Your SlideShare is downloading. ×
Fixing the program my computer learned: End-user debugging of machine-learned programs
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Fixing the program my computer learned: End-user debugging of machine-learned programs

939
views

Published on

Published in: Technology, Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
939
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Fixing the program my computer learned: End-user debugging of machine-learned programs Dr Simone Stumpf City University London Simone.Stumpf.1@city.ac.uk
  • 2. Bio 1996 BSc, Comp Sci w/ Cog Sci, UCL 2001 PhD Comp Sci, UCL 2001 - 2004 Research Fellow, UCL 2004 - 2007 Research Manager, Oregon State (OSU) 2007 - 2009 UX Architect, White Horse 2008 - present Asst Professor (Senior Research), OSU 2009 - present Lecturer, City University London 2
  • 3. What are machine-learned programs? •! Systems that “predict” –! Spam filters, “smart desktops”, web page recommendations •! Learn from and adapt to user after deployment •! Probabilistic machine learning algorithms •! Resulting behaviour is a program How do you debug a program that was written by a machine instead of a person? Especially when you don’t know much about programming and are working with a program you can’t even see? 3
  • 4. A quick machine learning detour… “Simple” algorithm like Naïve Bayes –! Have input (features) and outputs (labels or classes) –! From training data they learn a function: weight*input = class –! As they further learn weights are changed eg. spam filters (bag-of-words approach) –! take all words appearing in the training data as features –! throw out stop words (a, the, ?) –! do stemming (walking, walked = walk) –! learn how prevalent certain words are in spam messages –! use that function to predict whether new email message is spam 4
  • 5. Current debugging approach Based on your interest in: ! ! ! " We recommend: 5
  • 6. Problems and opportunities for end users •! Are not machine learning experts or programmers •! Only they can fix if incorrect behaviour occurs –! Cannot inspect source code –! Can only observe results at run-time –! Can usually only give more training examples to influence future behaviour –! Need to provide lots of training data to change behaviour •! Much richer knowledge could be exploited •! Could increase usability and trust How can the program communicate its reasoning to the end user? How could the user talk back? 6
  • 7. Formative study •! Enron email dataset folders (farmer-d): Personal, Resume, Bankrupt, Enron News (122 messages) •! Lo-fi prototypes with explanations –! Rule-based –! Similarity-based –! Keyword-based •! 13 participants, talk-aloud 7
  • 8. Explanations by ML program Simplified yet faithful Concrete •! Rule-based best understood but no clear overall preference •! Serious understandability problems with Similarity-based •! Negative keyword list with keyword-based problematic (negative weights) Matters if they they think reasoning is sound and it is communicated clearly, word choices important 8
  • 9. What does the user tell the program? •! Select different features (53%) –! It should put email in ‘Enron News’ if it has the keywords “changes” and “policy”. •! Adjust weights (12%) –! The second set of words should be given more importance. •! Parse/extract in different way (10%) –! I think that it should look for typos in the punctuation for indicators toward ‘Personal’. •! Employ feature combinations (5%) –! I think it would be better if it recognized a last and a first name together. •! Use relational features (4%) –! This message should be in ‘EnronNews’ since it is from the chairman of the company. 9
  • 10. What knowledge do they use? •! Commonsense (36%) –! “Qualifications” would seem like a really good Resume word, I wonder why that’s not down here. •! English (30%) –! Does the computer know the difference between “resumé” and “resume”? •! Domain (15%) –! Different words could have been found in common like … “Ken Lay”. 10
  • 11. Putting it into practice… Message List Folders Message Explanation 11
  • 12. Usability of prototype •! System doesn’t heed user, learning too much or too little •! “Unlearning” important •! Users take care in selecting feedback but lack support to make good choices 12
  • 13. A why-oriented approach to debugging ML Folders Message List Message Why Questions Explanation 13
  • 14. Barriers for end users •! All encountered barriers, Selection and Coordination most prevalent •! Some users get “stuck” within a Selection barrier loop Systems need to support where to debug and the effects of debugging 14
  • 15. What helps end users debug? •! What information regarding logic of a learned program is particularly useful •! Machine-learning saliency –! exposure of useful and accurate pieces of information about the logic of a machine-learned program 15
  • 16. Study set-up •! Domain of “coding” transcripts •! 9 participants with coding experience •! With and without explanations 16
  • 17. Natural Programming approach 17
  • 18. Saliency principles •! SP1: Expose the ML Program’s Reasoning Process –! Data (features) –! Reasoning (probabilities, absence) •! SP2: Support a Flexible Vocabulary –! Word combinations, punctuation, relational information –! Extensible by user •! SP3: Illustrate Effects of User Changes –! Impact of user actions –! “sandbox” 18
  • 19. The AutoCoder prototype Prediction Confidence widget (W3), Impact Machine-generated Explanation (W1), Count Icons (W5), Popularity Bar Absence Explanation (W2), User- (W7), Change History Markers (W6). generated Suggestion (W4) 19
  • 20. Saliency study •! 74 participants, no coding experience •! 4 versions –! Basic (VB): machine-generated explanations, user suggestions, change history markers –! Code-oriented (V1): Basic + Absence + Impact Count –! Runtime-oriented (V2): Basic + Confidence + Popularity –! Comprehensive (V3) •! Each participant experienced two versions and two transcripts 20
  • 21. Saliency widgets useful for debugging •! Explanations Most helpful •! Confidence •! Popularity •! Change History •! Impact Count •! Absence Least helpful •! Runtime version preferred over code-oriented, combination of both clear winner •! Problems with misinterpretation of Popularity •! Demonstrates saliency principles are good starting point 21
  • 22. Getting feedback from users….Great! WHAT DO WE DO WITH IT? 22
  • 23. Changing the machine’s reasoning •! Simplest way: adjust feature weights •! Constraint-based –! No substantial improvements in accuracy –! Hardness of constraints difficult to set •! User co-training (new) –! Exploits unlabeled data –! Substantial improvements for some users, especially if no user feedback approach resulted in low accuracy –! Some losses for others Quality of feedback matters otherwise there is “noise” 23
  • 24. End-user feature engineering •! Process of designing features for use by a ML algorithm –! What to attend to/what counts as input •! Critical for performance •! Typically done by a machine learning expert with a domain expert before deployment 24
  • 25. Impact •! Option 1: Add user-defined features to algorithm (+1%) •! Option 2: Add them and weight them more heavily (-2.5%) •! Higher increases for individuals with weighted approach (+27%) but canceled out by individual decreases (-30%) Need to spot unpredictive features (“noise”) 25
  • 26. Identifying unpredictive features •! Characteristic 1: Poor test data agreement –! # of test segments with feature F and class label C divided by # of test segments with feature F •! Characteristic 2: Under-representation of a user-defined feature in its assigned class in test data –! # of test segments with feature F and class label C divided by # of test segments with class label C 26
  • 27. Evaluation and implications •! Filtering features based on these characteristics –! 94% of the 100 worst user-defined features can be filtered (but 64% of 100 best user-defined features are removed) –! 5% macro-F1 increase overall, 32.2% best individual increase for Option 2 •! Can compute approximations in absence of much test data •! Build user interface approaches to help identify when unpredictive features are added How much do we trust the user feedback? How much does the ML algorithm trust itself? 27
  • 28. Future Work •! New explanations, new interfaces for new algorithms –! Other approaches (recommender systems, neural nets etc) •! Debugging strategies and debugging support –! User competence models –! ML Confidence models –! User languages to change data and reasoning –! Unlearning –! Cost/Benefit •! Learn from other users or “common sense” 28
  • 29. Conclusion •! New, exciting research area combining HCI and AI •! Can make ML systems much smarter and quicker by harnessing knowledge of end users •! Increase usability of these systems for end users 29
  • 30. Publications •! S. Stumpf, V. Rajaram, L. Li, W. Wong, M. Burnett, T. Dietterich, E. Sullivan, and J. Herlocker, "Interacting meaningfully with machine learning systems: Three experiments," Int. J. Hum.-Comput. Stud., vol. 67, 2009, pp. 639-662. •! T. Kulesza, W. Wong, S. Stumpf, S. Perona, R. White, M.M. Burnett, I. Oberst, and A.J. Ko, "Fixing the program my computer learned: barriers for end users, challenges for the machine," Proceedings of the 14th international conference on Intelligent user interfaces, Sanibel Island, Florida, USA: ACM, 2009, pp. 187-196. •! S. Stumpf, E. Sullivan, E. Fitzhenry, I. Oberst, W. Wong, and M. Burnett, "Integrating rich user feedback into intelligent user interfaces," Proceedings of the 13th international conference on Intelligent user interfaces, Gran Canaria, Spain: ACM, 2008, pp. 50-59. •! S. Stumpf, V. Rajaram, L. Li, M. Burnett, T. Dietterich, E. Sullivan, R. Drummond, and J. Herlocker, "Toward harnessing user feedback for machine learning," Proceedings of the 12th international conference on Intelligent user interfaces, Honolulu, Hawaii, USA: ACM, 2007, pp. 82-91. 30