SlideShare a Scribd company logo
1 of 53
The Role of Focal Adhesion Kinase in Vascular Smooth Muscle Cell Migration Lee Mangiante Masters Thesis Defense Cellular and Molecular Pathology Joan M. Taylor, PhD
Outline ,[object Object],[object Object],[object Object],[object Object]
Background Vascular SMCs and FAK
Vascular Smooth Muscle Cells (SMCs) ,[object Object],[object Object],[object Object],[object Object],http://www.lab.anhb.uwa.edu
SMCs in Atherosclerosis ,[object Object],[object Object],[object Object],www.siumed.edu/ ~dking2/crr/CR026b.htm
PDGF-BB homodimer ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Focal Adhesion Kinase (FAK) ,[object Object],[object Object],[object Object],FAT Kinase Paxillin GRAF   CAS Site I Site II Y 397 SRC SH2 SI  SII P  1 ASAP  Pi3K SH2 Integrin Binding
A Unique Role for FAK in SMC Biology ,[object Object],[object Object],[object Object]
FAK in Migration: Extant Questions ,[object Object],[object Object],[object Object],Unknown: ,[object Object],[object Object],[object Object]
The Migration Cycle: Where is FAK Involved?  Leading Edge Protrusion polarization Trailing EdgeRetraction FA Disassembly/assembly FAK/Rho? FAK/ERK? Fak/Rac?
Overall Research Goal: ,[object Object],[object Object],[object Object]
Results FAK mediates SMC migration to PDGF
Deletion of  fak  in VSMCs: the  fak  flox/flox   mouse LacZ   Cre = FAK = phalloidin (F-actin) ATP-Binding Dom. loxP   Exon 18   loxP Cre recombinase No FAK produced 72 Hours Post-Virus FAK ERK Lac Z  Cre
FAK is required for 3D migration to PDGF ,[object Object],[object Object],[object Object],Stain:  vinculin / phalloidin Transwell migration assay LacZ  Cre
What are the cytoskeletal characteristics of FAK-depleted SMCs treated with PDGF? ,[object Object],[object Object],[object Object]
PDGF-induced dorsal ruffling is FAK-independent Lac Z  (FAK+)  Cre  (FAK-) 2.5 min 20x = cortactin = phalloidin Peripheral ruffles Dorsal ruffles
PDGF-induced cell polarization is FAK-dependent LacZ (FAK+) Cre (FAK-)
What molecular mechanisms explain the polarization defect of FAK-depleted SMCs? Activity of the Rho subfamily GTPases
Ridley, AJ.  J Cell Sci.  2001 Aug;114(Pt 15):2713-22.  Rac = PUSH Rho = PULL Rho GTPase Signaling Pathways ,[object Object],[object Object],[object Object],[object Object]
Rac-PI3K Signaling is unperturbed by FAK depletion Pulldown: GTP-Rac1 IB: pAKT Live cell: GFP-WAVE2 AKT ,  WAVE 1/ 2 PI3K GTP- Rac Arp2/3 Membrane protrusion  Leading edge formation
Myosin activation, but not global RhoA activity, is attenuated by FAK depletion ROCK GTP- RhoA pMLC contractility MLC phosphatase Pulldown: GTP-RhoA IB: pMLC
Dia2 localizes to focal adhesions  dependently  of FAK ,[object Object],[object Object],[object Object]
[object Object],[object Object],Dia2 localizes to ruffles  independently   of FAK Stain:  cortactin / GFP-Dia2 Live cells: GFP-Dia2
[object Object],[object Object],[object Object],[object Object]
FAK  Dia2  Stable Microtubules?  No ,[object Object],1. PDGF does not alter  levels of glu-tubulin  (stable MT’s) 2. FAK depletion does not abolish  glu-tubulin staining
[object Object],[object Object],Can we detect such an interaction between cortactin and mDia2  in vitro ? Might this interaction regulate the “switch” between ruffle localization and FA localization?
Cortactin: a structurally distinct Arp2/3 activator A  = acidic region; facilitates Arp2/3 binding P  =  proline-rich domain SH3  = Src homology; binds proline-rich motifs Repeat domain: binds  F-actin (20 fold higher than Arp2/3) W  = WASP homology; binds  G-actin C  = central region; binds/activates Arp2/3 GB  = GTPase binding domain (Cdc42, Rac) B  = basic region Sufficient to activate Arp2/3 CTN WASP, WAVE WASP CTN, WASP, WAVE Daly, RJ. 2004
Structure and Regulation of Dia2 GBD = GTPase Binding Domain DID = Diaphanous Inhibitory Domain FH1, FH2 = Formin Homology 1, 2 FH3 = Formin Homology 3 DAD = Diaphanous Autoinhibitory Domain
Dia2 and cortactin interact independently of F-actin I. GST pulldown (SMC lysates) II. Co-IP (COS-7 lysates) FH1  = proline rich FH2  = no prolines; binds G-actin
Moving Forward Dia2 and Cortactin
Main Questions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Why would Dia2 and cortactin associate? ,[object Object],[object Object],[object Object],[object Object],Goode et al.  Ann Rev Biochem.  (2007)
Shifting the actin paradigm: ,[object Object],[object Object],[object Object],[object Object],[object Object],Arp2/3
Dia2/WANP interactions ,[object Object],[object Object],*  Neither report detected an interaction with the FH1 or FH2 domains of Dia2
Is Dia2 passive or active? ,[object Object],[object Object],Can Dia2 interact with cortactin in its “active” (open) conformation? Yang, et al.  PLoS Biol.  (2007)
“ Active” (open) mutants of Dia2 GBD GBD ID DID DID FH1 FH1 FH2 FH2 DAD DAD A  D Δ GBD A272D All kept in the  “open”  conformation by disrupting the DID-DAD interaction
Cortactin colocalizes intensely with Dia2 A272D WT FL A272D GFP cortactin merge phalloidin Does A272D associate more strongly with cortactin than WT Dia2?
Could Src regulate Dia2-cortactin binding? ,[object Object],[object Object],Does tyrosine phosphorylation of the FH2 domain by Src modify the association of cortactin and Dia2?
Dia2 in PDGF-Stimulated Migration  “ Protrusive Dia” polarization “ Retractile Dia” FA Disassembly/assembly FAK  coordinates these two activities to enable fluid forward movement of the SMC Dia 2 Dia 2 cortactin cortactin Src P ? Src P ? Dia 2 Dia 2
How might Dia2 promote contractility? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],cortactin EC MLCK Merge Dudek, et al.  J. Biol Chem.  (2004)
Future Experiments ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Appendix Knockdown of leupaxin in human aortic SMCs
Leupaxin: Structure ,[object Object],[object Object],[object Object],Turner, CE.  Nat Cell Biol.  2000
Leupaxin: Putative Functions ,[object Object],[object Object],[object Object],Promotion of SMC differentiation Vascular SMCs 123 SRF Regulation of B-cell receptor signaling B-cell lymphoma 121 Lyn Podosomal complex signaling Vascular SMCs 123 , osteoclasts 127 FAK Podosomal remodeling Osteoclasts 127 p95 PKL Podosomal complex signaling, osteoclast activation Osteoclasts 126 , protstate cancer cells 120 c-Src Regulation of antigen receptor signaling; podosomal remodeling Spleen 128 , osteoclasts 126 , prostate cancer cells 120 PTP-PEST Focal adhesion adapter protein Macrophages 116 , osteoclasts 127 , prostate cancer cells 120 PYK2 Putative Biological Function Cell Type Binding Partner
Leupaxin in SMCs  ,[object Object],[object Object],[object Object],[object Object],[object Object],Sundberg-Smith, et al.  Circ Res.  2008
How does endogenous leupaxin knockdown impact SMC biology? ,[object Object],[object Object],[object Object],[object Object]
Leupaxin Knockdown in Human ASMCs ,[object Object],[object Object],Control  knockdown leupaxin Hic-5 paxillin phalloidin
Leupaxin in Migration: 3D vs. 2D ,[object Object],[object Object]
2D Motility in Sparsely Plated SMCs ,[object Object],[object Object],[object Object]
Aberrant PDGF-induced membrane ruffles Stain:  cortactin / phalloidin ,[object Object],[object Object],Treatment:  5’ PDGF
Preliminary Conclusions ,[object Object],[object Object],[object Object],[object Object]
Future Leupaxin Studies ,[object Object],[object Object],[object Object],[object Object],[object Object]
Acknowledgments Committee Members William B. Coleman Adrienne Cox Financial Support Robert H. Wagner Scholarship Joseph E. Pogue Fellowship Joan Taylor Laura DiMichele Jason Doherty Lisa Galante Zeenat Hakim Rebecca Sayers Liisa Smith Chris Mack Alicia Blaker Jeremiah Hinson Kashelle Lockman Matt Medlin Dean Staus Jim Bear Liang Cai Tom Marshall Microscopy Services Lab Bob Bagnell Elena Davis Vicki Madden

More Related Content

What's hot

GRAS proteins expression and purification
GRAS proteins  expression and purification GRAS proteins  expression and purification
GRAS proteins expression and purification Mesele Tilahun
 
Brandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final VersionBrandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final VersionBrandon Boone
 
Roth, Ishimaru and Hennig 2013
Roth, Ishimaru and Hennig 2013Roth, Ishimaru and Hennig 2013
Roth, Ishimaru and Hennig 2013Braden Roth
 
TAPPING THE RNA WORLD FOR THERAPEUTICS
TAPPING THE RNA WORLD FOR THERAPEUTICSTAPPING THE RNA WORLD FOR THERAPEUTICS
TAPPING THE RNA WORLD FOR THERAPEUTICSHasnat Tariq
 
Long non coding RNA and Their clinical perspective
Long non coding RNA and Their clinical perspectiveLong non coding RNA and Their clinical perspective
Long non coding RNA and Their clinical perspectiveMOHIT GOSWAMI
 
Undergraduate_Reseach_Conference_Poster
Undergraduate_Reseach_Conference_PosterUndergraduate_Reseach_Conference_Poster
Undergraduate_Reseach_Conference_PosterTom Addison
 
Making genome edits in mammalian cells
Making genome edits in mammalian cellsMaking genome edits in mammalian cells
Making genome edits in mammalian cellsChris Thorne
 
ShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsYousefLayyous
 
Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin Formation
Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin FormationDicer-Independent Primal RNAs Trigger RNAi and Heterochromatin Formation
Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin FormationNishoanth Ramanathan
 
Rho GTPases as regulators of morphological neuroplasticity
Rho GTPases as regulators of morphological neuroplasticityRho GTPases as regulators of morphological neuroplasticity
Rho GTPases as regulators of morphological neuroplasticityFatih University
 
Consequences of a mutation on RAG proteins
Consequences of a mutation on RAG proteinsConsequences of a mutation on RAG proteins
Consequences of a mutation on RAG proteinsmeducationdotnet
 
Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...
Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...
Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...1010Genome Pte Ltd
 
12.03.13 - Journal Club
12.03.13 - Journal Club12.03.13 - Journal Club
12.03.13 - Journal ClubFarhoud Faraji
 
LncRNA (Long noncoding RNA)
LncRNA (Long noncoding RNA)LncRNA (Long noncoding RNA)
LncRNA (Long noncoding RNA)sogand vahidi
 
transcriptional gene silencing
transcriptional gene silencingtranscriptional gene silencing
transcriptional gene silencingSheetal Mehla
 
J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271
J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271
J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271Aditi Nadkarni
 
Roth and Hennig 2012
Roth and Hennig 2012Roth and Hennig 2012
Roth and Hennig 2012Braden Roth
 

What's hot (20)

GRAS proteins expression and purification
GRAS proteins  expression and purification GRAS proteins  expression and purification
GRAS proteins expression and purification
 
Brandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final VersionBrandon_Boone_Yale Poster_Final Version
Brandon_Boone_Yale Poster_Final Version
 
Roth, Ishimaru and Hennig 2013
Roth, Ishimaru and Hennig 2013Roth, Ishimaru and Hennig 2013
Roth, Ishimaru and Hennig 2013
 
TAPPING THE RNA WORLD FOR THERAPEUTICS
TAPPING THE RNA WORLD FOR THERAPEUTICSTAPPING THE RNA WORLD FOR THERAPEUTICS
TAPPING THE RNA WORLD FOR THERAPEUTICS
 
Long non coding RNA and Their clinical perspective
Long non coding RNA and Their clinical perspectiveLong non coding RNA and Their clinical perspective
Long non coding RNA and Their clinical perspective
 
Undergraduate_Reseach_Conference_Poster
Undergraduate_Reseach_Conference_PosterUndergraduate_Reseach_Conference_Poster
Undergraduate_Reseach_Conference_Poster
 
Making genome edits in mammalian cells
Making genome edits in mammalian cellsMaking genome edits in mammalian cells
Making genome edits in mammalian cells
 
ShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cells
 
Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin Formation
Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin FormationDicer-Independent Primal RNAs Trigger RNAi and Heterochromatin Formation
Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin Formation
 
Rho GTPases as regulators of morphological neuroplasticity
Rho GTPases as regulators of morphological neuroplasticityRho GTPases as regulators of morphological neuroplasticity
Rho GTPases as regulators of morphological neuroplasticity
 
Cell physio 202
Cell physio 202Cell physio 202
Cell physio 202
 
Consequences of a mutation on RAG proteins
Consequences of a mutation on RAG proteinsConsequences of a mutation on RAG proteins
Consequences of a mutation on RAG proteins
 
Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...
Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...
Differential Gene Expression Analysis of RNA Seq and Microarray Data highligh...
 
12.03.13 - Journal Club
12.03.13 - Journal Club12.03.13 - Journal Club
12.03.13 - Journal Club
 
LncRNA (Long noncoding RNA)
LncRNA (Long noncoding RNA)LncRNA (Long noncoding RNA)
LncRNA (Long noncoding RNA)
 
transcriptional gene silencing
transcriptional gene silencingtranscriptional gene silencing
transcriptional gene silencing
 
J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271
J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271
J. Biol. Chem.-2015-Nadkarni-jbc.M115.685271
 
Crispr trap
Crispr trapCrispr trap
Crispr trap
 
Unit 1 transcription
Unit 1 transcriptionUnit 1 transcription
Unit 1 transcription
 
Roth and Hennig 2012
Roth and Hennig 2012Roth and Hennig 2012
Roth and Hennig 2012
 

Similar to Masters Defense

Diacylglycerol signaling pathway
Diacylglycerol           signaling pathwayDiacylglycerol           signaling pathway
Diacylglycerol signaling pathwayyonas teshome
 
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in ArabidopsisNaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in ArabidopsisYang Zhu
 
2011 Rna Course Part 1
2011 Rna Course Part 12011 Rna Course Part 1
2011 Rna Course Part 1ICGEB
 
2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation
2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation
2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formationSimon Gemble
 
Acute promyelocytic leukemia
Acute promyelocytic leukemiaAcute promyelocytic leukemia
Acute promyelocytic leukemiaHamzeh Nusairat
 
J. Biol. Chem.-2015-Williamson-jbc.M115.640367
J. Biol. Chem.-2015-Williamson-jbc.M115.640367J. Biol. Chem.-2015-Williamson-jbc.M115.640367
J. Biol. Chem.-2015-Williamson-jbc.M115.640367Christopher Cowell
 
Gary kerr dundee uni seminar feb 2013
Gary kerr dundee uni seminar feb 2013Gary kerr dundee uni seminar feb 2013
Gary kerr dundee uni seminar feb 2013Dr Gary Kerr
 
Phosphoproteomics of collagen receptor networks reveals SHP-2
Phosphoproteomics of collagen receptor networks reveals SHP-2Phosphoproteomics of collagen receptor networks reveals SHP-2
Phosphoproteomics of collagen receptor networks reveals SHP-2Maciej Luczynski
 
The CDKN2A
The CDKN2AThe CDKN2A
The CDKN2ARpat8312
 
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)Ahmed Al-Abadlah
 
3.22.2010
3.22.20103.22.2010
3.22.2010Greg
 
Multifunctional nucleolus in Plant cell growth and development.
Multifunctional nucleolus in Plant cell growth and development.Multifunctional nucleolus in Plant cell growth and development.
Multifunctional nucleolus in Plant cell growth and development.Bhawna Mishra
 

Similar to Masters Defense (20)

Diacylglycerol signaling pathway
Diacylglycerol           signaling pathwayDiacylglycerol           signaling pathway
Diacylglycerol signaling pathway
 
Parthanatos
ParthanatosParthanatos
Parthanatos
 
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in ArabidopsisNaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis
 
2011 Rna Course Part 1
2011 Rna Course Part 12011 Rna Course Part 1
2011 Rna Course Part 1
 
2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation
2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation
2014 - cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation
 
Dna damage checkpoints
Dna damage checkpointsDna damage checkpoints
Dna damage checkpoints
 
Acute promyelocytic leukemia
Acute promyelocytic leukemiaAcute promyelocytic leukemia
Acute promyelocytic leukemia
 
Desmosomes
DesmosomesDesmosomes
Desmosomes
 
J. Biol. Chem.-2015-Williamson-jbc.M115.640367
J. Biol. Chem.-2015-Williamson-jbc.M115.640367J. Biol. Chem.-2015-Williamson-jbc.M115.640367
J. Biol. Chem.-2015-Williamson-jbc.M115.640367
 
review
reviewreview
review
 
KL PhD Presentation
KL PhD PresentationKL PhD Presentation
KL PhD Presentation
 
Presentation final
Presentation finalPresentation final
Presentation final
 
Gary kerr dundee uni seminar feb 2013
Gary kerr dundee uni seminar feb 2013Gary kerr dundee uni seminar feb 2013
Gary kerr dundee uni seminar feb 2013
 
Phosphoproteomics of collagen receptor networks reveals SHP-2
Phosphoproteomics of collagen receptor networks reveals SHP-2Phosphoproteomics of collagen receptor networks reveals SHP-2
Phosphoproteomics of collagen receptor networks reveals SHP-2
 
The CDKN2A
The CDKN2AThe CDKN2A
The CDKN2A
 
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)
 
COVID-19 January 2022.pptx
COVID-19 January 2022.pptxCOVID-19 January 2022.pptx
COVID-19 January 2022.pptx
 
COVID-19 January 2022.pptx
COVID-19 January 2022.pptxCOVID-19 January 2022.pptx
COVID-19 January 2022.pptx
 
3.22.2010
3.22.20103.22.2010
3.22.2010
 
Multifunctional nucleolus in Plant cell growth and development.
Multifunctional nucleolus in Plant cell growth and development.Multifunctional nucleolus in Plant cell growth and development.
Multifunctional nucleolus in Plant cell growth and development.
 

Masters Defense

  • 1. The Role of Focal Adhesion Kinase in Vascular Smooth Muscle Cell Migration Lee Mangiante Masters Thesis Defense Cellular and Molecular Pathology Joan M. Taylor, PhD
  • 2.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10. The Migration Cycle: Where is FAK Involved? Leading Edge Protrusion polarization Trailing EdgeRetraction FA Disassembly/assembly FAK/Rho? FAK/ERK? Fak/Rac?
  • 11.
  • 12. Results FAK mediates SMC migration to PDGF
  • 13. Deletion of fak in VSMCs: the fak flox/flox mouse LacZ Cre = FAK = phalloidin (F-actin) ATP-Binding Dom. loxP Exon 18 loxP Cre recombinase No FAK produced 72 Hours Post-Virus FAK ERK Lac Z Cre
  • 14.
  • 15.
  • 16. PDGF-induced dorsal ruffling is FAK-independent Lac Z (FAK+) Cre (FAK-) 2.5 min 20x = cortactin = phalloidin Peripheral ruffles Dorsal ruffles
  • 17. PDGF-induced cell polarization is FAK-dependent LacZ (FAK+) Cre (FAK-)
  • 18. What molecular mechanisms explain the polarization defect of FAK-depleted SMCs? Activity of the Rho subfamily GTPases
  • 19.
  • 20. Rac-PI3K Signaling is unperturbed by FAK depletion Pulldown: GTP-Rac1 IB: pAKT Live cell: GFP-WAVE2 AKT , WAVE 1/ 2 PI3K GTP- Rac Arp2/3 Membrane protrusion Leading edge formation
  • 21. Myosin activation, but not global RhoA activity, is attenuated by FAK depletion ROCK GTP- RhoA pMLC contractility MLC phosphatase Pulldown: GTP-RhoA IB: pMLC
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. Cortactin: a structurally distinct Arp2/3 activator A = acidic region; facilitates Arp2/3 binding P = proline-rich domain SH3 = Src homology; binds proline-rich motifs Repeat domain: binds F-actin (20 fold higher than Arp2/3) W = WASP homology; binds G-actin C = central region; binds/activates Arp2/3 GB = GTPase binding domain (Cdc42, Rac) B = basic region Sufficient to activate Arp2/3 CTN WASP, WAVE WASP CTN, WASP, WAVE Daly, RJ. 2004
  • 28. Structure and Regulation of Dia2 GBD = GTPase Binding Domain DID = Diaphanous Inhibitory Domain FH1, FH2 = Formin Homology 1, 2 FH3 = Formin Homology 3 DAD = Diaphanous Autoinhibitory Domain
  • 29. Dia2 and cortactin interact independently of F-actin I. GST pulldown (SMC lysates) II. Co-IP (COS-7 lysates) FH1 = proline rich FH2 = no prolines; binds G-actin
  • 30. Moving Forward Dia2 and Cortactin
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36. “ Active” (open) mutants of Dia2 GBD GBD ID DID DID FH1 FH1 FH2 FH2 DAD DAD A  D Δ GBD A272D All kept in the “open” conformation by disrupting the DID-DAD interaction
  • 37. Cortactin colocalizes intensely with Dia2 A272D WT FL A272D GFP cortactin merge phalloidin Does A272D associate more strongly with cortactin than WT Dia2?
  • 38.
  • 39. Dia2 in PDGF-Stimulated Migration “ Protrusive Dia” polarization “ Retractile Dia” FA Disassembly/assembly FAK coordinates these two activities to enable fluid forward movement of the SMC Dia 2 Dia 2 cortactin cortactin Src P ? Src P ? Dia 2 Dia 2
  • 40.
  • 41.
  • 42. Appendix Knockdown of leupaxin in human aortic SMCs
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53. Acknowledgments Committee Members William B. Coleman Adrienne Cox Financial Support Robert H. Wagner Scholarship Joseph E. Pogue Fellowship Joan Taylor Laura DiMichele Jason Doherty Lisa Galante Zeenat Hakim Rebecca Sayers Liisa Smith Chris Mack Alicia Blaker Jeremiah Hinson Kashelle Lockman Matt Medlin Dean Staus Jim Bear Liang Cai Tom Marshall Microscopy Services Lab Bob Bagnell Elena Davis Vicki Madden