alihFungsi alih
Fungsi alih
 
TRANFORMASI LAPLACE
TRANFORMASI LAPLACETRANFORMASI LAPLACE
TRANFORMASI LAPLACE
 
27 transformasi-laplace
27 transformasi-laplace27 transformasi-laplace
27 transformasi-laplace
 
Bab8 transformasi laplace
Bab8 transformasi laplaceBab8 transformasi laplace
Bab8 transformasi laplace
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transforms
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace Transform
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
9 Sistem Pentanahan
9 Sistem Pentanahan9 Sistem Pentanahan
9 Sistem Pentanahan
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 

Bab 1 sistem kontrol

  • 1. PENGENALAN SISTEM-SISTEM KONTROL Sistem Kontrol Terbuka/Open-Loop INPUT OUTPUT - output tidak diukur maupun di –feedback-kan - bergantung pada kalibrasi - hubungan antara output dan input diketahui - tidak ada ‘internal disturbance’ maupun ‘eksternal disturbance’ Contoh : - kontrol traffic (lalu lintas) - mesin cuci Keuntungan : mudah terjadi kestabilan Kekurangan : komponen-komponen relatif mahal dan memiliki akurasi tinggi Sistem Kontrol Tertutup / Close-Loop INPUT OUTPUT →Terdapat ‘feedback’ untuk mengurangi ‘error’ A. Manual Feedback Control / Manual Close-Loop Control System Blok Diagram : ‘Manual Feedback Control’ dari sebuah sistem thermal B. Automatic Feedback Control / Automatic Close-Loop Control System CONTROLLER ER PLANT / PROCESS CONTROLLER ER PLANT / PROCESS ELEMEN PENGUKUR
  • 2. Blok Diagram : Kelebihan : komponen-komponen relatif lebih murah dan cukup akurat Kekurangan : stabilitas menjadi persoalan utama TRANSFORMASI LAPLACE ∫ ∞ − == 0 st .dtf(t).eF(s)α[f(t)] A. Fungsi Step F(t) = 0 untuk t < 0 = A untuk t > 0 A 0 t ∫ ∞ ∞−−=−= 0 0 |ste s A .dtstA.eF(s) = 1)(0 s A −− = s A B. Fungsi Pulse F(t) = 0 untuk t < 0 & t >T = A untuk 0 ≤ t ≤ T
  • 3. A 0 T t ∫ ∞ −= 0 .dtstf(t).eF(s) )ste(1 s A 1)st(e s A T 0 |st.e s A T 0 .dtstA.e −−= −−−= −−= −= ∫ Fungsi Unit Step : f(t) = 1 (t) →F(s) = 1/s C. Fungsi Impulse to A 0to limf(t) → = untuk 0 < t < to = 0 untuk t < 0 & to < t )o st e(1 s 0 t A 0 t limF(s) − − ∞→ = s s A (tos) dto d )]stoe[A(1 dto d 0to lim = −− → = = A Fungsi Unit-Impulse : f(t) = δ(t) F(s) = 1 D. Fungsi Ramp F(t) = 0 untuk t < 0 = At untuk t ≥ 0
  • 4. A 0 1 t .dtstA.t.e 0 F(s) − ∫ ∞ = 2s A 0 .dtste s A dt 0 s stA.e 0 | s ste A.t. 0 .dtst-t.eA = ∫ ∞ −= ∫ ∞ − − −∞ − − = ∫ ∞ = E. Fungsi Eksponensiil F(t) = o untuk t < 0 = A αte− untuk t ≥ 0 F(s) ∫ ∞ −−= 0 .dtst.eαtA.e αs A 1)(0 αs A 0 | α)t(s e αs A 0 .dt s)t(α eA + = − + −= ∞+− + −= ∫ ∞ +− = F. Fungsi Sinus f(t) = A sin ωt ∫ ∞ −= 0 .dtstA.sinω.siF(s)
  • 5. 22 22 ωs ω A. ωs jωsjωs . 2j A ] jωs 1 jωs 1 [ 2j A 0 ] s)t(jω e sjω 1s)t(jω e sjω 1 [ 2j A 0 )dt s)t(jω e s)t(jω (e 2j A 0 )dtst.e tj est.e tj (e 2j A dt 0 st.e 2j tj e tj e A. + = + +−+ = + − − = ∞+− + + − − = ∫ ∞ +− − − = ∫ ∞ −− −−= ∫ ∞ − − − = ωω ωω G. Fungsi Cosinus f(t) = A cos ωt F(s) = A. 22 ωs s + TEOREMA-TEOREMA TRANSFORMASI LAPLACE 1. Teorema Translasi Bila F(s) = L [ f(t) ], Maka L [f (t - α)] = .F(s)α.se− Bukti : L [ f ( t - α ) ] ∫ ∞ −−= 0 .dtstα)ef(t
  • 6. .F(s)αse 0 dtstf(t).eαse α dτsτf(τ(τ)αse α dτsτf(τ(τ 0 α)s(t .eαsα)ef(t −= ∫ ∞ −−= ∫ ∞ − −−= ∫ ∞ − −= ∫ ∞ −−−−= 2. Teorema Perkalian Dengan αte− Bila F(s) = L [ f(t) ], Maka : L [ αte− .f(t) ] = F ( s + α ) Bukti : L [ αte− .f(t) ] = ∫ ∞ −− 0 .dtstf(t)eαte α)F(s 0 .dt α)t(s f(t).e += ∫ ∞ +− = 3. Teorema Diferensiasi Bila F(s) = L [ f(t) ], Maka : L [ dt df(t) ] = sF(s) – f(0) Dimana f(0) adalah harga f(t) untuk t=0 L [ 2dt f(t)2d ] = s2 F(s) - sf(0) – fI (0) L [ 3dt f(t)3d ] = s3 F(s) – s2 f(0) – sfI (0) – fii (0) Bukti : L [ dt df(t) ] = ∫ ∞ − 0 .dtst)e dt df(t) ( sF(s)f(0) 0 dtstf(t).esf(0)0 0 stf(t)de 0 |.f(t)ste df(t) 0 ste +−= ∫ ∞ −+−= ∫ ∞ −−∞−= ∫ ∞ −= 4. Teorema Integrasi
  • 7. Bila F(s) = L [ f(t) ], Maka : L [ ∫f(t)dt ] = s (0)1f s F(s) − + Dimana f-1 (0) adalah ∫f(t)dt untuk t = 0 Bukti : L [ ∫f(t)dt ] ∫ ∞ ∫ −= 0 dtstf(t)dt]e[ s (0)1f s F(s) F(s)](0)1f[0 s 1 ] 0 f(t)dtste 0 |f(t)dtst[e s 1 0 stf(t)dt]de[ s 1 − += −−−−= ∫ ∫ ∞ −−∞−−= ∫ ∞ ∫ −−= ∴ L [ ∫∫ f(t)dt)dt( ] = s (0)iif 2s (0)if 2s F(s) − + − + 5. Teorema Harga Awal Dan Harga Akhir A. sF(s) s limf(t) 0t lim ∞→ = → B. sF(s) 0s limf(t) t lim → = ∞→ Bukti : A. ∫ ∞ =− ∞→ 0 0dtst]e dt df(t) [ s lim 0f(0)sF(s) s lim =− ∞→ sF(s) s limf(t) 0t limf(0) ∞→ = → = B. f(0)][sF(s) 0s lim] dt df(t) L[ 0s lim − → = → f(0)sF(s) 0s lim − → = karena 1ste 0s lim =− → ∫ ∞ ∞= 0 0 |f(t)]dt dt df(t) [
  • 8. f(0)-sF(s) 0s lim f(0))f( → = −∞= ∴ sF(s) 0s limf(t) t lim)f( → = ∞→ =∞ INVERSI TRANSFORMASI LAPLACE Untuk mencari fungsi waktu f(t) dari transformasi laplacenya L-I [ F(s) ] = f(t) Metode Ekspansi Pembagian Parsial (Partial Fraction Expantion) F(s) = F1(s) + F2(s) + ….. + Fn(s) L-I [ F(s) ] = L-I [ F1(s) ] + L-I [ F2(s) ] + ….. + L-I [ Fn(s) ] F(t) = f1(t) + f2(t) + ….. + fn(t) Contoh : 1. F(s) = 2)1)(s(s 3s ++ + F(s) = 2)1)(s(s 3s ++ + = 2s a 1s a 21 + + + a1 = 2 1s 1)](s 2)1)(s(s 3s [ = −= + ++ + a2 = 1 2s 2)](s 2)1(s(s 3s [ −= −= + ++ + f(t) = L-1 [ F(s) ] = L-1 [ 1s 2 + ] + L-1 [ 2 1 + − s ] = 2. 2tete −−− 2. G(s) = 2)1)(s(s 79s5ss 23 ++ +++ G(s) = s + 2 + 2)1)(s(s 3s ++ + G(t) = 2tet2e(t)2δ(t) dt d −−−++ δ 3. F(s) = 1)ss(s 1s 2 ++ + F(s) = 1)ss(s 1s 2 ++ + = s a 1s2s 2 αs 1 α + ++ + Untuk mendapatkan α1 dan α2 : 1)ss(s 1s 2 ++ + = s a 1s2s 2 αs 1 α + ++ +
  • 9. 1)ss(s 1s 2 ++ + = 1s2s 2 αs 1 α ++ + 1)ss(s 1s 2 ++ + . s2 + s + 1 = j0,8660,5s | 2 αs 1 α −−= + 2 αj0,866)0,5( 1 α j0,8660,5 j0,8660,5 +−−= −− − 0,5 – j0.866 = α1 (0,25 + j0,866 – 0,75) + α2 (-0,5 – j0,866) Real : 0,5 = -0,5α1 – 0,5α2 → α1 + α2 = -1 Imajiner : -0,866 = 0,866α1 – 0,866α2 → α1 + α2 = -1 α1 = -1 , α2 = 0 Untuk mendapatkan a : 1 0s ] 1)s2s(s 1)s(s [a = = ++ + = F(s) = s 1 1s2s s + ++ − = 20,86620,5)(s 0,5 2o,86620,5)(s 0,5s s 1 ++ + ++ + − f(t) = L-1 [ F(s) ] = 1 – sin0,866t0,5t0,578ecos0,866t0,5te −+ 4. F(s) = 31)(s 32s2s + ++ F(s) = 1)(s b1 21)(s b2 31)(s b3 + + + + + b3 = [ 31).(s 31)(s 32s2s + + ++ ]s= -1 = (s2 + 2s + 3)s= -1 = 2 b2 = 1s ]}31).(s 31)(s 32s2s [ ds d { 1! 1 −= + + ++ = (2s +2)s= -1 = 0 b1 = 1s ]}31).(s 31)(s 32s2s [ 2ds 2d { 2! 1 −= + + ++ = ½ . (2) = 1 f(t) = L-1 [ F(s) ]
  • 10. = L-1 [ 31)(s 2 + ] + L-1 [ 1s 1 + ] = t2 . e-t + e-t SOAL LATIHAN 1. F(s) = 65s2s 1s ++ + →f(t) = … ? 2. F(s) = 5)s23)(s(s31)(s 2)5(s ++++ + →f(t) = … ? 3. f(t) = A cos (ωt + ϕ) →F(s)= … ? 4. f(t) = 0 untuk t < 0 & t > 2T -A untuk 0 ≤ t < T → F(s) = … ? A untuk T ≤ t ≤ 2T 5. A → F(s) = … ? T 2T t
  • 11. PENYELESAIAN PERSAMAAN DIFFERENSIAL Contoh : 1. Selesaikan persamaan differensial berikut : 3(0) . x0,x(0)0,6x . x3 .. x ===++ Transformasi laplace dari persamaan differential diatas menghasilkan : s2 X(s) – sx(0) - . x (0) + 3(sX(s) – x(0)) + 6X(s) = 0 s2 X(s) – 0 – 3 + 3 (sX(s) – 0) + 6X(s) = 0 X(s) (s2 + 3s + 6) = 3 X(s) = 63s2s 3 ++ Untuk mendapatkan x(t) : X(s) = 6 4 9 4 9 3ss 3 2 +−++ = 15/43/2)(s 3 2 ++ = 22 )15 2 1 (3/2)(s 3 ++ = 22 )15(1/23/4)(s 151/2 15 6 ++ ∴ x(t) = )t]15.Sin[(1/23/2te15 5 2 −