SlideShare a Scribd company logo
1 of 95
Download to read offline
ROOT REPAIR
MATERIALS
Dr.Rakesh Nair
PG Student
KVG Dental College
Sullia
Karnataka
India
 Introduction
 Classification
 MTA
 Biodentine
 GIC based sealers
 Amalgam
 Gutta percha
 ZOE
 Composite resins
 Daiket
 Bioceramic sealers
 Recent materials
 References
 Roots needing repair are serious complications in dental
practice and pose a number of diagnostic and
management problems.
 However, when teeth are of strategic importance root
repair is clearly indicated whenever possible.
 With advent of 3-D imaging and illumination the scope
and success of root repair is very high.
Root fracture
Infective
Perforation
Root end
filling
Root
maturogenesis
Internal resorption
Perforation
Iatrogenic
Gouching
Strip
perforations
Apical
perforations
Furcal
perforations
Reasons for root repair
Trauma
ROOT END FILLING
MATERIALS
PERFORATION REPAIR
MATERIALS
ROOT
REGENERATION
MATERIALS
ROOT REPAIR MATERIALS
Bioactive
materials
Biologic
materials
 Amalgam
 Gutta percha
 ZOE
 GIC related materials
 Composite resin
 Diaket
 MTA
 Biodentine
ROOT END FILLING MATERIALS
Recent materials
• ERRM
• Bioaggregate
• I root BP Plus
bioceramic putty
• Novel root-end filling
material
 MTA
 Biodentine
 GIC
 PRF
 Calcium hydroxide
 MTA
 Biodentine
 PRP/PRF
 Traditionally, amalgam was the material of choice for
root-end fillings.
 The biocompatibility of amalgam is cited as a current
issue of concern in dentistry.Many in vivo usage
studies in animals have reported unfavorable tissue
response to amalgam.
 The use of amalgam as a root-end filling material can
now be confined to history.
 When GP is used as a root-end filling material, it absorbs
moisture from periapical tissues because of its porous nature.
 It expands initially,then contracts.
 Pitt Ford et al. found that the tissue response to GP with zinc
oxide root canal sealer was characterized by little or no
inflammation.
 In a comparative in vivo study on bone defect regeneration,
most histological sections using GP as retrograde material
showed signs of non-healing with lack of cortical bone and
high level of inflammatory infiltration.
 The material was considered to have good handling properties
and postoperative results.
 However, the original ZOE cements were weak and likely to
be absorbed over a period of time.
 Therefore, it was unsuitable for longterm use.
 Two approaches were adopted to improve the physical
properties of ZOE cements.
 The partial substitution of eugenol liquid with EBA and the
addition of fused quartz or aluminum oxide to the powder to
give an EBA cement, Super EBA cement(Staident
International Ltd., Staines, UK).
 The addition of polymeric substances to the powder,
 (a) polymethymethacrylate to the powder, Intermediate
Restorative Material (IRM, DENTSPLY DeTrey GmbH,
Konstanz, Germany)
 (b) polystyrene to the liquid, Kalzinol (DENTSPLY DeTrey
GmbH)
 Eugenol is the major cytotoxic component in ZOE cements.
 Zinc released from these cements is considered to be partly
responsible for the prolonged cytotoxic effect.
 Results of a comparative study showed no cell growth in the
originally seeded cells in fresh IRM.
 Recent studies have shown IRM to be more toxic than
comparative materials.
 In a research that investigated cellular attachment to root-end
filling materials as a measure of the biocompatibility of the
materials, both IRM and Super EBA rendered poor attachment
 GIC have been suggested as an alternative root-end
filling material.
 Biocompatibility studies exhibited evidence of initial
cytotoxicity with freshly prepared samples.
 Toxicity decreases as the setting occurs.
 Composite resins and resin-ionomer hybrids.
 The biocompatibility of composite resin is influenced by the
amount and nature of its leachable components.
 The healing response of the periradicular tissues to composite
resins in general appears to be very diverse, ranging from poor
to good depending on the type of material used.
 Two composite resin-based materials, Retroplast (Retroplast
Trading, Rorvig, Denmark) and Geristore (Den-Mat, Santa
Maria, CA, USA) have been advocated for use as root end
filling materials.
 Results of the observational studies examining various
root-end filling materials on gingival fibroblast cells
showed greater cell attachment to Geristore in
comparison to mineral trioxide aggregate (MTA).
 Other in vitro interpretations indicate that Geristore is less
cytotoxic to gingival fibroblasts in comparison to MTA,
GIC and IRM
Surgical repair of root and tooth perforations JOHN D. REGAN, DAVID E. WITHERSPOON &
DEBORAH M. FOYLE. Endodontic Topics 2005, 11, 152–178
 (3M ESPE GmbH, Seefeld, Germany)
 A polyvinyl resin, has been advocated for use as a root-end
filling material.
 When Diaket was used as a root canal sealer, biocompatibility
studies showed that it was cytotoxic in cell culture and
generated long-term chronic inflammation in osseous and
subcutaneous tissues.
 However, when mixed at the thicker consistency advocated for
use as a root-end filling material, Diaket has shown good
biocompatibility with osseous tissues.
 MTA -first described in litrature by Lee , Mahmoud
Torabinejad And Colleagues in 1993 when used as root
end filling material..
 Mineral trioxide aggregate, or MTA, is a biocompatible
material with numerous exciting clinical applications in
endodontics.
 The material appears to be an improvement over other
materials for endodontic procedures that involve root
repair and bone healing.
 POWDER
 Tricalcium Silicate
 Dicalcium Silicate
 Tricalcium Aluminate
Tetracalcium Alumino
Ferrite
 Calcium Sulphate
 Bismuth Oxide
WATER
Distilled water
 Mineral trioxide aggregate (MTA) is a fine hydrophilic
powder available in single use sachets of 1 gram.
 Some companies also provide premeasured water sachets for
ease of use.
 The important barriers to the widespread use of MTA are its
cost and difficulty in storage.
• There are few published reports of experimental
data relating to the comparative setting times of
the different forms of MTA.
• Although the manufacturers of MTA-Angelus
claim that this material has a setting time of 10
min, there appears to be no independent evidence
to confirm this
Grey Proroot MTA - 2 h 45 mins ± 5 mins (Torabinejad)
- 2 h 55 min (Islam et `al)
White MTA - 2 h 20 mins (Islam et `al)
SETTING TIME
• The presence of gypsum is reported to be the reason
for the extended setting time of MTA.
• In order to reduce the setting time, the effect of
accelerators such as sodium phosphate dibasic
(Na2HPO4) and calcium chloride (CaCl2) are being
investigated currently.
• MTA Bio is one commercially available product
which incorporates an accelerator of this sort, and is
promoted as a rapid-setting material.
Mineral trioxide aggregate in paediatric dentistry VIDYA SRINIVASAN1 , PAULA
WATERHOUSE2 & JOHN WHITWORTH3 mineral trioxide aggregate in paediatric
dentistry VIDYA SRINIVASAN1 , PAULA WATERHOUSE2 & JOHN
WHITWORTH3
 The regeneration of the new cementum over MTA is a unique
phenomenon that has not been reported to occur with other
root end fillings.
 The deposition of cementum hard tissue with MTA was also
seen in root end fillings , dental pulps and apical tissue after
root canal filling.
 Torabinejad et al believed that the deposition of cementum
against MTA may be due to a number of factors such as
sealing ability, biocompatibility or alkaline pH on setting.
 The setting reaction of MTA is a complicated process
depending on the exact proportions of mineral phases,their
purity and temperature of the mix.
 On hydration calcium silicates present in MTA undergoes
hydrolysis and produce calcium silicate hydrate and calcium
hydroxide.
 About one third of hydration products is constituted by
calcium hydroxide which makes MTA highly alkaline.
 CaO + H2O -- Ca(OH)2
 Whereas, C2S and C3S react with water to produce calcium
silicate hydrate (C-S-H) and calcium hydroxide
 as:
 2(3CaO.SiO2) + 6H2O -- 3CaO2.SiO2.3H2O+ 3Ca(OH)2
 2(2CaO.SiO2) + 4H2O --3CaO2.SiO2.3H2O+ Ca(OH)2
 The C3S is most important mineral phase in MTA and
engages in the formation of C-S-H to provide early
strength.
 On the other hand, C2S reacts relatively slow and give
later strength to the set material.
 C3A present in MTA reacts with water to form calcium
aluminates and (in presence of calcium sulphate) sulfate
aluminates.
 The C-S-H, the major hydration product of MTA is an
amorphous compound with varying stoichiometric values.
 The Ca:Si ratio in C-S-H generally varies between 0.8 and 2.1
with highly variable content of water therefore, set MTA can
be described as calcium hydroxide contained within a silicate
matrix.
 MTA offers a biologically active substrate for bone cells and
stimulates interleukins production.
 Calcium hydroxide in contact with pulp tissue or culture
medium produces deposition of calcite crystals. Also observed
was rich extra cellular network of fibronectin in close contact
with these crystals.
 MTA is superior to amalgam, IRM, and super-EBA in
preventing leakage of methylene blue, fusobacterium
nucleatum, and endotoxin . It is biocompatible and induces
osteogenesis and cementogenesis.
 Which makes it an ideal choice for root repair.
 Intra canal repair of accidental perforations after
administering anesthesia, application of rubber dam and
locating the perforation site, the area should be rinsed
thoroughly with sodium hypochlorite.
 In cases of long – standing perforations or in the presence of
contamination, sodium hypochlorite should be left in the root
canal system for a few minutes to disinfect the site of the
perforation.
Perforation repair
 After complete instrumentation and obturation of the canals
with gutta percha and root canal sealer apical to perforation
sites (furcation and stripping), mix MTA with sterile water and
place it at the perforation site with an amalgam carrier and
pack it against the site with a plugger or a cotton pellet.
 After repairing the perforation area with MTA, place a wet
cotton pellet over MTA and seal the access cavity with a
temporary filling material.
 Remove the temporary and the wet cotton pellet at least 3
to 4 hours later and place a permanent filling material in the
root and / or in the access cavity preparation.
 When MTA is placed in perforations with a high degree of
inflammation, the material remains soft when checked at
the second appointment. This is due to the presence of low
pH, which prevents proper setting of MTA.
 Assess the healing in 3 to 6 months as indicated.
 For apical perforations, mixed MTA should be placed into the
apical portion of the canal with a messing gun (R. chige,
Inc.,Boca Raton, FL ) or a small amalgam carrier and packed
with small pluggers or paper points.
 A 3 to 5 mm apical plug is needed to prevent coronal leakage
and extrusion of obturation material into the periapical
tissues. After inducing an apical plug, place a wet cotton
pellet against it and close the access cavity with a temporary
filling material.
 Remove the cotton pellet at least 3 to 4 hours later and
obturate the rest of the canal with gutta – percha and root
canal sealer. In case of a large apical perforation, and ample
moisture, placement of apical plug and obturation of the root
canal system can be accomplished in one visit.
Repair of perforations as a consequence
of an internal resorption
 After administering anesthesia and
preparing the access cavity, the root canal
should be completely cleaned and shaped.
 Because of the presence of granulation
tissue and the presence of communication
between the root canal and the
periodontium,heavy hemorrhage is
usually encountered.
Root end filling
 Infected root canals harbor numerous species of bacteria which
can progress into periradicular tissues and cause development of
periradicular lesions.
 Because of the complexity of the root canal system and our
inability to completely clean it using present techniques and
instruments, root canals cannot always be adequately treated.
Advantages
 The advantage of using a material to form an immediate apical barrier over
the conventional apexification treatment is that endodontic treatment can be
achieved in a single appointment .
 (MTA can be used as a one step obturation material in an open apex)
 70% of the failures in study of perforation repair were associated with
extrusion of repair material. But MTA does not have to be compacted as
firmly as amalgam to adapt adequately to the tooth surface .
 The setting ability of MTA is uninhibited by blood or water. This is an
important request of a material which has to be used normally in presence of
blood & water and also in teeth with necrotic pulps and inflamed periapical
lesions because one of problems in these cases is presence of exudates at the
root apex
 The slow setting time of MTA is an advantage in that it reduces
the amount of setting shrinkage which may help explain MTA’s
low micro leakage .
 A major problem in performing endodontics in immature teeth
with necrotic pulp and wide open apices is obtaining an
adequate seal of the root canal system. MTA has been proposed
as a potential material to create an apical plug at the end of the
root – canal system, thus preventing the extrusion of filling
materials
 MTA has an antibacterial effect on few of the facultative
bacteria, when comparatively none other test materials had all of
antibacterial effects desired .
 MTA has low solubility and a radioopacity slightly more than
that of dentin
 The use of MTA in cases where the material comes in direct
contact with the oral cavity for an extended period of time is
unpredictable. This is due to the fact that MTA dissolves in an
acidic pH
 MTA powder has to be mixed with sterile water and cannot be
mixed with anesthetic / sterile liquid. This is because the effects
other liquids may have on MTA’s physical, chemical and
biological properties are unknown
 Excess moisture has to be removed from the preparation /
resorptive defect site, because MTA becomes soupy and difficult
to condense.
 It has low compressive strength, and so can not be placed in
functional areas
 When MTA is used as a root canal sealer and is compacted
against dentin a dentin MTA interfacial layer is formed which
resembles hydroxyapatite in composition and structure when
examined under x-ray diffraction and SEM analysis.
 Morover the hydration of MTA forms a gluey matrix that will
adhere to the guttapercha providing a better seal.
 Also the relatively long setting time and maturation add to the
sealability of the material.
MTA based root canal sealers.Manjusha et`al.Journal of orofacial research.2013
 Alkaline environment by hypochlorite irrigation helps in the
efficiency of the material.
 Hence citric acid and EDTA final rinses are not advocated
with MTA sealer.
 Eg:-Pro root endo sealer,cpm sealer,mta obtura,mtas,F-doped
MTA.
 Case 1
Case 2
12 month post
reimplantation
MTA
Internal
resorption
Sagittal section-
CBCT
MTA plug
1 year follow up
Case 3
 Biodentine™ was developed by Septodont’s
Research Group as a new class of dental material
which could conciliate high mechanical
properties with excellent biocompatibility, as well
as a bioactive behavior
 The material is actually formulated using the
MTA-based cement technology and the
improvement of some properties of these types of
cements, such as physical qualities and handling.
 Grech et al. investigated the setting time of Biodentine
using an indentation technique while the material was
immersed in Hank’s solution
 The setting time of Biodentine was determined as 45
minutes.
 This short setting time was attributed to the addition of
calcium chloride to the mixing liquid
 Compressive strength is considered as one of the main
physical characteristics of hydraulic cements.
 The product sheet of Biodentine states that a specific feature
of Biodentine is its capacity to continue improving in terms
of compressive strength with time until reaching a similar
range with natural dentine.
 In the study by Grech et al., Biodentine showed the highest
compressive strength compared to the other tested materials.
 The authors attributed this result to the enhanced strength
due to the low water/cement ratio used in Biodentine.
 Microhardness. Grech et al. evaluated the microhardness of
the material using a diamond shaped indenter.
 Their results showed that Biodentine displayed superior values
compared to Bioaggregate and IRM.
7 USES
 Biodentine has a wide range of applications including
endodontic repair (root perforations, apexification, resorptive
lesions, and retrograde filling material in endodontic surgery)
and pulp capping and can be used as a dentine replacement
material in restorative dentistry.
 Some authors have indicated that there are few studies on the
properties of newly developed materials such as Biodentine.
 The material is characterized by the release of calcium when
in solution.
 Tricalcium silicate based materials are also defined as a source
of hydroxyapatite when they are in contact with synthetic
tissue fluid.
 Another area of use of Biodentine, specifically from an
endodontic point of view, is the repair of perforations.
 which is likely to be encountered in clinical practice. It is
essential that a perforation repair material should have
sufficient amount of push-out bond strength with dentinal
walls for the prevention of dislodgement from the repair site.
 Aggarwal et al. studied the push-out bond strengths of
Biodentine, ProRoot MTA, and MTA Plus in furcal
perforation repairs.
 Push-out bond strength increased with time. Their results
showed that the 24 h push-out strength of MTA was less than
that of Biodentine .
 Blood contamination affected the push-out bond strength of
MTA Plus irrespective of the setting time.
A Review on Biodentine, a Contemporary Dentine Replacement and
Repair Material.Ozlem Malokondu et`al.J.Bio Med Res.2014.
 In a study by Guneser et al., Biodentine showed
considerable performance as a repair material even after
being exposed to various endodontic irrigation solutions,
such as NaOCl, chlorhexidine, and saline, whereas MTA
had the lowest push-out bond strength to root dentin.
Effect of various endodontic irrigants on the push-out bond
strength of biodentine and conventional root perforation repair
materials.Guneser,Akbuluz,Eldinez.J.Endod.March.2013
 Porosity and Material-Dentine Interface Analysis.
 Tricalcium silicate based materials are especially indicated in
cases such as perforation repair, vital pulp treatments, and
retrograde fillings where a hermetic sealing is mandatory.
 Therefore, the degree of porosity plays a very important role
in the overall success of treatments performed using these
materials, because it is critical factor that determines the
amount of leakage.
Case 1
Case 2
Palatogingival groove
Biodentine seal
 Radiopacity.
 Radiopacity is an important property expected from a
retrograde or repair material as these materials are
generally applied in low thicknesses and they need to be
easily discerned from surrounding tissues.
 The ISO 6876:2001 has established 3mmAl as the
minimum radiopacity value for endodontic cements.
 Zirconium oxide is used as a radiopacifier in Biodentine
contrary to other materials where bismuth oxide is preferred as
a radiopacifier.
 The reason for such a preference might be due to some study
results which show that zirconium oxide possesses
biocompatible characteristics and is indicated as a bioinert
material with favorable mechanical properties and resistance
to corrosion.
 A clinical observation stated that the radiopacity of
Biodentine is in the region of dentin and the cement is
not adequately visible in the radiograph.
 This posed difficulty in terms of practical applications
T. Dammaschke, “Biodentine-an overview,” Septodont CaseStudies Collection, no. 3, 2012.
Solubility.
 Grech et al. demonstrated negative solubility values for
a prototype cement, Bioaggregate, and Biodentine, in a
study assessing the physical properties of the materials.
 They attributed this result to the deposition of substances
such as hydroxyapatite on the material surface when in
contact with synthetic tissue fluids.
 This property is rather favorable as they indicate that the
material does not lose particulate matter to result in
dimensional instability.
A Review on Biodentine, a Contemporary Dentine Replacement and Repair Material. Özlem Malkondu,
Meriç Karapinar KazandaL and Ender KazazoLlu.Bio Med Res.June.2014
Effect on the Flexural Properties of Dentine.
 An important issue related to the usage of calcium
silicate based materials is their release of calcium
hydroxide on surface hydrolysis of their calcium silicate
components.
 On the other hand, it has also been indicated that
prolonged contact of root dentine with calcium
hydroxide as well as MTA has detrimental and
weakening effects on the resistance of root dentine.
Discoloration.
 One study evaluated Biodentine from this perspective where
Biodentine, along with 4 different materials, was exposed to
different oxygen and light conditions and spectrophotometric
analysis was performed at different periods until 5 days.
 Favorable results were obtained for Portland Cement (PC) and
Biodentine and these 2 materials demonstrated color stability
over a period of 5 days.
 Based on their results, the authors suggested that Biodentine
could serve as an alternative for use under light-cured
restorative materials in areas that are esthetically sensitive.
Wash-Out Resistance.
 Washout of a material is defined as the tendency of freshly
prepared cement paste to disintegrate upon early contact with
fluids such as blood or other fluids.
 The results of the available study on these characteristics of
Biodentine did not reveal favorable results as the material
demonstrated a high washout with every drop used in the
methodology.
 The authors attributed this result to the surfactant effect by the
water soluble polymer added to the material to reduce the
water/cement ratio.
 Biocompatibility of a dental material is a
major factor that should be taken into
consideration specifically when it is used
in pulp capping, perforation repair or as
retrograde Filling
 Though the information accumulated so
far regarding the biocompatibility of
Biodentine is rather limited, the available
data generally is in favor of the material
in terms of its lack of cytotoxicity and
tissue acceptability.
 Han and Okiji compared Biodentine and white ProRoot MTA
in terms of Ca and Si uptake by adjacent root canal dentine
and observed that both materials formed tag-like structures.
 They observed that dentine element uptake was more
prominent for Biodentine than MTA. The same authors in
another study also showed the formation of tag-like structures
composed of Ca and P-rich and Si-poor materials.
 They also determined a high Ca release for Biodentine.
 Recently, ERRM putty and paste (Brasseler USA,
Savannah, GA, USA) have been developed.
 It is available as ready-to-use, premixed bioceramic
materials recommended for perforation repair, apical
surgery, apical plug, and pulp capping.
 Biomaterials are native or synthetic polymers that
perform as scaffolds for tissue regeneration and hold
wide importance in the field of dentistry, drug delivery,
cancer treatment, thrombotic diseases, and cosmetic
surgery.
 Various bioactive materials are available in today’s
time like mineral trioxide aggregate (MTA), bioactive
glass, and bioaggregate materials.
 In regenerative endodontic therapy, an ideal autologous
biomaterial for pulp-dentin complex regeneration is
platelet-rich fibrin (PRF).
 PRF was first developed by Choukroun et al., in 2001 at
France.
 Studies have demonstrated that the PRF has a very significant
slow sustained release of many key growth factors like
platelet-derived growth factor and transforming growth factor-
β for at least 1 week and up to 28 days.
Various clinical applications of PRF include,
 root coverage,
 bone regeneration,
 treatment of endo-perio lesions,
 sinus floor elevation,
 stabilize graft material in ridge augmentation,
 socket preservation,
 filling cystic cavities,
 and in various medical fields.
 PRF represents a new revolutionary step in the platelet gel
therapeutic concept.
 Unlike other platelet concentrates, this technique does not
require any gelifying agent, but not more than centrifugation
of the natural blood without additives.
 No biochemical handling of blood.
 Simplified and cost-effective process.
 Use of bovine thrombin and anticoagulants not required.
 Favorable healing due to slow polymerization.
 More efficient cell migration and proliferation.
 PRF has supportive effect on immune system.
 PRF helps in hemostasis.
 The protocol for PRF preparation is very simple and simulates
that of PRP.
 It includes collection of whole venous blood (around 5 ml) in
each of the two sterile vacutainer tubes (6 ml) without
anticoagulant and the vacutainer tubes are then placed in a
centrifugal machine at 3,000 revolutions per minute (rpm) for
10 min
 After which it settles into the following three layers: Upper
straw-colored acellular plasma, red-colored lower fraction
containing red blood cells (RBCs), and the middle fraction
containing the fibrin clot.
 The middle part is platelets trapped massively in fibrin
meshes.
 The success of this technique entirely depends on time gap
between the blood collection and its transfer to the centrifuge
and it should be done in less time.
 The blood sample without anticoagulant, starts to coagulate
almost immediately upon contact with the glass, and it
decreases the time of centrifugation to concentrate fibrinogen.
Platelet-rich-fibrin: A novel root coverage approach K
Anilkumar,Geetha,Pameela. J Indian Soc Periodontol. 2009 Jan;13(1):50-4
 EndoSequence® BC RRM™ (Root Repair Material) is
available in two specifically formulated consistencies
(syringable paste or condensable putty) and contains many of
the same characteristics as BC Sealer.
 Calcium silicate
 Calcium phosphate monobasic
 Zirconium oxide
 Tantalum oxide
 Filler and thickening agents.
 pH > 12
 The favorable handling properties, increased strength
and shortened set time make BC RRM™ highly resistant
to washout and ideal for all root repair and pulp capping
procedures.
 Research and countless cases confirm that BC RRM™ is
highly biocompatible and osteogenic.
Cytotoxicity evaluation of endosequence root repair materialAmer Z. AlAnezi, Jin Jiang,
Kamran E. Safavi. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2013
 iRoot BP Plus (Innovative BioCeramix Inc., Vancouver,
Canada) is a fully laboratory-synthesized, water-based
bioceramic cement.
 It claims to be a more convenient reparative material,
because it is a ready to-use white hydraulic premixed
formula.
 A current study to verify in vitro cytocompatibility of
iRoot BP Plus bioceramic putty concluded that iRoot
and MTA were biocompatible and did not induce critical
cytotoxic effects.
De-Deus G, Canabarro A, Alves GG, Marins JR, Linhares AB, Granjeiro JM.
Cytocompatibility of the ready-to-use bioceramic putty repair cement iRoot BP Plus with
primary Saxena P et al.. Int Endod J 2012;45:508-513.
 Bioaggregate appears to be a modified or synthetic version of
original MTA.
 According to the manufacturer, this material contains
biocompatible pure white powder composed of ceramic nano-
particles and deionized water.
 Bioaggregate appeared to be biocompatible compared with
WMTA on human pulp cells, PDL cells and MG63 cells.
 Gel-like calcium silicate hydrate.
 Gel-like calcium Aluminate hydrate
 Calcium hydroxide
 Hydroxyapatite
 Calcium sulfate
 Bismuth oxide.
 Tantalum oxide
 Amorphous silicon oxide
 A novel resin based root-end filling material (termed
New resin cement, NRC) has been introduced.
 NRC is a powder and liquid system. The liquid is
composed of hydroxyethylmethacrylate, benzoyl
peroxide, toluidine, and toluenesulfinate.
 And the powder is made of calcium oxide,calcium
silicate, and triphenyl bismuth carbonate.
Novel root-end filling material
 One study determined the cytotoxicity of NRC and
concluded that the initial biocompatibility results of
NRC are favorable for a root-end filling material.
 A recent in vivo study concluded that NRC shows
moderately higher inflammatory reaction than MTA
however, the calcium reservoir capability of NRC may
contribute to mineralization of the tissues.
 Newer and better root repair materials are being introduced in
to the market every year.
 The recent trend is towards bioactive materials which have
osteo inductive and conductive properties.
 The clinician should have a thorough knowledge about these
products to compare and contrast before using the best
material for each case.
 Biocompatibility of root-end filling materials: recent update. Payal Saxena1*,
Saurabh Kumar Gupta, Vilas Newaskar. The Korean Academy of Conservative
Dentistry.
 BioDentine: A dentin substitute for the repair of root perforations, apexification
and retrograde root filling.J Conserv dent.Francois bronne.
 Repair of Furcal Perforation with Mineral Trioxide Aggregate: Long-Term
Follow-Up of 2 Cases. Camila M.M. Silveira et `al. JCDA • October 2008, Vol.
74, No. 8.
 Mineral Trioxide Aggregate—A Review. Arathi Rao, Ashwini Rao, Ramya
Shenoy. The Journal of Clinical Pediatric Dentistry Volume 34, Number 1/2009.
 Evaluation of Radiopacity, pH, Release of Calcium Ions,and Flow of a
Bioceramic Root Canal Sealer. George Taccio de Miranda Candeiro. JOE —
Volume 38, Number 6, June 2012.
 Role of Platelet rich fibrin in wound healing:A critical review. Balaram Naik, P
Karunakar1, M Jayadev1, V Rahul Marsha. Journal of Conservative Dentistry
.Jul-Aug 2013 .Vol 16 .Issue 4
 Dental materials-Mahalakshmi.Edition 1.

More Related Content

What's hot

MTA & Biodentine
MTA & BiodentineMTA & Biodentine
MTA & BiodentineMarwaMazin3
 
Mineral Trioxide Aggregrate seminar
Mineral Trioxide Aggregrate seminar Mineral Trioxide Aggregrate seminar
Mineral Trioxide Aggregrate seminar Anubhuti Singh
 
Bioceramic materials in endodontics
Bioceramic materials in endodontics Bioceramic materials in endodontics
Bioceramic materials in endodontics ibrahimaziz15
 
Management of Blunderbuss canals in endodontics /certified fixed orthodontic...
Management of Blunderbuss canals in endodontics  /certified fixed orthodontic...Management of Blunderbuss canals in endodontics  /certified fixed orthodontic...
Management of Blunderbuss canals in endodontics /certified fixed orthodontic...Indian dental academy
 
Endodontic sealers a summary and a quick review
Endodontic sealers a summary and a quick review Endodontic sealers a summary and a quick review
Endodontic sealers a summary and a quick review Rami Al-Saedi
 
Applications of lasers in endodontics
Applications of  lasers in endodonticsApplications of  lasers in endodontics
Applications of lasers in endodonticsDeeti Priya Rana
 
MTA and Biodentin
MTA and Biodentin MTA and Biodentin
MTA and Biodentin DR POOJA
 
Laminates Veneers in Dentistry
Laminates Veneers in DentistryLaminates Veneers in Dentistry
Laminates Veneers in DentistryNaveed AnJum
 
The Smear layer in endodontics
The Smear layer in endodonticsThe Smear layer in endodontics
The Smear layer in endodonticsDr. Arpit Viradiya
 
Cast post - Restoration of endodontically treated teeth
Cast post - Restoration of endodontically treated teethCast post - Restoration of endodontically treated teeth
Cast post - Restoration of endodontically treated teethYogha Padhma Asokan
 

What's hot (20)

MTA & Biodentine
MTA & BiodentineMTA & Biodentine
MTA & Biodentine
 
Mineral Trioxide Aggregrate seminar
Mineral Trioxide Aggregrate seminar Mineral Trioxide Aggregrate seminar
Mineral Trioxide Aggregrate seminar
 
Direct pulp capping
Direct pulp capping Direct pulp capping
Direct pulp capping
 
Bioceramic materials in endodontics
Bioceramic materials in endodontics Bioceramic materials in endodontics
Bioceramic materials in endodontics
 
Biodentine™
Biodentine™Biodentine™
Biodentine™
 
Management of Blunderbuss canals in endodontics /certified fixed orthodontic...
Management of Blunderbuss canals in endodontics  /certified fixed orthodontic...Management of Blunderbuss canals in endodontics  /certified fixed orthodontic...
Management of Blunderbuss canals in endodontics /certified fixed orthodontic...
 
Endodontic sealers a summary and a quick review
Endodontic sealers a summary and a quick review Endodontic sealers a summary and a quick review
Endodontic sealers a summary and a quick review
 
Gutta percha
Gutta perchaGutta percha
Gutta percha
 
Applications of lasers in endodontics
Applications of  lasers in endodonticsApplications of  lasers in endodontics
Applications of lasers in endodontics
 
The Smear Layer
The Smear LayerThe Smear Layer
The Smear Layer
 
Mta presentation
Mta presentationMta presentation
Mta presentation
 
MTA and Biodentin
MTA and Biodentin MTA and Biodentin
MTA and Biodentin
 
MTA ( Mineral Trioxide Aggregate )
MTA ( Mineral Trioxide Aggregate )MTA ( Mineral Trioxide Aggregate )
MTA ( Mineral Trioxide Aggregate )
 
Laminates Veneers in Dentistry
Laminates Veneers in DentistryLaminates Veneers in Dentistry
Laminates Veneers in Dentistry
 
The Smear layer in endodontics
The Smear layer in endodonticsThe Smear layer in endodontics
The Smear layer in endodontics
 
Cast post - Restoration of endodontically treated teeth
Cast post - Restoration of endodontically treated teethCast post - Restoration of endodontically treated teeth
Cast post - Restoration of endodontically treated teeth
 
Obturation
ObturationObturation
Obturation
 
Root canal sealers
Root canal sealersRoot canal sealers
Root canal sealers
 
Ultrasonics endodontic tips
Ultrasonics endodontic tips Ultrasonics endodontic tips
Ultrasonics endodontic tips
 
Regenerative endodontics
Regenerative endodontics Regenerative endodontics
Regenerative endodontics
 

Similar to ROOT REPAIR MATERIALS FOR PERFORATIONS AND ENDODONTIC SURGERY

Mineral trioxide (3)
Mineral   trioxide (3)Mineral   trioxide (3)
Mineral trioxide (3)Vidya Sagar
 
Mineral trioxide aggregate
Mineral trioxide aggregateMineral trioxide aggregate
Mineral trioxide aggregateChetan Basnet
 
Biodentine (newer material in dentistry)
Biodentine   (newer material in dentistry)Biodentine   (newer material in dentistry)
Biodentine (newer material in dentistry)jhansi mutyala
 
bioceramicmaterialsinendodontics-190304205019 (1).pdf
bioceramicmaterialsinendodontics-190304205019 (1).pdfbioceramicmaterialsinendodontics-190304205019 (1).pdf
bioceramicmaterialsinendodontics-190304205019 (1).pdfVikranthRavipati1
 
CLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTACLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTAJAMES RAJAN
 
apexification using biodentine
apexification using biodentineapexification using biodentine
apexification using biodentineDr. M. Kishore
 
Bioactive restorative materials
Bioactive restorative materials Bioactive restorative materials
Bioactive restorative materials Sudar Ssan
 
Mineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academyMineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academyIndian dental academy
 
Obturating Material
Obturating Material Obturating Material
Obturating Material RozinaKhatun2
 
2014 acta odontol scand (andrea corrado profeta) i
2014 acta odontol scand (andrea corrado profeta) i2014 acta odontol scand (andrea corrado profeta) i
2014 acta odontol scand (andrea corrado profeta) iDrMarkHogan
 
Mineral Trioxide Aggregate (MTA) in apexification
Mineral Trioxide Aggregate (MTA) in apexificationMineral Trioxide Aggregate (MTA) in apexification
Mineral Trioxide Aggregate (MTA) in apexificationAbu-Hussein Muhamad
 
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...
Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...Ahmed Mostafa Hussein Mohammed
 
2014 acta odontol scand (andrea corrado profeta) ii
2014 acta odontol scand (andrea corrado profeta) ii2014 acta odontol scand (andrea corrado profeta) ii
2014 acta odontol scand (andrea corrado profeta) iiDrMarkHogan
 
Prietoet al.2011 early view microscopy
Prietoet al.2011 early view microscopyPrietoet al.2011 early view microscopy
Prietoet al.2011 early view microscopyEduardo Souza-Junior
 
Open Apex with Mineral Trioxide Aggregate- Case Report
Open Apex with Mineral Trioxide Aggregate- Case ReportOpen Apex with Mineral Trioxide Aggregate- Case Report
Open Apex with Mineral Trioxide Aggregate- Case ReportAbu-Hussein Muhamad
 
mineral trioxide aggregate.shadan
mineral trioxide aggregate.shadanmineral trioxide aggregate.shadan
mineral trioxide aggregate.shadanshadanAltayar
 

Similar to ROOT REPAIR MATERIALS FOR PERFORATIONS AND ENDODONTIC SURGERY (20)

Mineral trioxide (3)
Mineral   trioxide (3)Mineral   trioxide (3)
Mineral trioxide (3)
 
mineral trioxide overview
mineral trioxide overviewmineral trioxide overview
mineral trioxide overview
 
Mineral trioxide aggregate
Mineral trioxide aggregateMineral trioxide aggregate
Mineral trioxide aggregate
 
Biodentine (newer material in dentistry)
Biodentine   (newer material in dentistry)Biodentine   (newer material in dentistry)
Biodentine (newer material in dentistry)
 
bioceramicmaterialsinendodontics-190304205019 (1).pdf
bioceramicmaterialsinendodontics-190304205019 (1).pdfbioceramicmaterialsinendodontics-190304205019 (1).pdf
bioceramicmaterialsinendodontics-190304205019 (1).pdf
 
CLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTACLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTA
 
apexification using biodentine
apexification using biodentineapexification using biodentine
apexification using biodentine
 
Mta - dr sneha
Mta - dr snehaMta - dr sneha
Mta - dr sneha
 
Bioactive restorative materials
Bioactive restorative materials Bioactive restorative materials
Bioactive restorative materials
 
mta
mtamta
mta
 
Mineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academyMineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academy
 
Obturating Material
Obturating Material Obturating Material
Obturating Material
 
2014 acta odontol scand (andrea corrado profeta) i
2014 acta odontol scand (andrea corrado profeta) i2014 acta odontol scand (andrea corrado profeta) i
2014 acta odontol scand (andrea corrado profeta) i
 
Mineral Trioxide Aggregate (MTA) in apexification
Mineral Trioxide Aggregate (MTA) in apexificationMineral Trioxide Aggregate (MTA) in apexification
Mineral Trioxide Aggregate (MTA) in apexification
 
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...
Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...
 
2014 acta odontol scand (andrea corrado profeta) ii
2014 acta odontol scand (andrea corrado profeta) ii2014 acta odontol scand (andrea corrado profeta) ii
2014 acta odontol scand (andrea corrado profeta) ii
 
Prietoet al.2011 early view microscopy
Prietoet al.2011 early view microscopyPrietoet al.2011 early view microscopy
Prietoet al.2011 early view microscopy
 
Open Apex with Mineral Trioxide Aggregate- Case Report
Open Apex with Mineral Trioxide Aggregate- Case ReportOpen Apex with Mineral Trioxide Aggregate- Case Report
Open Apex with Mineral Trioxide Aggregate- Case Report
 
Biodentine
Biodentine Biodentine
Biodentine
 
mineral trioxide aggregate.shadan
mineral trioxide aggregate.shadanmineral trioxide aggregate.shadan
mineral trioxide aggregate.shadan
 

Recently uploaded

(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...parulsinha
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...chandars293
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...narwatsonia7
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...chandars293
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Recently uploaded (20)

(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 

ROOT REPAIR MATERIALS FOR PERFORATIONS AND ENDODONTIC SURGERY

  • 1. ROOT REPAIR MATERIALS Dr.Rakesh Nair PG Student KVG Dental College Sullia Karnataka India
  • 2.  Introduction  Classification  MTA  Biodentine  GIC based sealers  Amalgam  Gutta percha  ZOE  Composite resins  Daiket  Bioceramic sealers  Recent materials  References
  • 3.  Roots needing repair are serious complications in dental practice and pose a number of diagnostic and management problems.  However, when teeth are of strategic importance root repair is clearly indicated whenever possible.  With advent of 3-D imaging and illumination the scope and success of root repair is very high.
  • 4. Root fracture Infective Perforation Root end filling Root maturogenesis Internal resorption Perforation Iatrogenic Gouching Strip perforations Apical perforations Furcal perforations Reasons for root repair Trauma
  • 5. ROOT END FILLING MATERIALS PERFORATION REPAIR MATERIALS ROOT REGENERATION MATERIALS ROOT REPAIR MATERIALS Bioactive materials Biologic materials
  • 6.  Amalgam  Gutta percha  ZOE  GIC related materials  Composite resin  Diaket  MTA  Biodentine ROOT END FILLING MATERIALS Recent materials • ERRM • Bioaggregate • I root BP Plus bioceramic putty • Novel root-end filling material
  • 8.  Calcium hydroxide  MTA  Biodentine  PRP/PRF
  • 9.  Traditionally, amalgam was the material of choice for root-end fillings.  The biocompatibility of amalgam is cited as a current issue of concern in dentistry.Many in vivo usage studies in animals have reported unfavorable tissue response to amalgam.  The use of amalgam as a root-end filling material can now be confined to history.
  • 10.  When GP is used as a root-end filling material, it absorbs moisture from periapical tissues because of its porous nature.  It expands initially,then contracts.  Pitt Ford et al. found that the tissue response to GP with zinc oxide root canal sealer was characterized by little or no inflammation.  In a comparative in vivo study on bone defect regeneration, most histological sections using GP as retrograde material showed signs of non-healing with lack of cortical bone and high level of inflammatory infiltration.
  • 11.  The material was considered to have good handling properties and postoperative results.  However, the original ZOE cements were weak and likely to be absorbed over a period of time.  Therefore, it was unsuitable for longterm use.  Two approaches were adopted to improve the physical properties of ZOE cements.
  • 12.  The partial substitution of eugenol liquid with EBA and the addition of fused quartz or aluminum oxide to the powder to give an EBA cement, Super EBA cement(Staident International Ltd., Staines, UK).  The addition of polymeric substances to the powder,  (a) polymethymethacrylate to the powder, Intermediate Restorative Material (IRM, DENTSPLY DeTrey GmbH, Konstanz, Germany)  (b) polystyrene to the liquid, Kalzinol (DENTSPLY DeTrey GmbH)
  • 13.  Eugenol is the major cytotoxic component in ZOE cements.  Zinc released from these cements is considered to be partly responsible for the prolonged cytotoxic effect.  Results of a comparative study showed no cell growth in the originally seeded cells in fresh IRM.  Recent studies have shown IRM to be more toxic than comparative materials.  In a research that investigated cellular attachment to root-end filling materials as a measure of the biocompatibility of the materials, both IRM and Super EBA rendered poor attachment
  • 14.  GIC have been suggested as an alternative root-end filling material.  Biocompatibility studies exhibited evidence of initial cytotoxicity with freshly prepared samples.  Toxicity decreases as the setting occurs.
  • 15.  Composite resins and resin-ionomer hybrids.  The biocompatibility of composite resin is influenced by the amount and nature of its leachable components.  The healing response of the periradicular tissues to composite resins in general appears to be very diverse, ranging from poor to good depending on the type of material used.  Two composite resin-based materials, Retroplast (Retroplast Trading, Rorvig, Denmark) and Geristore (Den-Mat, Santa Maria, CA, USA) have been advocated for use as root end filling materials.
  • 16.  Results of the observational studies examining various root-end filling materials on gingival fibroblast cells showed greater cell attachment to Geristore in comparison to mineral trioxide aggregate (MTA).  Other in vitro interpretations indicate that Geristore is less cytotoxic to gingival fibroblasts in comparison to MTA, GIC and IRM Surgical repair of root and tooth perforations JOHN D. REGAN, DAVID E. WITHERSPOON & DEBORAH M. FOYLE. Endodontic Topics 2005, 11, 152–178
  • 17.  (3M ESPE GmbH, Seefeld, Germany)  A polyvinyl resin, has been advocated for use as a root-end filling material.  When Diaket was used as a root canal sealer, biocompatibility studies showed that it was cytotoxic in cell culture and generated long-term chronic inflammation in osseous and subcutaneous tissues.  However, when mixed at the thicker consistency advocated for use as a root-end filling material, Diaket has shown good biocompatibility with osseous tissues.
  • 18.
  • 19.  MTA -first described in litrature by Lee , Mahmoud Torabinejad And Colleagues in 1993 when used as root end filling material..  Mineral trioxide aggregate, or MTA, is a biocompatible material with numerous exciting clinical applications in endodontics.  The material appears to be an improvement over other materials for endodontic procedures that involve root repair and bone healing.
  • 20.  POWDER  Tricalcium Silicate  Dicalcium Silicate  Tricalcium Aluminate Tetracalcium Alumino Ferrite  Calcium Sulphate  Bismuth Oxide WATER Distilled water
  • 21.  Mineral trioxide aggregate (MTA) is a fine hydrophilic powder available in single use sachets of 1 gram.  Some companies also provide premeasured water sachets for ease of use.  The important barriers to the widespread use of MTA are its cost and difficulty in storage.
  • 22.
  • 23. • There are few published reports of experimental data relating to the comparative setting times of the different forms of MTA. • Although the manufacturers of MTA-Angelus claim that this material has a setting time of 10 min, there appears to be no independent evidence to confirm this Grey Proroot MTA - 2 h 45 mins ± 5 mins (Torabinejad) - 2 h 55 min (Islam et `al) White MTA - 2 h 20 mins (Islam et `al) SETTING TIME
  • 24. • The presence of gypsum is reported to be the reason for the extended setting time of MTA. • In order to reduce the setting time, the effect of accelerators such as sodium phosphate dibasic (Na2HPO4) and calcium chloride (CaCl2) are being investigated currently. • MTA Bio is one commercially available product which incorporates an accelerator of this sort, and is promoted as a rapid-setting material. Mineral trioxide aggregate in paediatric dentistry VIDYA SRINIVASAN1 , PAULA WATERHOUSE2 & JOHN WHITWORTH3 mineral trioxide aggregate in paediatric dentistry VIDYA SRINIVASAN1 , PAULA WATERHOUSE2 & JOHN WHITWORTH3
  • 25.  The regeneration of the new cementum over MTA is a unique phenomenon that has not been reported to occur with other root end fillings.  The deposition of cementum hard tissue with MTA was also seen in root end fillings , dental pulps and apical tissue after root canal filling.  Torabinejad et al believed that the deposition of cementum against MTA may be due to a number of factors such as sealing ability, biocompatibility or alkaline pH on setting.
  • 26.  The setting reaction of MTA is a complicated process depending on the exact proportions of mineral phases,their purity and temperature of the mix.  On hydration calcium silicates present in MTA undergoes hydrolysis and produce calcium silicate hydrate and calcium hydroxide.  About one third of hydration products is constituted by calcium hydroxide which makes MTA highly alkaline.
  • 27.  CaO + H2O -- Ca(OH)2  Whereas, C2S and C3S react with water to produce calcium silicate hydrate (C-S-H) and calcium hydroxide  as:  2(3CaO.SiO2) + 6H2O -- 3CaO2.SiO2.3H2O+ 3Ca(OH)2  2(2CaO.SiO2) + 4H2O --3CaO2.SiO2.3H2O+ Ca(OH)2
  • 28.  The C3S is most important mineral phase in MTA and engages in the formation of C-S-H to provide early strength.  On the other hand, C2S reacts relatively slow and give later strength to the set material.  C3A present in MTA reacts with water to form calcium aluminates and (in presence of calcium sulphate) sulfate aluminates.
  • 29.  The C-S-H, the major hydration product of MTA is an amorphous compound with varying stoichiometric values.  The Ca:Si ratio in C-S-H generally varies between 0.8 and 2.1 with highly variable content of water therefore, set MTA can be described as calcium hydroxide contained within a silicate matrix.
  • 30.  MTA offers a biologically active substrate for bone cells and stimulates interleukins production.  Calcium hydroxide in contact with pulp tissue or culture medium produces deposition of calcite crystals. Also observed was rich extra cellular network of fibronectin in close contact with these crystals.  MTA is superior to amalgam, IRM, and super-EBA in preventing leakage of methylene blue, fusobacterium nucleatum, and endotoxin . It is biocompatible and induces osteogenesis and cementogenesis.  Which makes it an ideal choice for root repair.
  • 31.
  • 32.
  • 33.  Intra canal repair of accidental perforations after administering anesthesia, application of rubber dam and locating the perforation site, the area should be rinsed thoroughly with sodium hypochlorite.  In cases of long – standing perforations or in the presence of contamination, sodium hypochlorite should be left in the root canal system for a few minutes to disinfect the site of the perforation. Perforation repair
  • 34.  After complete instrumentation and obturation of the canals with gutta percha and root canal sealer apical to perforation sites (furcation and stripping), mix MTA with sterile water and place it at the perforation site with an amalgam carrier and pack it against the site with a plugger or a cotton pellet.
  • 35.  After repairing the perforation area with MTA, place a wet cotton pellet over MTA and seal the access cavity with a temporary filling material.  Remove the temporary and the wet cotton pellet at least 3 to 4 hours later and place a permanent filling material in the root and / or in the access cavity preparation.  When MTA is placed in perforations with a high degree of inflammation, the material remains soft when checked at the second appointment. This is due to the presence of low pH, which prevents proper setting of MTA.  Assess the healing in 3 to 6 months as indicated.
  • 36.  For apical perforations, mixed MTA should be placed into the apical portion of the canal with a messing gun (R. chige, Inc.,Boca Raton, FL ) or a small amalgam carrier and packed with small pluggers or paper points.  A 3 to 5 mm apical plug is needed to prevent coronal leakage and extrusion of obturation material into the periapical tissues. After inducing an apical plug, place a wet cotton pellet against it and close the access cavity with a temporary filling material.  Remove the cotton pellet at least 3 to 4 hours later and obturate the rest of the canal with gutta – percha and root canal sealer. In case of a large apical perforation, and ample moisture, placement of apical plug and obturation of the root canal system can be accomplished in one visit.
  • 37. Repair of perforations as a consequence of an internal resorption  After administering anesthesia and preparing the access cavity, the root canal should be completely cleaned and shaped.  Because of the presence of granulation tissue and the presence of communication between the root canal and the periodontium,heavy hemorrhage is usually encountered.
  • 38. Root end filling  Infected root canals harbor numerous species of bacteria which can progress into periradicular tissues and cause development of periradicular lesions.  Because of the complexity of the root canal system and our inability to completely clean it using present techniques and instruments, root canals cannot always be adequately treated.
  • 39. Advantages  The advantage of using a material to form an immediate apical barrier over the conventional apexification treatment is that endodontic treatment can be achieved in a single appointment .  (MTA can be used as a one step obturation material in an open apex)  70% of the failures in study of perforation repair were associated with extrusion of repair material. But MTA does not have to be compacted as firmly as amalgam to adapt adequately to the tooth surface .  The setting ability of MTA is uninhibited by blood or water. This is an important request of a material which has to be used normally in presence of blood & water and also in teeth with necrotic pulps and inflamed periapical lesions because one of problems in these cases is presence of exudates at the root apex
  • 40.  The slow setting time of MTA is an advantage in that it reduces the amount of setting shrinkage which may help explain MTA’s low micro leakage .  A major problem in performing endodontics in immature teeth with necrotic pulp and wide open apices is obtaining an adequate seal of the root canal system. MTA has been proposed as a potential material to create an apical plug at the end of the root – canal system, thus preventing the extrusion of filling materials  MTA has an antibacterial effect on few of the facultative bacteria, when comparatively none other test materials had all of antibacterial effects desired .  MTA has low solubility and a radioopacity slightly more than that of dentin
  • 41.  The use of MTA in cases where the material comes in direct contact with the oral cavity for an extended period of time is unpredictable. This is due to the fact that MTA dissolves in an acidic pH  MTA powder has to be mixed with sterile water and cannot be mixed with anesthetic / sterile liquid. This is because the effects other liquids may have on MTA’s physical, chemical and biological properties are unknown  Excess moisture has to be removed from the preparation / resorptive defect site, because MTA becomes soupy and difficult to condense.  It has low compressive strength, and so can not be placed in functional areas
  • 42.
  • 43.  When MTA is used as a root canal sealer and is compacted against dentin a dentin MTA interfacial layer is formed which resembles hydroxyapatite in composition and structure when examined under x-ray diffraction and SEM analysis.  Morover the hydration of MTA forms a gluey matrix that will adhere to the guttapercha providing a better seal.  Also the relatively long setting time and maturation add to the sealability of the material. MTA based root canal sealers.Manjusha et`al.Journal of orofacial research.2013
  • 44.  Alkaline environment by hypochlorite irrigation helps in the efficiency of the material.  Hence citric acid and EDTA final rinses are not advocated with MTA sealer.  Eg:-Pro root endo sealer,cpm sealer,mta obtura,mtas,F-doped MTA.
  • 46. Case 2 12 month post reimplantation MTA
  • 48.  Biodentine™ was developed by Septodont’s Research Group as a new class of dental material which could conciliate high mechanical properties with excellent biocompatibility, as well as a bioactive behavior  The material is actually formulated using the MTA-based cement technology and the improvement of some properties of these types of cements, such as physical qualities and handling.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.  Grech et al. investigated the setting time of Biodentine using an indentation technique while the material was immersed in Hank’s solution  The setting time of Biodentine was determined as 45 minutes.  This short setting time was attributed to the addition of calcium chloride to the mixing liquid
  • 54.  Compressive strength is considered as one of the main physical characteristics of hydraulic cements.  The product sheet of Biodentine states that a specific feature of Biodentine is its capacity to continue improving in terms of compressive strength with time until reaching a similar range with natural dentine.  In the study by Grech et al., Biodentine showed the highest compressive strength compared to the other tested materials.  The authors attributed this result to the enhanced strength due to the low water/cement ratio used in Biodentine.
  • 55.
  • 56.  Microhardness. Grech et al. evaluated the microhardness of the material using a diamond shaped indenter.  Their results showed that Biodentine displayed superior values compared to Bioaggregate and IRM.
  • 58.  Biodentine has a wide range of applications including endodontic repair (root perforations, apexification, resorptive lesions, and retrograde filling material in endodontic surgery) and pulp capping and can be used as a dentine replacement material in restorative dentistry.
  • 59.  Some authors have indicated that there are few studies on the properties of newly developed materials such as Biodentine.  The material is characterized by the release of calcium when in solution.  Tricalcium silicate based materials are also defined as a source of hydroxyapatite when they are in contact with synthetic tissue fluid.
  • 60.  Another area of use of Biodentine, specifically from an endodontic point of view, is the repair of perforations.  which is likely to be encountered in clinical practice. It is essential that a perforation repair material should have sufficient amount of push-out bond strength with dentinal walls for the prevention of dislodgement from the repair site.
  • 61.  Aggarwal et al. studied the push-out bond strengths of Biodentine, ProRoot MTA, and MTA Plus in furcal perforation repairs.  Push-out bond strength increased with time. Their results showed that the 24 h push-out strength of MTA was less than that of Biodentine .  Blood contamination affected the push-out bond strength of MTA Plus irrespective of the setting time. A Review on Biodentine, a Contemporary Dentine Replacement and Repair Material.Ozlem Malokondu et`al.J.Bio Med Res.2014.
  • 62.  In a study by Guneser et al., Biodentine showed considerable performance as a repair material even after being exposed to various endodontic irrigation solutions, such as NaOCl, chlorhexidine, and saline, whereas MTA had the lowest push-out bond strength to root dentin. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials.Guneser,Akbuluz,Eldinez.J.Endod.March.2013
  • 63.  Porosity and Material-Dentine Interface Analysis.  Tricalcium silicate based materials are especially indicated in cases such as perforation repair, vital pulp treatments, and retrograde fillings where a hermetic sealing is mandatory.  Therefore, the degree of porosity plays a very important role in the overall success of treatments performed using these materials, because it is critical factor that determines the amount of leakage.
  • 65.
  • 67.  Radiopacity.  Radiopacity is an important property expected from a retrograde or repair material as these materials are generally applied in low thicknesses and they need to be easily discerned from surrounding tissues.  The ISO 6876:2001 has established 3mmAl as the minimum radiopacity value for endodontic cements.
  • 68.  Zirconium oxide is used as a radiopacifier in Biodentine contrary to other materials where bismuth oxide is preferred as a radiopacifier.  The reason for such a preference might be due to some study results which show that zirconium oxide possesses biocompatible characteristics and is indicated as a bioinert material with favorable mechanical properties and resistance to corrosion.
  • 69.  A clinical observation stated that the radiopacity of Biodentine is in the region of dentin and the cement is not adequately visible in the radiograph.  This posed difficulty in terms of practical applications T. Dammaschke, “Biodentine-an overview,” Septodont CaseStudies Collection, no. 3, 2012.
  • 70. Solubility.  Grech et al. demonstrated negative solubility values for a prototype cement, Bioaggregate, and Biodentine, in a study assessing the physical properties of the materials.  They attributed this result to the deposition of substances such as hydroxyapatite on the material surface when in contact with synthetic tissue fluids.  This property is rather favorable as they indicate that the material does not lose particulate matter to result in dimensional instability. A Review on Biodentine, a Contemporary Dentine Replacement and Repair Material. Özlem Malkondu, Meriç Karapinar KazandaL and Ender KazazoLlu.Bio Med Res.June.2014
  • 71. Effect on the Flexural Properties of Dentine.  An important issue related to the usage of calcium silicate based materials is their release of calcium hydroxide on surface hydrolysis of their calcium silicate components.  On the other hand, it has also been indicated that prolonged contact of root dentine with calcium hydroxide as well as MTA has detrimental and weakening effects on the resistance of root dentine.
  • 72. Discoloration.  One study evaluated Biodentine from this perspective where Biodentine, along with 4 different materials, was exposed to different oxygen and light conditions and spectrophotometric analysis was performed at different periods until 5 days.  Favorable results were obtained for Portland Cement (PC) and Biodentine and these 2 materials demonstrated color stability over a period of 5 days.  Based on their results, the authors suggested that Biodentine could serve as an alternative for use under light-cured restorative materials in areas that are esthetically sensitive.
  • 73. Wash-Out Resistance.  Washout of a material is defined as the tendency of freshly prepared cement paste to disintegrate upon early contact with fluids such as blood or other fluids.  The results of the available study on these characteristics of Biodentine did not reveal favorable results as the material demonstrated a high washout with every drop used in the methodology.  The authors attributed this result to the surfactant effect by the water soluble polymer added to the material to reduce the water/cement ratio.
  • 74.  Biocompatibility of a dental material is a major factor that should be taken into consideration specifically when it is used in pulp capping, perforation repair or as retrograde Filling  Though the information accumulated so far regarding the biocompatibility of Biodentine is rather limited, the available data generally is in favor of the material in terms of its lack of cytotoxicity and tissue acceptability.
  • 75.  Han and Okiji compared Biodentine and white ProRoot MTA in terms of Ca and Si uptake by adjacent root canal dentine and observed that both materials formed tag-like structures.  They observed that dentine element uptake was more prominent for Biodentine than MTA. The same authors in another study also showed the formation of tag-like structures composed of Ca and P-rich and Si-poor materials.  They also determined a high Ca release for Biodentine.
  • 76.  Recently, ERRM putty and paste (Brasseler USA, Savannah, GA, USA) have been developed.  It is available as ready-to-use, premixed bioceramic materials recommended for perforation repair, apical surgery, apical plug, and pulp capping.
  • 77.  Biomaterials are native or synthetic polymers that perform as scaffolds for tissue regeneration and hold wide importance in the field of dentistry, drug delivery, cancer treatment, thrombotic diseases, and cosmetic surgery.
  • 78.  Various bioactive materials are available in today’s time like mineral trioxide aggregate (MTA), bioactive glass, and bioaggregate materials.  In regenerative endodontic therapy, an ideal autologous biomaterial for pulp-dentin complex regeneration is platelet-rich fibrin (PRF).
  • 79.  PRF was first developed by Choukroun et al., in 2001 at France.  Studies have demonstrated that the PRF has a very significant slow sustained release of many key growth factors like platelet-derived growth factor and transforming growth factor- β for at least 1 week and up to 28 days.
  • 80. Various clinical applications of PRF include,  root coverage,  bone regeneration,  treatment of endo-perio lesions,  sinus floor elevation,  stabilize graft material in ridge augmentation,  socket preservation,  filling cystic cavities,  and in various medical fields.
  • 81.  PRF represents a new revolutionary step in the platelet gel therapeutic concept.  Unlike other platelet concentrates, this technique does not require any gelifying agent, but not more than centrifugation of the natural blood without additives.
  • 82.  No biochemical handling of blood.  Simplified and cost-effective process.  Use of bovine thrombin and anticoagulants not required.  Favorable healing due to slow polymerization.  More efficient cell migration and proliferation.  PRF has supportive effect on immune system.  PRF helps in hemostasis.
  • 83.  The protocol for PRF preparation is very simple and simulates that of PRP.  It includes collection of whole venous blood (around 5 ml) in each of the two sterile vacutainer tubes (6 ml) without anticoagulant and the vacutainer tubes are then placed in a centrifugal machine at 3,000 revolutions per minute (rpm) for 10 min  After which it settles into the following three layers: Upper straw-colored acellular plasma, red-colored lower fraction containing red blood cells (RBCs), and the middle fraction containing the fibrin clot.
  • 84.
  • 85.  The middle part is platelets trapped massively in fibrin meshes.  The success of this technique entirely depends on time gap between the blood collection and its transfer to the centrifuge and it should be done in less time.  The blood sample without anticoagulant, starts to coagulate almost immediately upon contact with the glass, and it decreases the time of centrifugation to concentrate fibrinogen. Platelet-rich-fibrin: A novel root coverage approach K Anilkumar,Geetha,Pameela. J Indian Soc Periodontol. 2009 Jan;13(1):50-4
  • 86.  EndoSequence® BC RRM™ (Root Repair Material) is available in two specifically formulated consistencies (syringable paste or condensable putty) and contains many of the same characteristics as BC Sealer.
  • 87.  Calcium silicate  Calcium phosphate monobasic  Zirconium oxide  Tantalum oxide  Filler and thickening agents.  pH > 12
  • 88.  The favorable handling properties, increased strength and shortened set time make BC RRM™ highly resistant to washout and ideal for all root repair and pulp capping procedures.  Research and countless cases confirm that BC RRM™ is highly biocompatible and osteogenic. Cytotoxicity evaluation of endosequence root repair materialAmer Z. AlAnezi, Jin Jiang, Kamran E. Safavi. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2013
  • 89.  iRoot BP Plus (Innovative BioCeramix Inc., Vancouver, Canada) is a fully laboratory-synthesized, water-based bioceramic cement.  It claims to be a more convenient reparative material, because it is a ready to-use white hydraulic premixed formula.  A current study to verify in vitro cytocompatibility of iRoot BP Plus bioceramic putty concluded that iRoot and MTA were biocompatible and did not induce critical cytotoxic effects. De-Deus G, Canabarro A, Alves GG, Marins JR, Linhares AB, Granjeiro JM. Cytocompatibility of the ready-to-use bioceramic putty repair cement iRoot BP Plus with primary Saxena P et al.. Int Endod J 2012;45:508-513.
  • 90.  Bioaggregate appears to be a modified or synthetic version of original MTA.  According to the manufacturer, this material contains biocompatible pure white powder composed of ceramic nano- particles and deionized water.  Bioaggregate appeared to be biocompatible compared with WMTA on human pulp cells, PDL cells and MG63 cells.
  • 91.  Gel-like calcium silicate hydrate.  Gel-like calcium Aluminate hydrate  Calcium hydroxide  Hydroxyapatite  Calcium sulfate  Bismuth oxide.  Tantalum oxide  Amorphous silicon oxide
  • 92.  A novel resin based root-end filling material (termed New resin cement, NRC) has been introduced.  NRC is a powder and liquid system. The liquid is composed of hydroxyethylmethacrylate, benzoyl peroxide, toluidine, and toluenesulfinate.  And the powder is made of calcium oxide,calcium silicate, and triphenyl bismuth carbonate. Novel root-end filling material
  • 93.  One study determined the cytotoxicity of NRC and concluded that the initial biocompatibility results of NRC are favorable for a root-end filling material.  A recent in vivo study concluded that NRC shows moderately higher inflammatory reaction than MTA however, the calcium reservoir capability of NRC may contribute to mineralization of the tissues.
  • 94.  Newer and better root repair materials are being introduced in to the market every year.  The recent trend is towards bioactive materials which have osteo inductive and conductive properties.  The clinician should have a thorough knowledge about these products to compare and contrast before using the best material for each case.
  • 95.  Biocompatibility of root-end filling materials: recent update. Payal Saxena1*, Saurabh Kumar Gupta, Vilas Newaskar. The Korean Academy of Conservative Dentistry.  BioDentine: A dentin substitute for the repair of root perforations, apexification and retrograde root filling.J Conserv dent.Francois bronne.  Repair of Furcal Perforation with Mineral Trioxide Aggregate: Long-Term Follow-Up of 2 Cases. Camila M.M. Silveira et `al. JCDA • October 2008, Vol. 74, No. 8.  Mineral Trioxide Aggregate—A Review. Arathi Rao, Ashwini Rao, Ramya Shenoy. The Journal of Clinical Pediatric Dentistry Volume 34, Number 1/2009.  Evaluation of Radiopacity, pH, Release of Calcium Ions,and Flow of a Bioceramic Root Canal Sealer. George Taccio de Miranda Candeiro. JOE — Volume 38, Number 6, June 2012.  Role of Platelet rich fibrin in wound healing:A critical review. Balaram Naik, P Karunakar1, M Jayadev1, V Rahul Marsha. Journal of Conservative Dentistry .Jul-Aug 2013 .Vol 16 .Issue 4  Dental materials-Mahalakshmi.Edition 1.