SlideShare a Scribd company logo
1 of 154
Download to read offline
Vascularización
                         cerebral




martes 15 de noviembre de 2011
Vascularización
                         cerebral



                                 Enrike G. Argandoña


martes 15 de noviembre de 2011
Vascularización
                         cerebral



                                 Enrike G. Argandoña


martes 15 de noviembre de 2011
Vascularización cerebral




                                 2
martes 15 de noviembre de 2011
Vascularización cerebral


                   Sistema arterial aferente



                                           2
martes 15 de noviembre de 2011
Vascularización cerebral


                   Sistema arterial aferente
                   Sistema venoso eferente

                                           2
martes 15 de noviembre de 2011
Vascularización cerebral




                                 3
martes 15 de noviembre de 2011
Vascularización cerebral

                1% volumen cerebral




                                      3
martes 15 de noviembre de 2011
Vascularización cerebral

                1% volumen cerebral
                20% Gasto cardiaco


                                      3
martes 15 de noviembre de 2011
Vascularización cerebral

                1% volumen cerebral
                20% Gasto cardiaco
                25% consumo energía
                                      3
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
Vascularización cerebral




                                 5
martes 15 de noviembre de 2011
Vascularización cerebral

          Control de la circulación sistémica




                                                5
martes 15 de noviembre de 2011
Vascularización cerebral

          Control de la circulación sistémica
          Autorregulación vascularización
          cerebral



                                                5
martes 15 de noviembre de 2011
Vascularización cerebral

          Control de la circulación sistémica
          Autorregulación vascularización
          cerebral
          Distribución del flujo

                                                5
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
14




 Vascularización cerebral




martes 15 de noviembre de 2011
14




 Vascularización cerebral




martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
17




martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
Vascularización intracerebral




                                    31
martes 15 de noviembre de 2011
Vascularización intracerebral


             Arteriolas (50-100 µm)




                                      31
martes 15 de noviembre de 2011
Vascularización intracerebral


             Arteriolas (50-100 µm)
             Arteriolas terminales (10-100µm)




                                                31
martes 15 de noviembre de 2011
Vascularización intracerebral


             Arteriolas (50-100 µm)
             Arteriolas terminales (10-100µm)
             Vénulas (± 30 µm)


                                                31
martes 15 de noviembre de 2011
Vascularización intracerebral


             Arteriolas (50-100 µm)
             Arteriolas terminales (10-100µm)
             Vénulas (± 30 µm)
             Capilares (<30 µm)

                                                31
martes 15 de noviembre de 2011
Vascularización cortical
                 Red capilar
                        640 km (reducida en Alzheimer)
                        Un capilar por neurona

                 Barrera hematoencefálica
                        Mecanismos estructurales
                        Mecanismos metabólicos




martes 15 de noviembre de 2011
Barreras cerebrales




martes 15 de noviembre de 2011
Barreras cerebrales




martes 15 de noviembre de 2011
34



    Barrera hematoencefálica




martes 15 de noviembre de 2011
34



    Barrera hematoencefálica




martes 15 de noviembre de 2011
34



    Barrera hematoencefálica




martes 15 de noviembre de 2011
35



    Barrera hematoencefálica




martes 15 de noviembre de 2011
35



    Barrera hematoencefálica




martes 15 de noviembre de 2011
Tipos de transporte




                                    Texto




martes 15 de noviembre de 2011
a
                          Tipos de transporte
                              b               c                                  d                         e
  Paracellular aqueous        Transcellular   Transport proteins                 Receptor-mediated         Adsorptive
  pathway                     lipophilic                                         transcytosis              transcytosis
                              pathway
      Water-soluble           Lipid-soluble   Glucose,        Vinca alkaloids,   Insulin,                  Albumin, other
      agents                  agents          amino acids,    Cyclosporin A,     transferrin               plasma proteins
                                              nucleosides     AZT
                                                                                                                +++
                                                                                                               + +
                                                                                                                +++
  Blood                                                                                                        –––– +
                                                                                                                    –+ + –
                                                                                                                     + +
                                                                                                                    –+ + –
                                                                                                                      +
               Tight
               junction
                                                                                                                   –+ + + –
                                                                                                                    + +
                                                             Texto                                                 –+ + + –


                                                                                                                  – –
                Endothelium                                                                                       – –
                                                                                                                   +++
  Brain                                                                                                            + +
                                                                                                                   +++




                              Astrocyte                                                        Astrocyte




  Figure 3 | Pathways across the blood–brain barrier. A schematic diagram of the endothelial cells that form the blood–
  brain barrier (BBB) and their associations with the perivascular endfeet of astrocytes. The main routes for molecular
  traffic across the BBB are shown. a | Normally, the tight junctions severely restrict penetration of water-soluble
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
at the BBB is observed in starvation and hypoxia53,54.


Blood                                          Ligand          Tight
                                                               junction
                                                  Receptor

                                                    ↑Ca2+             ↑Ca2+
Endothelial cell
                                                                               Pericyte
     Smooth muscle



  Basal                                                                   Microglia
  lamina

                            Neuron          Astrocyte                         Neuron



Figure 5 | Complex cell–cell signalling at the blood–brain barrier. A portion of a
brain capillary wall, showing the main cell types present with the potential to signal to
each other. Pericytes are enclosed within the endothelial basal lamina and form the
closest associations with endothelium. The endfeet of astrocytic glial cells are apposed
martes 15 de noviembre de 2011
Review




 Figure 3. A Simplified Molecular Atlas of the BBB
 (A) Tight junctions. Claudins (claudin-3, -5, and -12) and occludin have four transmembrane domains with two extracellular loops. The junctional adhesion m
 ecule A (JAM-A) and the endothelial cell-selective adhesion molecule (ESMA) are members of the Ig superfamily. Zonula occludens proteins (ZO-1, ZO-2, and ZO
 and the calcium-dependent serine protein kinase (CASK) are first-order cytoplasmic adaptor proteins that contain PDZ binding domains for the C terminus of
 intramembrane proteins. Cingulin, multi-PDZ protein 1 (MUPP1), and the membrane-associated guanylate kinase with an inverted orientation of protein-prot
martes 15 de noviembre de 2011
 interaction domain (MAGI) are examples of second-order adaptor molecules. The first- and second-order adaptor molecules together with signaling molecu
Barrera hematoencefálica




martes 15 de noviembre de 2011
Box 3 | Pathological states involving BBB breakdown or disorder                                permeability (little or no aquaporin)88–90, it is likely that
                                                                                                                                   the excess metabolic water joins the ISF being secreted
                                    Several pathologies of the CNS involve disturbance of blood–brain barrier (BBB)                into the pericapillary space by the endothelium5. ISF out-
                                    function, and, in many of these, astrocyte–endothelial cooperation is also abnormal.           flow involves perivascular spaces around large vessels,
                                    Stroke                                                                                         and clearance routes either through the CSF or following
                                    • Astrocytes secrete transforming growth factor-β (TGFβ), which downregulates brain            alternative pathways to neck lymphatics.
                                      capillary endothelial expression of fibrinolytic enzyme tissue plasminogen activator             Neurotransmitter recycling can also lead to local
                                      (tPA) and anticoagulant thrombomodulin (TM)150.                                              changes in ions and water. Glutamate is the major
                                                                                                                                   excitatory transmitter of the brain, and astrocyte proc-
         Barrera hematoencefálica   • Proteolysis of the vascular basement membrane/matrix151.
                                    • Induction of aquaporin 4 (AQP4) mRNA and protein at BBB disruption152.                       esses surrounding synapses can take up glutamate
                                    • Decrease in BBB permeability after treatment with arginine vasopressin V1 receptor           through transport proteins (particularly EAAT1 and 2);
                                      antagonist in a stroke model153.                                                             the transport is Na+-dependent and accompanied by
                                                                                                                                   net uptake of ions and water, again contributing to
                                    Trauma                                                                                         water clearance at the BBB85. Glutamate is converted
                                    • Bradykinin, a mediator of inflammation, is produced and stimulates production and            to glutamine within the astrocyte and recycled to the
                                      release of interleukin-6 (IL-6) from astrocytes, which leads to opening of the BBB102.       neurons. The slight astrocytic cell swelling that accom-
                                    Infectious or inflammatory processes                                                           panies neuronal activity, resulting from activation by
                                    Examples include bacterial infections, meningitis, encephalitis and sepsis.                    glutamate or ion uptake, leads to several cellular mech-
                                    • The bacterial protein lipopolysaccharide affects the permeability of BBB tight               anisms that contribute to the recovery of ionic balance
                                      junctions. This is mediated by the production of free radicals, IL-6 and IL-1β154.           and cell volume, some of which involve elevated intra-
                                    • Interferon-β prevents BBB disruption155.                                                     cellular Ca2+ concentration66,91,92. Hence, there are many
                                                                                                                                   links between the signalling and regulatory processes
                                    Multiple sclerosis                                                                             that occur in the neurovascular unit.
                                    • Breakdown of the BBB97.
                                    • Downregulation of laminin in the basement membrane156.                                       BBB changes in pathology
                                    • Selective loss of claudin 1/3 in experimental autoimmune encephalomyelitis94.                In a number of pathologies, the function of the BBB is
                                                                                                                                   altered (BOX 3), and several disorders appear to involve
                                    HIV
                                                                                                                                   disturbances of endothelial–glial interaction. Thus,
                                    • BBB tight junction disruption157,158.                                                        the capillaries of many glial tumours are more leaky
                                    Alzheimer’s disease                                                                            than those of normal brain tissue, either as a result
                                    • Increased glucose transport, upregulation of glucose transporter GLUT1, altered              of a lack of inductive factors, or owing to the release
                                      agrin levels, upregulation of AQP4 expression95,159.                                         of permeability factors such as vascular endothelial
                                    • Accumulation of amyloid-β, a key neuropathological feature of Alzheimer’s disease,
                                                                                                                                   growth factor (VEGF). Moreover, the tight junction
                                      by decreased levels of P-glycoprotein transporter expression160.                             protein claudin 1/3 is downregulated in some brain
                                                                                                                                   tumours93,94.
                                    • Altered cellular relations at the BBB, and changes in the basal lamina and amyloid-β
                                      clearance100.                                                                                    In BBB disruption, agrin is lost from the abluminal
                                                                                                                                   surface of the brain endothelial cells adjacent to astro-
                                    Parkinson’s disease                                                                            cytic endfeet11; this may contribute to BBB damage in
                                    • Dysfunction of the BBB by reduced efficacy of P-glycoprotein101.                             Alzheimer’s disease95, and to the redistribution of astro-
                                    Epilepsy
                                                                                                                                   cytic AQP4 in glioblastomas96. Astrocytic AQP4 expres-
                                                                                                                                   sion is upregulated in brain oedema triggered by BBB
                                    • Transient BBB opening in epileptogenic foci, and upregulated expression of
                                                                                                                                   breakdown. Such upregulation could be adaptive in
                                      P-glycoprotein and other drug efflux transporters in astrocytes and endothelium98,99.
                                                                                                                                   helping to clear the accumulating fluid, but the associ-
                                    Brain tumours                                                                                  ated cell swelling would tend to exacerbate the problem
                                    • Breakdown of the BBB161,162.                                                                 under extreme conditions. Indeed, AQP4–/– mice show
                                    • Downregulation of tight junction protein claudin 1/3; redistribution of astrocyte            protection against ischaemic brain oedema48. Some
                                      AQP4 and Kir4.1 (inwardly rectifying K+ channel)20,93,96.                                    chronic neuropathologies such as multiple sclerosis may
                                                                                                                                   involve an early phase of BBB disturbance (involving
                                    Pain
                                                                                                                                   the downregulation of claudin 1/3 (REF. 11)) that precedes
                                    • Inflammatory pain alters BBB tight junction protein expression and BBB                       neuronal damage, which suggests that vascular damage
                                      permeability108.
                                                                                                                                   can lead to secondary neuronal disorder97.
                                                                                                                                       In epilepsy, the normal pattern of brain ABC trans-
                                                                                                                                   porter expression may change, with upregulation of
martes 15 de noviembre de 2011                                    buffer) when neural activity ceases. Astrocytes can also         Pgp on astrocytes and brain endothelium98,99; this may
                                                                              +                                            +   +
ronal groups in the regulation of neuroendocrine                 three families: sel
                                    functions.                                                       related receptors
                                                                                                     lar inflammation
                                                                                                     PMN and other
                                                                                                     developing infarc
         Barrera hematoencefálica                                                                    the microvascula
                                                                                                     artery occlusion
                                                                                                     contribute to mic
                                                                                                     mation during t
                                                                                                     Adherence and
                                                                                                     through the po
                                                                                                     sequential intera
                                                                                                     sion molecule (I
                                                                                                     family consists o
                                                                                                     endothelial cells
                                                                                                     L-selectin (leuko
                                                                                                     and platelets me
                                                                                                     cytes and monoc
                                                                                                     sion molecules
                                                                                                     adhesion proper
                                                                                                     leukocyte transm
                                                                                                     the interaction
                                                                                                     endothelial cell I
                                    Fig. 14. Midline sagittal schematic drawing of the brain show-   endothelial cell I
                                    ing circumventricular organs (dark shaded structures): NH,       LFA-1).
                                    neurohypophysis; ME, median eminence; OVLT, organum
                                    vasculosum of lamina terminales; SFO, subfornicial organ;        4.3.2. CYTOKINE
                                    PI, pineal gland or body; SCO, subcommissural organ; AP,
                                    area postrema; CP, choroid plexus; OC, optic chiasm; AC,           Ischemic cereb
                                    anterior commissure; CC, corpus callosum (lightly shaded         oxide free radic
                                    areas).                                                          These are stimula
martes 15 de noviembre de 2011
Barrera hematoencefálica




martes 15 de noviembre de 2011
1                                                                                  junctions, bradykini
                                                                                                                                                leading to the releas
          Barrera hematoencefálica                          NF-κB
                                                                            B2
                                                                                             Bradykinin

                                                                                                                         3
                                                                                                                                                amplify the effect by
                                                              ET-1                                                                              Tumour necrosis fa
                                                                             TNFα
                                                                                                                      Microglial cell           permeability by dir
                                                                                                                                                and indirect effects
                                                    lL-6                                                                 2                      production and IL
                                                           TNFα                    •O2–
                                                                    lL-1β                     LPS                                               complex immunore
                                                                                                                                  Substance P   can exacerbate CNS
                                                                                                           [Ca2+]i↑               5-HT          multiple sclerosis b
                                                                                                                                  Histamine     activation of already
                                                                                               ATP
                                                                                                                                                some mechanisms e
                                                                                             PGs
                                                                                  B2                                                            Indeed, the ability of
                                                                                                                                                contribute to the lin
                                                                    tPA
                                                                                                                                                disease106.
                                                                                       tPA                                                         It has recently be
                                     Capillary                                                                                                  cytes and microglia
                                                                 Tight                                                   4                      pain107. As astrocyt
                                                              junction                             TGFβ↓
                                                                                                                                                connectivity and for
                                                                                                                                                gested that glia ma
                                                                                                                                                pain sensation. In in
                                                    Endothelial                                                                                 from central and pe
                                                    cell                                                                                        sue cells and blood
                                                                  Agrin?                                                                        such as substance P
                                                                                                       K+                                       (CGRP), serotonin,
                                                                                 AQP4                  Glu                                      BBB from both the b
                                                                                                                                                For example, the re
                                           Basal lamina              Astrocyte                     5                                            concentration or alt
                                                                                                                                                tion protein occludi
                               Figure 6 | Astroglial–endothelial signalling under pathological conditions.                                      TNFα, histamine an
                               Examples of astroglial–endothelial signalling in infection or inflammation, stroke or                            matory pain can also
                               trauma, leading to opening of the blood–brain barrier (BBB) and disturbance of brain                             permeability108.
martes 15 de noviembre de 2011
                               function. bradykinin, produced during inflammation in stroke or brain trauma, acts on
42




  Endotelio cerebral




martes 15 de noviembre de 2011
42




  Endotelio cerebral

                                 Rico en mitocondrias




martes 15 de noviembre de 2011
42




  Endotelio cerebral

                                 Rico en mitocondrias
                                 Ausencia de pinocitosis




martes 15 de noviembre de 2011
42




  Endotelio cerebral

                                 Rico en mitocondrias
                                 Ausencia de pinocitosis
                                 Ausencia de fenestraciones




martes 15 de noviembre de 2011
42




  Endotelio cerebral

                                 Rico en mitocondrias
                                 Ausencia de pinocitosis
                                 Ausencia de fenestraciones




martes 15 de noviembre de 2011
l. Encircling the basal lamina of
     43
or the pericyte are numerous pro-
  joined to one another by gap

    Endotelio
d-Brain Barrier Refers to a

    cerebral
 of Physical, Metabolic, and
operties of the Capillary
Endothelium
barrier is a complex anatomic or
ogic and osmotic barrier protect-
ulating macromolecules, such as
min, do not cross the endothelial
 illaries. This contrasts with the
ulating macromolecules that nor-
  extracranial tissues. The original
blood-brain barrier is attributed
1885, observed that intravenous
blue, a dye that circulates bound
 the diffuse distribution of the dye
  n and tissue except the brain and

blood-brain barrier describes the
ing macromolecules to enter the
 or interstitial fluid of the brain
he mechanical component of the          Fig. 13. Normal rat brain capillary (original magnification
 ed primarily to structural charac-     Â7000). The inset shows a close-up view of the capillary wall
 helial capillary lining of the brain   to demonstrate a tight junction (arrows) (original magnifica-
at are lacking in the endothelial       tion Â32,200).
  martes 15 de noviembre de 2011
44




  Astroglia




martes 15 de noviembre de 2011
44




  Astroglia
                                 Inducción de la
                                 BHE




martes 15 de noviembre de 2011
44




  Astroglia
                                 Inducción de la
                                 BHE
                                 Mantenimiento de
                                 la BHE




martes 15 de noviembre de 2011
44




  Astroglia
                                 Inducción de la
                                 BHE
                                 Mantenimiento de
                                 la BHE
                                 Control del tono
                                 vascular




martes 15 de noviembre de 2011
44




  Astroglia
                                 Inducción de la
                                 BHE
                                 Mantenimiento de
                                 la BHE
                                 Control del tono
                                 vascular
                                 Estructura de la
                                 BHE?


martes 15 de noviembre de 2011
44




  Astroglia
                                 Inducción de la
                                 BHE
                                 Mantenimiento de
                                 la BHE
                                 Control del tono
                                 vascular
                                 Estructura de la
                                 BHE?


martes 15 de noviembre de 2011
45



                                 Pericitos




martes 15 de noviembre de 2011
45



                                 Pericitos




martes 15 de noviembre de 2011
45



                                 Pericitos

                                             Identidad oscura
                                             Células
                                             pluripotenciales
                                             Participación en
                                             inducción y
                                             maduración de la
                                             BHE




martes 15 de noviembre de 2011
LETTER
    46
                                                                                                                                doi:10.1038/nature09522




   Pericytes regulate the blood–brain barrier
   Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{,
                                   ´            ¨
   Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1


  The blood–brain barrier (BBB) consists of specific physical barriers,         (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent
  enzymes and transporters, which together maintain the necessary               dye cadaverine Alexa Fluor-555 accumulated significantly in the brain
  extracellular environment of the central nervous system (CNS)1.               parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen-
  The main physical barrier is found in the CNS endothelial cell,               tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa
  and depends on continuous complexes of tight junctions combined               dextran and IgG passed the BBB in Pdgfbret/ret and R26P1/0 mice, but not
  with reduced vesicular transport2. Other possible constituents of the         in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g).
  BBB include extracellular matrix, astrocytes and pericytes3, but the          These experiments establish a close correlation between pericyte density
  relative contribution of these different components to the BBB                and permeability across the BBB for a range of tracers of different
  remains largely unknown1,3. Here we demonstrate a direct role of              molecular masses (Supplementary Table 1).
  pericytes at the BBB in vivo. Using a set of adult viable pericyte-              Permeability in CNS vessels is impeded by continuous complexes of
  deficient mouse mutants we show that pericyte deficiency increases            endothelial junctions13,14. We studied such complexes in adult pericyte-
  the permeability of the BBB to water and a range of low-molecular-            deficient mutants using markers for adherens (VE-cadherin) and tight
  mass and high-molecular-mass tracers. The increased permeability              (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls
  occurs by endothelial transcytosis, a process that is rapidly arrested        showed junctional marker expression at similar levels as judged by
  by the drug imatinib. Furthermore, we show that pericytes function            immunostaining and western blotting (Supplementary Fig. 6a–c and
  at the BBB in at least two ways: by regulating BBB-specific gene              data not shown). The junctional markers were distributed in a pattern
  expression patterns in endothelial cells, and by inducing polariza-           consistent with continuous junction complexes in both mutants and
  tion of astrocyte end-feet surrounding CNS blood vessels. Our                 controls; however, mutants displayed focally increased junctional width
  results indicate a novel and critical role for pericytes in the integ-        and undulation. These patterns were confirmed by transmission elec-
  ration of endothelial and astrocyte functions at the neurovascular            tron microscopy, which failed to reveal any apparent abnormalities in
  unit, and in the regulation of the BBB.                                       the ultrastructure of endothelial junctions, with the exception that
     Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR-            longer and irregular stretches of endothelial overlap were commonly
  b) signalling is necessary for pericyte recruitment during angiogenesis4,5.   found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e).
  Perinatal lethality precludes analysis of postnatal processes in Pdgfb or        Because continuity, ultrastructure and marker expression were con-
  Pdgfrb null mice6,7, but several other mouse mutants of this pathway are      sistent with retained integrity of endothelial junctions in the absence of
  viable postnatally. Two such mutants were used here: PDGF-B retention         pericytes, we took advantage of the fixable nature of the fluorescent
  motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul-           tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0
  phate proteoglycans was disrupted8; and mutants in which Pdgfb null           mice in more detail. Cadaverine Alexa Fluor-555 accumulated in
martes 15 de complemented by one or two copies of a conditionally silent
  alleles were noviembre de 2011                                                endothelial cells and in the brain parenchyma in Pdgfbret/ret and
LETTER
    46
                                                                                                                                doi:10.1038/nature09522




   Pericytes regulate the blood–brain barrier
   Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{,
                                   ´            ¨
   Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1


  The blood–brain barrier (BBB) consists of specific physical barriers,         (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent
  enzymes and transporters, which together maintain the necessary               dye cadaverine Alexa Fluor-555 accumulated significantly in the brain
  extracellular environment of the central nervous system (CNS)1.               parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen-
  The main physical barrier is found in the CNS endothelial cell,               tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa
  and depends on continuous complexes of tight junctions combined               dextran and IgG passed the BBB in Pdgfbret/ret and R26P1/0 mice, but not
            Su deficit incrementa permeabilidad agua y otras moléculas
  with reduced vesicular transport2. Other possible constituents of the
  BBB include extracellular matrix, astrocytes and pericytes3, but the
                                                                                in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g).
                                                                                These experiments establish a close correlation between pericyte density
            mediante transcitosis
  relative contribution of these different components to the BBB
  remains largely unknown1,3. Here we demonstrate a direct role of
                                                                                and permeability across the BBB for a range of tracers of different
                                                                                molecular masses (Supplementary Table 1).
  pericytes at the BBB in vivo. Using a set of adult viable pericyte-              Permeability in CNS vessels is impeded by continuous complexes of
            Regula la expresión génica de genes endoteliales de BHE
  deficient mouse mutants we show that pericyte deficiency increases
  the permeability of the BBB to water and a range of low-molecular-
                                                                                endothelial junctions13,14. We studied such complexes in adult pericyte-
                                                                                deficient mutants using markers for adherens (VE-cadherin) and tight
  mass and high-molecular-mass tracers. The increased permeability              (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls

            Induce polarización de pies astrocitarios
  occurs by endothelial transcytosis, a process that is rapidly arrested        showed junctional marker expression at similar levels as judged by
  by the drug imatinib. Furthermore, we show that pericytes function            immunostaining and western blotting (Supplementary Fig. 6a–c and
  at the BBB in at least two ways: by regulating BBB-specific gene              data not shown). The junctional markers were distributed in a pattern
  expression patterns in endothelial cells, and by inducing polariza-           consistent with continuous junction complexes in both mutants and
            Participación en inducción y maduración de la BHE
  tion of astrocyte end-feet surrounding CNS blood vessels. Our
  results indicate a novel and critical role for pericytes in the integ-
                                                                                controls; however, mutants displayed focally increased junctional width
                                                                                and undulation. These patterns were confirmed by transmission elec-
            regulando la relación astrocito-endotelio
  ration of endothelial and astrocyte functions at the neurovascular
  unit, and in the regulation of the BBB.
                                                                                tron microscopy, which failed to reveal any apparent abnormalities in
                                                                                the ultrastructure of endothelial junctions, with the exception that
     Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR-            longer and irregular stretches of endothelial overlap were commonly
  b) signalling is necessary for pericyte recruitment during angiogenesis4,5.   found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e).
  Perinatal lethality precludes analysis of postnatal processes in Pdgfb or        Because continuity, ultrastructure and marker expression were con-
  Pdgfrb null mice6,7, but several other mouse mutants of this pathway are      sistent with retained integrity of endothelial junctions in the absence of
  viable postnatally. Two such mutants were used here: PDGF-B retention         pericytes, we took advantage of the fixable nature of the fluorescent
  motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul-           tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0
  phate proteoglycans was disrupted8; and mutants in which Pdgfb null           mice in more detail. Cadaverine Alexa Fluor-555 accumulated in
martes 15 de complemented by one or two copies of a conditionally silent
  alleles were noviembre de 2011                                                endothelial cells and in the brain parenchyma in Pdgfbret/ret and
martes 15 de noviembre de 2011
Perycite




martes 15 de noviembre de 2011
Perycite




martes 15 de noviembre de 2011
Uniones densas (TJ)




martes 15 de noviembre de 2011
Uniones densas (TJ)




martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
Apical membrane

      Cingulin, JACOP, PAR3/6,
      CASK, 7H6, Itch, MUPP1,                              Claudin 3, 5, 12
      MAGI-1–3, ZONAB                ZO-2                  Occludin
      AF6, RGS5                                                                Tight
                                                                               junction
                                                           JAMs,
                           ZO-3                            ESAM
                                            ZO-1
                                                        Basolateral
                                                        membrane

                                                        PECAM
                α-, β-, γ-Catenin,
                Desmoplakin,                                                  Adherens
                p120ctn, ZO-1                                                 junction
      Actin/vinculin-based                              VE-cadherin
      cytoskeleton



                                                        Basal lamina
Figure 4 | Molecular composition of endothelial tight junctions. Simplified and
incomplete scheme showing the molecular composition of endothelial tight
martes 15 de noviembre de 2011
Uniones densas (TJ)




martes 15 de noviembre de 2011
Uniones densas (TJ)




martes 15 de noviembre de 2011
Barrera hematoencefálica




martes 15 de noviembre de 2011
Barrera hematoencefálica




martes 15 de noviembre de 2011
Barrera hematoencefálica




martes 15 de noviembre de 2011
Barrera hematoencefálica




martes 15 de noviembre de 2011
54



                                 Actina




martes 15 de noviembre de 2011
54



                                 Actina




martes 15 de noviembre de 2011
55



            Barrera hematoencefálica
       Células




martes 15 de noviembre de 2011
55



                    Barrera hematoencefálicaS
                                        REVIEW



                                                               Basal lamina
                                                                                                                                             Neuron
                                                                              Interneuron


                                                               Tight
                                                               junction       Astrocyte
Tight junction
           Células




                                    Pericyte                Capillary
A belt-like region of adhesion                                                                                 Astrocyte
                                                       Endothelial
between adjacent cells. Tight
                                                              cell
junctions regulate paracellular
flux, and contribute to the                                                                                      b                             LIF
maintenance of cell polarity by
stopping molecules from                                                          a                                            Tight
diffusing within the plane of the                                                                                                                  TGFβ
                                                                                                                           junction
membrane.
                                                                                             Tight                                      ?            bFGF
                                                                                                      GLUT1
Abluminal membrane                                                                        junction
                                                                                                                  Capillary
The endothelial cell membrane                                                                                                                           ANG1
that faces away from the vessel
                                                                                  Capillary                      Endothelial
lumen, towards the brain.                      Microglia                                                LAT1
                                                                                                                        cell
Meninges
                                                                                Endothelial    Pgp                                                 GDNF
                                                                                       cell
The complex arrangement of
                                                                                                     EAAT1–3                                         Astrocyte
three protective membranes
surrounding the brain, with a                                                                                                         Basal
thick outer connective tissue                                                                                                         lamina
layer (dura) overlying the                                                                                           ET1       TIE2         P2Y2        5-HT
barrier layer (arachnoid), and
                       Figure 2 | Cellular constituents of the blood–brain barrier. The barrier is formed by capillary endothelial cells,
finally the thin layer covering
the glia limitans (pia). The sub-
                       surrounded by basal lamina and astrocytic perivascular endfeet. Astrocytes provide the cellular link to the neurons.
arachnoid layer has a sponge-
                       The figure also shows pericytes and microglial cells. a | Brain endothelial cell features observed in cell culture. The
like structure filled with CSF.
martes 15 de noviembre cells express a number of transporters and receptors, some of which are shown. EAAT1–3, excitatory amino acid
                       de 2011
56


            Regulación de la permeabilidad
            vascular




martes 15 de noviembre de 2011
56


            Regulación de la permeabilidad
            vascular




martes 15 de noviembre de 2011
57




 Unidad                                neurogliovascular
euron

Review




ure 4. Schematic of the Neurovascular Unit
Endothelial cells and pericytes are separated by the basement membrane. Pericyte processes sheathe most of the outer side of the basement membr
nts of contact, pericytes communicate directly with endothelial cells through the synapse-like peg-socket contacts. Astrocytic endfoot processes uns
 microvessel wall, which is made up of endothelial cells and pericytes. Resting microglia have a ‘‘ramified’’ shape. In cases of neuronal disorders th
imary vascular origin, circulating neurotoxins may cross the BBB to reach their neuronal targets, or proinflammatory signals from the vascular cells or r
 illary blood flow may disrupt normal synaptic transmission and trigger neuronal injury (arrow 1). Microglia recruited from the blood or within the brain
    martes 15 de noviembre de 2011
58



                                 Red capilar




martes 15 de noviembre de 2011
58



                                 Red capilar




martes 15 de noviembre de 2011
Desarrollo vascular

                  Extracraneal
                  Intracraneal
                      Troncos perpendiculares
                      Arborización



martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
Desarrollo vascular




martes 15 de noviembre de 2011
Desarrollo vascular




martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
Texto




                                                         63
   Carmeliet and Tessier-Lavigne, Nature. 2005


martes 15 de noviembre de 2011
Neuron. 2011. 71(3)Quaegebeur A, Lange C, Carmeliet P.
                                                         64

martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
Sprout induction.




Geudens I , Gerhardt H Development 2011;138:4569-4583

martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
68

martes 15 de noviembre de 2011
0 dpn




                                 69
martes 15 de noviembre de 2011
7 dpn




                                         70
martes 15 de noviembre de 2011
14 dpn




                                          71
martes 15 de noviembre de 2011
21 dpn




                                          72
martes 15 de noviembre de 2011
60 dpn




                                    73
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
Angio(glio?)neurins


                     “Angioneurins can be broadly defined as
                        molecules that affect both neural and
                     vascular cell functions; these effects might
                         include, but are not restricted to, the
                       regulation of angiogenesis, blood–brain
                      barrier (BBB) integrity, vascular perfusion,
                       neuroprotection, neuroregeneration and
                                  synaptic plasticity”



                                              Zacchigna et al., Nature Reviews Neuroscience. 2008



martes 15 de noviembre de 2011
76


  Angioglioneurins




martes 15 de noviembre de 2011
VEGF
    Vascular Endothelial Growth Factor


   I. Inductor de:
        • Proliferación endotelial
        • Migración endotelial
        • Inhibición apotosis

   II. Efectos neurotróficos
   y neuroprotectores

   III. Permeabilidad
   vascular




martes 15 de noviembre de 2011
VEGF
   Vascular Endothelial Growth Factor




martes 15 de noviembre de 2011
VEGF
   Vascular Endothelial Growth Factor




martes 15 de noviembre de 2011
VEGF en angiogénesis




                                 80
martes 15 de noviembre de 2011
VEGF en angiogénesis




                                 80
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
VEGF en angiogenesis




martes 15 de noviembre de 2011
Neuroproteccion
       VEGF en




martes 15 de noviembre de 2011
VEGF
                        Efectos neurotróficos




martes 15 de noviembre de 2011
VEGF
                           Hiperpermeabilidad
                   ZO-1          VEGF   Actina




martes 15 de noviembre de 2011
Angiogénesis




martes 15 de noviembre de 2011
Angiogénesis




martes 15 de noviembre de 2011
Angiogénesis




martes 15 de noviembre de 2011
Angiogénesis




martes 15 de noviembre de 2011
Angiogénesis




martes 15 de noviembre de 2011
Angiogénesis




martes 15 de noviembre de 2011
Mechanism of BOLD Functional MRI
                                     Brain activity

                    Oxygen consumption          Cerebral blood flow

                                   Oxyhemoglobin
                                   Deoxyhemoglobin


                                 Magnetic susceptibility

                                          T2*

                                   MRI signal intesity


martes 15 de noviembre de 2011
Oxyhemoglobin and
                Deoxyhemoglobin in Veins during
                       Brain Activation
                            Rest                 Activation




                Normal blood flow             High blood flow


                                    Oxyhemoglobin
                                    Deoxyhemoglobin



martes 15 de noviembre de 2011
Signal Intensity
                                Time Series and Activation Maps




                                  Off   On   Off    On       Off   On   Off   On

                                                   Scan Number




martes 15 de noviembre de 2011
Multi-Slice Spiral Images




martes 15 de noviembre de 2011
Multi-Slice EPI Images




martes 15 de noviembre de 2011
Activation Maps on Anatomical
                                Images

  MS
  Spiral



  MS
  EPI



  3D
  Spiral




martes 15 de noviembre de 2011
Visual Activation Maps (ISI=12s)




martes 15 de noviembre de 2011
martes 15 de noviembre de 2011
                     All images courtesy of Johann Wolfgang G oethe University Hospital,
BOLD MRI MAPP

                                 BrainLA B is the o
                                 of B O LD MRI func
                                 imaging (DTI) for u
                                 integration of both
                                 tion not only abou
                                 white matter struc

                                 The result is a com
                                 completely new in
                                 ning that sets the

                                 MORE COMPRE
                                 MRI DATA
                                 West Virginia Universi
                                 A. Puce, PhD, Profess
                                 Center for Advanced I
                                 W. Boling, MD, Neuros
                                 M. Parson, PhD, Depa


                                 Functional MRI pl
                                 cedures in or nea
                                 imaging based on
martes 15 de noviembre de 2011
Neural correlates of admiration and compassion.
    Immordino-Yang MH, McColl A, Damasio H, Damasio A. Proc Natl Acad Sci U S A. 2009 May 12;106
    (19):8021-6.
martes 15 de noviembre de 2011
martes 15 de noviembre de 2011

More Related Content

More from Enrike G. Argandoña

Neuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescateNeuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescate
Enrike G. Argandoña
 
Mecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoriaMecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoria
Enrike G. Argandoña
 
Modelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En NeurocienciasModelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En Neurociencias
Enrike G. Argandoña
 
Búsqueda información en red en investigación en neurociencias
Búsqueda información en red en investigación en neurocienciasBúsqueda información en red en investigación en neurociencias
Búsqueda información en red en investigación en neurociencias
Enrike G. Argandoña
 
Membre inférieur/Beheko Gorputzadarra/Lower limb
Membre inférieur/Beheko Gorputzadarra/Lower limbMembre inférieur/Beheko Gorputzadarra/Lower limb
Membre inférieur/Beheko Gorputzadarra/Lower limb
Enrike G. Argandoña
 

More from Enrike G. Argandoña (20)

Appareil digestif
Appareil digestifAppareil digestif
Appareil digestif
 
Appareil respiratoire
Appareil respiratoireAppareil respiratoire
Appareil respiratoire
 
Appareil cardio vasculaire
Appareil cardio vasculaireAppareil cardio vasculaire
Appareil cardio vasculaire
 
Paroi toracique et abdominale
Paroi toracique et abdominaleParoi toracique et abdominale
Paroi toracique et abdominale
 
Anatomie générale
Anatomie généraleAnatomie générale
Anatomie générale
 
Présentation SA 2011
Présentation SA 2011Présentation SA 2011
Présentation SA 2011
 
Nerbio ehuna
Nerbio ehunaNerbio ehuna
Nerbio ehuna
 
Efectos del enriquecimiento ambiental en el desarrollo del SNC
Efectos del enriquecimiento ambiental en el desarrollo del SNCEfectos del enriquecimiento ambiental en el desarrollo del SNC
Efectos del enriquecimiento ambiental en el desarrollo del SNC
 
Biologia zelularra
Biologia zelularraBiologia zelularra
Biologia zelularra
 
Garapen anatomia
Garapen anatomiaGarapen anatomia
Garapen anatomia
 
Aurkezpena 2010-2011
Aurkezpena 2010-2011Aurkezpena 2010-2011
Aurkezpena 2010-2011
 
Neuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescateNeuroprotección, neurogénesis y neurorrescate
Neuroprotección, neurogénesis y neurorrescate
 
Vascularización Cerebral
Vascularización CerebralVascularización Cerebral
Vascularización Cerebral
 
Mecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoriaMecanismos sinápticos del aprendizaje y la memoria
Mecanismos sinápticos del aprendizaje y la memoria
 
Recensiones científicas
Recensiones científicasRecensiones científicas
Recensiones científicas
 
Modelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En NeurocienciasModelos Animales De InvestigacióN En Neurociencias
Modelos Animales De InvestigacióN En Neurociencias
 
Búsqueda información en red en investigación en neurociencias
Búsqueda información en red en investigación en neurocienciasBúsqueda información en red en investigación en neurociencias
Búsqueda información en red en investigación en neurociencias
 
Recensiones
RecensionesRecensiones
Recensiones
 
Pelbisa/pelvis
Pelbisa/pelvisPelbisa/pelvis
Pelbisa/pelvis
 
Membre inférieur/Beheko Gorputzadarra/Lower limb
Membre inférieur/Beheko Gorputzadarra/Lower limbMembre inférieur/Beheko Gorputzadarra/Lower limb
Membre inférieur/Beheko Gorputzadarra/Lower limb
 

Recently uploaded

👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
Sheetaleventcompany
 
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Sheetaleventcompany
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Sheetaleventcompany
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Sheetaleventcompany
 
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service DehradunDehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Sheetaleventcompany
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Sheetaleventcompany
 
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Sheetaleventcompany
 
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Sheetaleventcompany
 
Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...
dishamehta3332
 

Recently uploaded (20)

Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
Bandra East [ best call girls in Mumbai Get 50% Off On VIP Escorts Service 90...
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
 
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
 
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
Goa Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Goa No💰Advanc...
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
 
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service DehradunDehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
Dehradun Call Girl Service ❤️🍑 8854095900 👄🫦Independent Escort Service Dehradun
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
 
Shazia Iqbal 2024 - Bioorganic Chemistry.pdf
Shazia Iqbal 2024 - Bioorganic Chemistry.pdfShazia Iqbal 2024 - Bioorganic Chemistry.pdf
Shazia Iqbal 2024 - Bioorganic Chemistry.pdf
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
 
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...Kolkata Call Girls Naktala  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Girl Se...
Kolkata Call Girls Naktala 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableCall Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
 
Circulatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanismsCirculatory Shock, types and stages, compensatory mechanisms
Circulatory Shock, types and stages, compensatory mechanisms
 
Intramuscular & Intravenous Injection.pptx
Intramuscular & Intravenous Injection.pptxIntramuscular & Intravenous Injection.pptx
Intramuscular & Intravenous Injection.pptx
 
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
 
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
Nagpur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Nagpur No💰...
 
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
Call Girls Bangalore - 450+ Call Girl Cash Payment 💯Call Us 🔝 6378878445 🔝 💃 ...
 
Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...
Whitefield { Call Girl in Bangalore ₹7.5k Pick Up & Drop With Cash Payment 63...
 
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF RESPIRATORY SYSTEM.pptx
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
 

Vascularización cerebral (parte I)

  • 1. Vascularización cerebral martes 15 de noviembre de 2011
  • 2. Vascularización cerebral Enrike G. Argandoña martes 15 de noviembre de 2011
  • 3. Vascularización cerebral Enrike G. Argandoña martes 15 de noviembre de 2011
  • 4. Vascularización cerebral 2 martes 15 de noviembre de 2011
  • 5. Vascularización cerebral Sistema arterial aferente 2 martes 15 de noviembre de 2011
  • 6. Vascularización cerebral Sistema arterial aferente Sistema venoso eferente 2 martes 15 de noviembre de 2011
  • 7. Vascularización cerebral 3 martes 15 de noviembre de 2011
  • 8. Vascularización cerebral 1% volumen cerebral 3 martes 15 de noviembre de 2011
  • 9. Vascularización cerebral 1% volumen cerebral 20% Gasto cardiaco 3 martes 15 de noviembre de 2011
  • 10. Vascularización cerebral 1% volumen cerebral 20% Gasto cardiaco 25% consumo energía 3 martes 15 de noviembre de 2011
  • 11. martes 15 de noviembre de 2011
  • 12. martes 15 de noviembre de 2011
  • 13. Vascularización cerebral 5 martes 15 de noviembre de 2011
  • 14. Vascularización cerebral Control de la circulación sistémica 5 martes 15 de noviembre de 2011
  • 15. Vascularización cerebral Control de la circulación sistémica Autorregulación vascularización cerebral 5 martes 15 de noviembre de 2011
  • 16. Vascularización cerebral Control de la circulación sistémica Autorregulación vascularización cerebral Distribución del flujo 5 martes 15 de noviembre de 2011
  • 17. martes 15 de noviembre de 2011
  • 18. martes 15 de noviembre de 2011
  • 19. martes 15 de noviembre de 2011
  • 20. martes 15 de noviembre de 2011
  • 21. martes 15 de noviembre de 2011
  • 22. martes 15 de noviembre de 2011
  • 23. martes 15 de noviembre de 2011
  • 24. martes 15 de noviembre de 2011
  • 25. 14 Vascularización cerebral martes 15 de noviembre de 2011
  • 26. 14 Vascularización cerebral martes 15 de noviembre de 2011
  • 27. martes 15 de noviembre de 2011
  • 28. martes 15 de noviembre de 2011
  • 29. martes 15 de noviembre de 2011
  • 30. martes 15 de noviembre de 2011
  • 31. 17 martes 15 de noviembre de 2011
  • 32. martes 15 de noviembre de 2011
  • 33. martes 15 de noviembre de 2011
  • 34. martes 15 de noviembre de 2011
  • 35. martes 15 de noviembre de 2011
  • 36. martes 15 de noviembre de 2011
  • 37. martes 15 de noviembre de 2011
  • 38. martes 15 de noviembre de 2011
  • 39. martes 15 de noviembre de 2011
  • 40. martes 15 de noviembre de 2011
  • 41. martes 15 de noviembre de 2011
  • 42. martes 15 de noviembre de 2011
  • 43. martes 15 de noviembre de 2011
  • 44. martes 15 de noviembre de 2011
  • 45. Vascularización intracerebral 31 martes 15 de noviembre de 2011
  • 46. Vascularización intracerebral Arteriolas (50-100 µm) 31 martes 15 de noviembre de 2011
  • 47. Vascularización intracerebral Arteriolas (50-100 µm) Arteriolas terminales (10-100µm) 31 martes 15 de noviembre de 2011
  • 48. Vascularización intracerebral Arteriolas (50-100 µm) Arteriolas terminales (10-100µm) Vénulas (± 30 µm) 31 martes 15 de noviembre de 2011
  • 49. Vascularización intracerebral Arteriolas (50-100 µm) Arteriolas terminales (10-100µm) Vénulas (± 30 µm) Capilares (<30 µm) 31 martes 15 de noviembre de 2011
  • 50. Vascularización cortical Red capilar 640 km (reducida en Alzheimer) Un capilar por neurona Barrera hematoencefálica Mecanismos estructurales Mecanismos metabólicos martes 15 de noviembre de 2011
  • 51. Barreras cerebrales martes 15 de noviembre de 2011
  • 52. Barreras cerebrales martes 15 de noviembre de 2011
  • 53. 34 Barrera hematoencefálica martes 15 de noviembre de 2011
  • 54. 34 Barrera hematoencefálica martes 15 de noviembre de 2011
  • 55. 34 Barrera hematoencefálica martes 15 de noviembre de 2011
  • 56. 35 Barrera hematoencefálica martes 15 de noviembre de 2011
  • 57. 35 Barrera hematoencefálica martes 15 de noviembre de 2011
  • 58. Tipos de transporte Texto martes 15 de noviembre de 2011
  • 59. a Tipos de transporte b c d e Paracellular aqueous Transcellular Transport proteins Receptor-mediated Adsorptive pathway lipophilic transcytosis transcytosis pathway Water-soluble Lipid-soluble Glucose, Vinca alkaloids, Insulin, Albumin, other agents agents amino acids, Cyclosporin A, transferrin plasma proteins nucleosides AZT +++ + + +++ Blood –––– + –+ + – + + –+ + – + Tight junction –+ + + – + + Texto –+ + + – – – Endothelium – – +++ Brain + + +++ Astrocyte Astrocyte Figure 3 | Pathways across the blood–brain barrier. A schematic diagram of the endothelial cells that form the blood– brain barrier (BBB) and their associations with the perivascular endfeet of astrocytes. The main routes for molecular traffic across the BBB are shown. a | Normally, the tight junctions severely restrict penetration of water-soluble martes 15 de noviembre de 2011
  • 60. martes 15 de noviembre de 2011
  • 61. at the BBB is observed in starvation and hypoxia53,54. Blood Ligand Tight junction Receptor ↑Ca2+ ↑Ca2+ Endothelial cell Pericyte Smooth muscle Basal Microglia lamina Neuron Astrocyte Neuron Figure 5 | Complex cell–cell signalling at the blood–brain barrier. A portion of a brain capillary wall, showing the main cell types present with the potential to signal to each other. Pericytes are enclosed within the endothelial basal lamina and form the closest associations with endothelium. The endfeet of astrocytic glial cells are apposed martes 15 de noviembre de 2011
  • 62. Review Figure 3. A Simplified Molecular Atlas of the BBB (A) Tight junctions. Claudins (claudin-3, -5, and -12) and occludin have four transmembrane domains with two extracellular loops. The junctional adhesion m ecule A (JAM-A) and the endothelial cell-selective adhesion molecule (ESMA) are members of the Ig superfamily. Zonula occludens proteins (ZO-1, ZO-2, and ZO and the calcium-dependent serine protein kinase (CASK) are first-order cytoplasmic adaptor proteins that contain PDZ binding domains for the C terminus of intramembrane proteins. Cingulin, multi-PDZ protein 1 (MUPP1), and the membrane-associated guanylate kinase with an inverted orientation of protein-prot martes 15 de noviembre de 2011 interaction domain (MAGI) are examples of second-order adaptor molecules. The first- and second-order adaptor molecules together with signaling molecu
  • 63. Barrera hematoencefálica martes 15 de noviembre de 2011
  • 64. Box 3 | Pathological states involving BBB breakdown or disorder permeability (little or no aquaporin)88–90, it is likely that the excess metabolic water joins the ISF being secreted Several pathologies of the CNS involve disturbance of blood–brain barrier (BBB) into the pericapillary space by the endothelium5. ISF out- function, and, in many of these, astrocyte–endothelial cooperation is also abnormal. flow involves perivascular spaces around large vessels, Stroke and clearance routes either through the CSF or following • Astrocytes secrete transforming growth factor-β (TGFβ), which downregulates brain alternative pathways to neck lymphatics. capillary endothelial expression of fibrinolytic enzyme tissue plasminogen activator Neurotransmitter recycling can also lead to local (tPA) and anticoagulant thrombomodulin (TM)150. changes in ions and water. Glutamate is the major excitatory transmitter of the brain, and astrocyte proc- Barrera hematoencefálica • Proteolysis of the vascular basement membrane/matrix151. • Induction of aquaporin 4 (AQP4) mRNA and protein at BBB disruption152. esses surrounding synapses can take up glutamate • Decrease in BBB permeability after treatment with arginine vasopressin V1 receptor through transport proteins (particularly EAAT1 and 2); antagonist in a stroke model153. the transport is Na+-dependent and accompanied by net uptake of ions and water, again contributing to Trauma water clearance at the BBB85. Glutamate is converted • Bradykinin, a mediator of inflammation, is produced and stimulates production and to glutamine within the astrocyte and recycled to the release of interleukin-6 (IL-6) from astrocytes, which leads to opening of the BBB102. neurons. The slight astrocytic cell swelling that accom- Infectious or inflammatory processes panies neuronal activity, resulting from activation by Examples include bacterial infections, meningitis, encephalitis and sepsis. glutamate or ion uptake, leads to several cellular mech- • The bacterial protein lipopolysaccharide affects the permeability of BBB tight anisms that contribute to the recovery of ionic balance junctions. This is mediated by the production of free radicals, IL-6 and IL-1β154. and cell volume, some of which involve elevated intra- • Interferon-β prevents BBB disruption155. cellular Ca2+ concentration66,91,92. Hence, there are many links between the signalling and regulatory processes Multiple sclerosis that occur in the neurovascular unit. • Breakdown of the BBB97. • Downregulation of laminin in the basement membrane156. BBB changes in pathology • Selective loss of claudin 1/3 in experimental autoimmune encephalomyelitis94. In a number of pathologies, the function of the BBB is altered (BOX 3), and several disorders appear to involve HIV disturbances of endothelial–glial interaction. Thus, • BBB tight junction disruption157,158. the capillaries of many glial tumours are more leaky Alzheimer’s disease than those of normal brain tissue, either as a result • Increased glucose transport, upregulation of glucose transporter GLUT1, altered of a lack of inductive factors, or owing to the release agrin levels, upregulation of AQP4 expression95,159. of permeability factors such as vascular endothelial • Accumulation of amyloid-β, a key neuropathological feature of Alzheimer’s disease, growth factor (VEGF). Moreover, the tight junction by decreased levels of P-glycoprotein transporter expression160. protein claudin 1/3 is downregulated in some brain tumours93,94. • Altered cellular relations at the BBB, and changes in the basal lamina and amyloid-β clearance100. In BBB disruption, agrin is lost from the abluminal surface of the brain endothelial cells adjacent to astro- Parkinson’s disease cytic endfeet11; this may contribute to BBB damage in • Dysfunction of the BBB by reduced efficacy of P-glycoprotein101. Alzheimer’s disease95, and to the redistribution of astro- Epilepsy cytic AQP4 in glioblastomas96. Astrocytic AQP4 expres- sion is upregulated in brain oedema triggered by BBB • Transient BBB opening in epileptogenic foci, and upregulated expression of breakdown. Such upregulation could be adaptive in P-glycoprotein and other drug efflux transporters in astrocytes and endothelium98,99. helping to clear the accumulating fluid, but the associ- Brain tumours ated cell swelling would tend to exacerbate the problem • Breakdown of the BBB161,162. under extreme conditions. Indeed, AQP4–/– mice show • Downregulation of tight junction protein claudin 1/3; redistribution of astrocyte protection against ischaemic brain oedema48. Some AQP4 and Kir4.1 (inwardly rectifying K+ channel)20,93,96. chronic neuropathologies such as multiple sclerosis may involve an early phase of BBB disturbance (involving Pain the downregulation of claudin 1/3 (REF. 11)) that precedes • Inflammatory pain alters BBB tight junction protein expression and BBB neuronal damage, which suggests that vascular damage permeability108. can lead to secondary neuronal disorder97. In epilepsy, the normal pattern of brain ABC trans- porter expression may change, with upregulation of martes 15 de noviembre de 2011 buffer) when neural activity ceases. Astrocytes can also Pgp on astrocytes and brain endothelium98,99; this may + + +
  • 65. ronal groups in the regulation of neuroendocrine three families: sel functions. related receptors lar inflammation PMN and other developing infarc Barrera hematoencefálica the microvascula artery occlusion contribute to mic mation during t Adherence and through the po sequential intera sion molecule (I family consists o endothelial cells L-selectin (leuko and platelets me cytes and monoc sion molecules adhesion proper leukocyte transm the interaction endothelial cell I Fig. 14. Midline sagittal schematic drawing of the brain show- endothelial cell I ing circumventricular organs (dark shaded structures): NH, LFA-1). neurohypophysis; ME, median eminence; OVLT, organum vasculosum of lamina terminales; SFO, subfornicial organ; 4.3.2. CYTOKINE PI, pineal gland or body; SCO, subcommissural organ; AP, area postrema; CP, choroid plexus; OC, optic chiasm; AC, Ischemic cereb anterior commissure; CC, corpus callosum (lightly shaded oxide free radic areas). These are stimula martes 15 de noviembre de 2011
  • 66. Barrera hematoencefálica martes 15 de noviembre de 2011
  • 67. 1 junctions, bradykini leading to the releas Barrera hematoencefálica NF-κB B2 Bradykinin 3 amplify the effect by ET-1 Tumour necrosis fa TNFα Microglial cell permeability by dir and indirect effects lL-6 2 production and IL TNFα •O2– lL-1β LPS complex immunore Substance P can exacerbate CNS [Ca2+]i↑ 5-HT multiple sclerosis b Histamine activation of already ATP some mechanisms e PGs B2 Indeed, the ability of contribute to the lin tPA disease106. tPA It has recently be Capillary cytes and microglia Tight 4 pain107. As astrocyt junction TGFβ↓ connectivity and for gested that glia ma pain sensation. In in Endothelial from central and pe cell sue cells and blood Agrin? such as substance P K+ (CGRP), serotonin, AQP4 Glu BBB from both the b For example, the re Basal lamina Astrocyte 5 concentration or alt tion protein occludi Figure 6 | Astroglial–endothelial signalling under pathological conditions. TNFα, histamine an Examples of astroglial–endothelial signalling in infection or inflammation, stroke or matory pain can also trauma, leading to opening of the blood–brain barrier (BBB) and disturbance of brain permeability108. martes 15 de noviembre de 2011 function. bradykinin, produced during inflammation in stroke or brain trauma, acts on
  • 68. 42 Endotelio cerebral martes 15 de noviembre de 2011
  • 69. 42 Endotelio cerebral Rico en mitocondrias martes 15 de noviembre de 2011
  • 70. 42 Endotelio cerebral Rico en mitocondrias Ausencia de pinocitosis martes 15 de noviembre de 2011
  • 71. 42 Endotelio cerebral Rico en mitocondrias Ausencia de pinocitosis Ausencia de fenestraciones martes 15 de noviembre de 2011
  • 72. 42 Endotelio cerebral Rico en mitocondrias Ausencia de pinocitosis Ausencia de fenestraciones martes 15 de noviembre de 2011
  • 73. l. Encircling the basal lamina of 43 or the pericyte are numerous pro- joined to one another by gap Endotelio d-Brain Barrier Refers to a cerebral of Physical, Metabolic, and operties of the Capillary Endothelium barrier is a complex anatomic or ogic and osmotic barrier protect- ulating macromolecules, such as min, do not cross the endothelial illaries. This contrasts with the ulating macromolecules that nor- extracranial tissues. The original blood-brain barrier is attributed 1885, observed that intravenous blue, a dye that circulates bound the diffuse distribution of the dye n and tissue except the brain and blood-brain barrier describes the ing macromolecules to enter the or interstitial fluid of the brain he mechanical component of the Fig. 13. Normal rat brain capillary (original magnification ed primarily to structural charac- Â7000). The inset shows a close-up view of the capillary wall helial capillary lining of the brain to demonstrate a tight junction (arrows) (original magnifica- at are lacking in the endothelial tion Â32,200). martes 15 de noviembre de 2011
  • 74. 44 Astroglia martes 15 de noviembre de 2011
  • 75. 44 Astroglia Inducción de la BHE martes 15 de noviembre de 2011
  • 76. 44 Astroglia Inducción de la BHE Mantenimiento de la BHE martes 15 de noviembre de 2011
  • 77. 44 Astroglia Inducción de la BHE Mantenimiento de la BHE Control del tono vascular martes 15 de noviembre de 2011
  • 78. 44 Astroglia Inducción de la BHE Mantenimiento de la BHE Control del tono vascular Estructura de la BHE? martes 15 de noviembre de 2011
  • 79. 44 Astroglia Inducción de la BHE Mantenimiento de la BHE Control del tono vascular Estructura de la BHE? martes 15 de noviembre de 2011
  • 80. 45 Pericitos martes 15 de noviembre de 2011
  • 81. 45 Pericitos martes 15 de noviembre de 2011
  • 82. 45 Pericitos Identidad oscura Células pluripotenciales Participación en inducción y maduración de la BHE martes 15 de noviembre de 2011
  • 83. LETTER 46 doi:10.1038/nature09522 Pericytes regulate the blood–brain barrier Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{, ´ ¨ Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1 The blood–brain barrier (BBB) consists of specific physical barriers, (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent enzymes and transporters, which together maintain the necessary dye cadaverine Alexa Fluor-555 accumulated significantly in the brain extracellular environment of the central nervous system (CNS)1. parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen- The main physical barrier is found in the CNS endothelial cell, tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa and depends on continuous complexes of tight junctions combined dextran and IgG passed the BBB in Pdgfbret/ret and R26P1/0 mice, but not with reduced vesicular transport2. Other possible constituents of the in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g). BBB include extracellular matrix, astrocytes and pericytes3, but the These experiments establish a close correlation between pericyte density relative contribution of these different components to the BBB and permeability across the BBB for a range of tracers of different remains largely unknown1,3. Here we demonstrate a direct role of molecular masses (Supplementary Table 1). pericytes at the BBB in vivo. Using a set of adult viable pericyte- Permeability in CNS vessels is impeded by continuous complexes of deficient mouse mutants we show that pericyte deficiency increases endothelial junctions13,14. We studied such complexes in adult pericyte- the permeability of the BBB to water and a range of low-molecular- deficient mutants using markers for adherens (VE-cadherin) and tight mass and high-molecular-mass tracers. The increased permeability (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls occurs by endothelial transcytosis, a process that is rapidly arrested showed junctional marker expression at similar levels as judged by by the drug imatinib. Furthermore, we show that pericytes function immunostaining and western blotting (Supplementary Fig. 6a–c and at the BBB in at least two ways: by regulating BBB-specific gene data not shown). The junctional markers were distributed in a pattern expression patterns in endothelial cells, and by inducing polariza- consistent with continuous junction complexes in both mutants and tion of astrocyte end-feet surrounding CNS blood vessels. Our controls; however, mutants displayed focally increased junctional width results indicate a novel and critical role for pericytes in the integ- and undulation. These patterns were confirmed by transmission elec- ration of endothelial and astrocyte functions at the neurovascular tron microscopy, which failed to reveal any apparent abnormalities in unit, and in the regulation of the BBB. the ultrastructure of endothelial junctions, with the exception that Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR- longer and irregular stretches of endothelial overlap were commonly b) signalling is necessary for pericyte recruitment during angiogenesis4,5. found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e). Perinatal lethality precludes analysis of postnatal processes in Pdgfb or Because continuity, ultrastructure and marker expression were con- Pdgfrb null mice6,7, but several other mouse mutants of this pathway are sistent with retained integrity of endothelial junctions in the absence of viable postnatally. Two such mutants were used here: PDGF-B retention pericytes, we took advantage of the fixable nature of the fluorescent motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul- tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0 phate proteoglycans was disrupted8; and mutants in which Pdgfb null mice in more detail. Cadaverine Alexa Fluor-555 accumulated in martes 15 de complemented by one or two copies of a conditionally silent alleles were noviembre de 2011 endothelial cells and in the brain parenchyma in Pdgfbret/ret and
  • 84. LETTER 46 doi:10.1038/nature09522 Pericytes regulate the blood–brain barrier Annika Armulik1, Guillem Genove1, Maarja Mae1, Maya H. Nisancioglu1, Elisabet Wallgard1{, Colin Niaudet1, Liqun He1{, ´ ¨ Jenny Norlin1, Per Lindblom2, Karin Strittmatter1{, Bengt R. Johansson3 & Christer Betsholtz1 The blood–brain barrier (BBB) consists of specific physical barriers, (Fig. 1g, h, j and Supplementary Fig. 5a–c). Similarly, the fluorescent enzymes and transporters, which together maintain the necessary dye cadaverine Alexa Fluor-555 accumulated significantly in the brain extracellular environment of the central nervous system (CNS)1. parenchyma of Pdgfbret/ret and R26P1/0 mice (Fig. 1j and Supplemen- The main physical barrier is found in the CNS endothelial cell, tary Fig. 5d, h, i). Additionally, fluorescently labelled albumin, 70 kDa and depends on continuous complexes of tight junctions combined dextran and IgG passed the BBB in Pdgfbret/ret and R26P1/0 mice, but not Su deficit incrementa permeabilidad agua y otras moléculas with reduced vesicular transport2. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes3, but the in controls or in R26P1/1 mice (Fig. 1j and Supplementary Fig. 5e–g). These experiments establish a close correlation between pericyte density mediante transcitosis relative contribution of these different components to the BBB remains largely unknown1,3. Here we demonstrate a direct role of and permeability across the BBB for a range of tracers of different molecular masses (Supplementary Table 1). pericytes at the BBB in vivo. Using a set of adult viable pericyte- Permeability in CNS vessels is impeded by continuous complexes of Regula la expresión génica de genes endoteliales de BHE deficient mouse mutants we show that pericyte deficiency increases the permeability of the BBB to water and a range of low-molecular- endothelial junctions13,14. We studied such complexes in adult pericyte- deficient mutants using markers for adherens (VE-cadherin) and tight mass and high-molecular-mass tracers. The increased permeability (ZO-1 and claudin 5) junctions. Pdgfbret/ret, R26P1/0 and controls Induce polarización de pies astrocitarios occurs by endothelial transcytosis, a process that is rapidly arrested showed junctional marker expression at similar levels as judged by by the drug imatinib. Furthermore, we show that pericytes function immunostaining and western blotting (Supplementary Fig. 6a–c and at the BBB in at least two ways: by regulating BBB-specific gene data not shown). The junctional markers were distributed in a pattern expression patterns in endothelial cells, and by inducing polariza- consistent with continuous junction complexes in both mutants and Participación en inducción y maduración de la BHE tion of astrocyte end-feet surrounding CNS blood vessels. Our results indicate a novel and critical role for pericytes in the integ- controls; however, mutants displayed focally increased junctional width and undulation. These patterns were confirmed by transmission elec- regulando la relación astrocito-endotelio ration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the BBB. tron microscopy, which failed to reveal any apparent abnormalities in the ultrastructure of endothelial junctions, with the exception that Platelet-derived growth factor (PDGF)-B/PDGF receptor-b (PDGFR- longer and irregular stretches of endothelial overlap were commonly b) signalling is necessary for pericyte recruitment during angiogenesis4,5. found in pericyte-deficient mutants (Fig. 2c and Supplementary Fig. 6e). Perinatal lethality precludes analysis of postnatal processes in Pdgfb or Because continuity, ultrastructure and marker expression were con- Pdgfrb null mice6,7, but several other mouse mutants of this pathway are sistent with retained integrity of endothelial junctions in the absence of viable postnatally. Two such mutants were used here: PDGF-B retention pericytes, we took advantage of the fixable nature of the fluorescent motif knockouts (Pdgfbret/ret) where PDGF-B binding to heparan sul- tracers to explore the route of extravasation in Pdgfbret/ret and R26P1/0 phate proteoglycans was disrupted8; and mutants in which Pdgfb null mice in more detail. Cadaverine Alexa Fluor-555 accumulated in martes 15 de complemented by one or two copies of a conditionally silent alleles were noviembre de 2011 endothelial cells and in the brain parenchyma in Pdgfbret/ret and
  • 85. martes 15 de noviembre de 2011
  • 86. Perycite martes 15 de noviembre de 2011
  • 87. Perycite martes 15 de noviembre de 2011
  • 88. Uniones densas (TJ) martes 15 de noviembre de 2011
  • 89. Uniones densas (TJ) martes 15 de noviembre de 2011
  • 90. martes 15 de noviembre de 2011
  • 91. Apical membrane Cingulin, JACOP, PAR3/6, CASK, 7H6, Itch, MUPP1, Claudin 3, 5, 12 MAGI-1–3, ZONAB ZO-2 Occludin AF6, RGS5 Tight junction JAMs, ZO-3 ESAM ZO-1 Basolateral membrane PECAM α-, β-, γ-Catenin, Desmoplakin, Adherens p120ctn, ZO-1 junction Actin/vinculin-based VE-cadherin cytoskeleton Basal lamina Figure 4 | Molecular composition of endothelial tight junctions. Simplified and incomplete scheme showing the molecular composition of endothelial tight martes 15 de noviembre de 2011
  • 92. Uniones densas (TJ) martes 15 de noviembre de 2011
  • 93. Uniones densas (TJ) martes 15 de noviembre de 2011
  • 94. Barrera hematoencefálica martes 15 de noviembre de 2011
  • 95. Barrera hematoencefálica martes 15 de noviembre de 2011
  • 96. Barrera hematoencefálica martes 15 de noviembre de 2011
  • 97. Barrera hematoencefálica martes 15 de noviembre de 2011
  • 98. 54 Actina martes 15 de noviembre de 2011
  • 99. 54 Actina martes 15 de noviembre de 2011
  • 100. 55 Barrera hematoencefálica Células martes 15 de noviembre de 2011
  • 101. 55 Barrera hematoencefálicaS REVIEW Basal lamina Neuron Interneuron Tight junction Astrocyte Tight junction Células Pericyte Capillary A belt-like region of adhesion Astrocyte Endothelial between adjacent cells. Tight cell junctions regulate paracellular flux, and contribute to the b LIF maintenance of cell polarity by stopping molecules from a Tight diffusing within the plane of the TGFβ junction membrane. Tight ? bFGF GLUT1 Abluminal membrane junction Capillary The endothelial cell membrane ANG1 that faces away from the vessel Capillary Endothelial lumen, towards the brain. Microglia LAT1 cell Meninges Endothelial Pgp GDNF cell The complex arrangement of EAAT1–3 Astrocyte three protective membranes surrounding the brain, with a Basal thick outer connective tissue lamina layer (dura) overlying the ET1 TIE2 P2Y2 5-HT barrier layer (arachnoid), and Figure 2 | Cellular constituents of the blood–brain barrier. The barrier is formed by capillary endothelial cells, finally the thin layer covering the glia limitans (pia). The sub- surrounded by basal lamina and astrocytic perivascular endfeet. Astrocytes provide the cellular link to the neurons. arachnoid layer has a sponge- The figure also shows pericytes and microglial cells. a | Brain endothelial cell features observed in cell culture. The like structure filled with CSF. martes 15 de noviembre cells express a number of transporters and receptors, some of which are shown. EAAT1–3, excitatory amino acid de 2011
  • 102. 56 Regulación de la permeabilidad vascular martes 15 de noviembre de 2011
  • 103. 56 Regulación de la permeabilidad vascular martes 15 de noviembre de 2011
  • 104. 57 Unidad neurogliovascular euron Review ure 4. Schematic of the Neurovascular Unit Endothelial cells and pericytes are separated by the basement membrane. Pericyte processes sheathe most of the outer side of the basement membr nts of contact, pericytes communicate directly with endothelial cells through the synapse-like peg-socket contacts. Astrocytic endfoot processes uns microvessel wall, which is made up of endothelial cells and pericytes. Resting microglia have a ‘‘ramified’’ shape. In cases of neuronal disorders th imary vascular origin, circulating neurotoxins may cross the BBB to reach their neuronal targets, or proinflammatory signals from the vascular cells or r illary blood flow may disrupt normal synaptic transmission and trigger neuronal injury (arrow 1). Microglia recruited from the blood or within the brain martes 15 de noviembre de 2011
  • 105. 58 Red capilar martes 15 de noviembre de 2011
  • 106. 58 Red capilar martes 15 de noviembre de 2011
  • 107. Desarrollo vascular Extracraneal Intracraneal Troncos perpendiculares Arborización martes 15 de noviembre de 2011
  • 108. martes 15 de noviembre de 2011
  • 109. Desarrollo vascular martes 15 de noviembre de 2011
  • 110. Desarrollo vascular martes 15 de noviembre de 2011
  • 111. martes 15 de noviembre de 2011
  • 112. martes 15 de noviembre de 2011
  • 113. Texto 63 Carmeliet and Tessier-Lavigne, Nature. 2005 martes 15 de noviembre de 2011
  • 114. Neuron. 2011. 71(3)Quaegebeur A, Lange C, Carmeliet P. 64 martes 15 de noviembre de 2011
  • 115. martes 15 de noviembre de 2011
  • 116. Sprout induction. Geudens I , Gerhardt H Development 2011;138:4569-4583 martes 15 de noviembre de 2011
  • 117. martes 15 de noviembre de 2011
  • 118. 68 martes 15 de noviembre de 2011
  • 119. 0 dpn 69 martes 15 de noviembre de 2011
  • 120. 7 dpn 70 martes 15 de noviembre de 2011
  • 121. 14 dpn 71 martes 15 de noviembre de 2011
  • 122. 21 dpn 72 martes 15 de noviembre de 2011
  • 123. 60 dpn 73 martes 15 de noviembre de 2011
  • 124. martes 15 de noviembre de 2011
  • 125. Angio(glio?)neurins “Angioneurins can be broadly defined as molecules that affect both neural and vascular cell functions; these effects might include, but are not restricted to, the regulation of angiogenesis, blood–brain barrier (BBB) integrity, vascular perfusion, neuroprotection, neuroregeneration and synaptic plasticity” Zacchigna et al., Nature Reviews Neuroscience. 2008 martes 15 de noviembre de 2011
  • 126. 76 Angioglioneurins martes 15 de noviembre de 2011
  • 127. VEGF Vascular Endothelial Growth Factor I. Inductor de: • Proliferación endotelial • Migración endotelial • Inhibición apotosis II. Efectos neurotróficos y neuroprotectores III. Permeabilidad vascular martes 15 de noviembre de 2011
  • 128. VEGF Vascular Endothelial Growth Factor martes 15 de noviembre de 2011
  • 129. VEGF Vascular Endothelial Growth Factor martes 15 de noviembre de 2011
  • 130. VEGF en angiogénesis 80 martes 15 de noviembre de 2011
  • 131. VEGF en angiogénesis 80 martes 15 de noviembre de 2011
  • 132. martes 15 de noviembre de 2011
  • 133. martes 15 de noviembre de 2011
  • 134. VEGF en angiogenesis martes 15 de noviembre de 2011
  • 135. Neuroproteccion VEGF en martes 15 de noviembre de 2011
  • 136. VEGF Efectos neurotróficos martes 15 de noviembre de 2011
  • 137. VEGF Hiperpermeabilidad ZO-1 VEGF Actina martes 15 de noviembre de 2011
  • 138. Angiogénesis martes 15 de noviembre de 2011
  • 139. Angiogénesis martes 15 de noviembre de 2011
  • 140. Angiogénesis martes 15 de noviembre de 2011
  • 141. Angiogénesis martes 15 de noviembre de 2011
  • 142. Angiogénesis martes 15 de noviembre de 2011
  • 143. Angiogénesis martes 15 de noviembre de 2011
  • 144. Mechanism of BOLD Functional MRI Brain activity Oxygen consumption Cerebral blood flow Oxyhemoglobin Deoxyhemoglobin Magnetic susceptibility T2* MRI signal intesity martes 15 de noviembre de 2011
  • 145. Oxyhemoglobin and Deoxyhemoglobin in Veins during Brain Activation Rest Activation Normal blood flow High blood flow Oxyhemoglobin Deoxyhemoglobin martes 15 de noviembre de 2011
  • 146. Signal Intensity Time Series and Activation Maps Off On Off On Off On Off On Scan Number martes 15 de noviembre de 2011
  • 147. Multi-Slice Spiral Images martes 15 de noviembre de 2011
  • 148. Multi-Slice EPI Images martes 15 de noviembre de 2011
  • 149. Activation Maps on Anatomical Images MS Spiral MS EPI 3D Spiral martes 15 de noviembre de 2011
  • 150. Visual Activation Maps (ISI=12s) martes 15 de noviembre de 2011
  • 151. martes 15 de noviembre de 2011 All images courtesy of Johann Wolfgang G oethe University Hospital,
  • 152. BOLD MRI MAPP BrainLA B is the o of B O LD MRI func imaging (DTI) for u integration of both tion not only abou white matter struc The result is a com completely new in ning that sets the MORE COMPRE MRI DATA West Virginia Universi A. Puce, PhD, Profess Center for Advanced I W. Boling, MD, Neuros M. Parson, PhD, Depa Functional MRI pl cedures in or nea imaging based on martes 15 de noviembre de 2011
  • 153. Neural correlates of admiration and compassion. Immordino-Yang MH, McColl A, Damasio H, Damasio A. Proc Natl Acad Sci U S A. 2009 May 12;106 (19):8021-6. martes 15 de noviembre de 2011
  • 154. martes 15 de noviembre de 2011