Focus on the diagnosis and treatment of  coronary heart disease:  A.Parkhomenko, MD, PhD, FESC, FICA National Scientific C...
Proposed Determinants of Anatomic and Clinical Natural History of CAD Course Dependent on Atherosclerosis Progression and ...
70% of ACS culprit lesions (Naghavi et al. Circulation 2003;108:1664-72) “ Vulnerable Plaque” = thrombosis-prone   plaque ...
Background <ul><li>We are approaching a new era where multiple coronary imaging modalities are becoming available. </li></...
Coronary Imaging <ul><li>Conventional 2D angiography </li></ul><ul><li>3D coronary angiography </li></ul><ul><li>CT scan <...
Palpography Inactive and non-inflamed plaque Active and inflamed plaque vs. IVUS+Vasa vasorum imaging OCT Morphology IVUS+...
Why do we need additional imaging tools beyond coronary angiogram? <ul><li>2D imaging </li></ul><ul><li>Lumen imaging only...
3D Coronary Angiography
Lesion Analysis <ul><li>Create 3D reconstruction.  </li></ul><ul><li>Accurate lesion measurements are presented. </li></ul>
Procedure Planning <ul><li>Using the bars, mark the desired device length and location for deployment on the 2D or 3D imag...
 
2.9F 20 MHz Solid state transducer  (64 elements) <ul><li>Gray scale  </li></ul><ul><li>VH IVUS  </li></ul><ul><li>Palpogr...
Higher-frequency IVUS <ul><li>IVUS images of a coronary artery at (A) 30 MHz, (B) 40 MHz, and (C) 50 MHz </li></ul>Reprodu...
IVUS profile of ruptured plaques: Insights into pre-rupture morphology (n=112 culprit ruptured plaques) (Fujii et al. Am J...
Effect of Rosuvastatin on Coronary Atheroma in Stable Coronary Artery Disease : COSMOS study Percent change of plaque volu...
IVUS-Based Therapeutic Decision %DS=52% %CSA=11.0 mm 2 %CSA=6.0 mm 2 AREA STENOSIS=46% CONSERVATIVE TX
Impact of  IVUS  guidance in stent deployment on 6-month restenosis rate :  RESIST Study Crossectional areas were larger i...
Clinical benefits of IVUS-guided vs non-IVUS guided stent implantation? Composite end-point: Cardiac death, MI, revasc., a...
In BMS era 10/12 studies supported  IVUS-guided PCI Study Angio Better IVUS Better IVUS Also Cheaper Choi et al (AHJ  2001...
I VUS optimized drug eluting stent implantation: The PRAVIO study   Minimum lumen diameter in IVUS-guided vs angio-guided ...
All-Cause Mortality After LMCA DES Implantation: Impact of IVUS Guidance (SJ Park et al. TCT 2007) 1.5 1.0 Years after DES...
Intravascular thermography <ul><li>Inflammation  is central in the  genesis of  acute coronary syndromes.  </li></ul><ul><...
A display of geometrically correct 3D IVUS using a miniaturized electromagnetic position sensor Reproduced from  Y .  Hond...
IVUS -based temperature monitoring studies normal arterial tissue with the laser illumination photoacoustic response from ...
IVUS elastography/palpography RL Maurice. 2008 Illustration of the vessel wall segmentation LSME radial strain elastogram,...
IBIS study Van Mieghem et al J Am Coll Cardiol 2006;47:1134 <ul><li>High strain spots on palpography </li></ul><ul><li>pre...
Circulation.  2003;108:1664 The 2 nd  most common type? Naghavi et al.
Gray-scale IVUS uses only the amplitude (echo intensity) in formation of the image Frequency of echo signal can also vary,...
Power (dB) Frequency (MHz) Fibrous Calcium Fibrolipidic Necrotic core Virtual Histology (VH)
Virtual histilogy IVUS using  spectral analysis of radiofrequency data to construct   tissue maps Early  fibroatheromas (A...
<ul><ul><li>“ Thin Cap Fibro-Atheroma (TICFA )”  or  “Vulnerable Plaque”  Necrotic Core is significant (>10% of total plaq...
Use of Virtual Histology to predict distal embolization after PCI for STEMI   Kanaguchi et al. J Am Coll Cardiol 2007;50:1...
Impact of plaque components on no-reflow phenomenon after stent deployment in patients with  ACS: VH-IVUS The  only indepe...
Plaque and Lesion Classification by VH IVUS by the Miami Consensus Meeting November 2006 R  Virmani MD, P Serruys MD PhD, ...
The  PROSPECT  Trial 700 pts with ACS UA (with ECG Δ ) or NSTEMI or STEMI >24º 1-2 vessel CAD undergoing PCI at up to 40 s...
3-vessel imaging post PCI F/U: 1 mo, 6 mo, 1 yr, 2 yr, ±3-5 yrs Culprit artery, followed by non-culprit arteries Angiograp...
PROSPECT  Methodology IVUS/VH Core Lab Analysis  Lesions are classified into 13 main sub-types  based  on VH composition 1...
VH-TCFA Multiple NC Length 3.7 mm   F   35 % FF   1 % NC   52 % DC   12 % MRCA fibroatheroma Stent Angiographically near n...
2 nd   VH-TCFA Single NC Length 11 mm F   39 % FF   1 % NC   53 % DC   7 % PRCA fibroatheroma Stent Angiographically mild ...
Expected Correlation with the Anatomy of Vasa Vasorum  Note: Pathology pictures are not related to IVUS (taken from Ritman...
 IVUS after bubbles at same position and cardiac phase timing IVUS at t=0 Differential Echogenecity (t 0 , P 1 ) (t,   P ...
Thick Fibrous Cap Thin Cap Fibroatheroma Intravascular optical coherence tomography imaging Ran Kornowski, CRT 2008 <ul><l...
OCT Imaging of Vulnerable Plaques TCFA Ulcerated plaque + spontaneous rupture Eccentric plaque + TCFA + microcacifications...
Frequency of TCFA Is Greater in Acute Coronary Syndromes (Jang et al. Circulation. 2005;111:1551-5)
Intravascular optical coherence tomography imaging Dissection observed with optical coherence tomography (OCT) (A) and IVU...
OCT (Immediately Post Stenting) Optimal stent expansion Regional stent mal-apposition Tissue prolapse Ran Kornowski, CRT 2...
OCT (Late Post Stenting) Ran Kornowski, CRT 2008
Red Thrombus   was identified from the high-backscattering protrusions inside the lumen of the artery, with signal-free sh...
6-Month Results – OCT Data 49.5% 30.2% 17.6% 2.7% Stent Strut Appearance – 6 Mos. F/U J Ormiston, et al,  Lancet  2008; 37...
Case Example 24-Month Results – OCT Data P.W.Serruys, TCT 2008 Post Procedure 2 Years
Near infrared (NIR) spectroscopy is commonly used to measure chemical composition of unknown substances and could be appli...
Caplan JD et al. J Am Coll Cardiol 2006;47:C92 Near-infrared spectra of various pure substances possibly related to plaque...
SPECTACL: No Lipid Signal at Culprit <ul><li>55y, M </li></ul><ul><li>BMI 32.4 kg/m 2 </li></ul><ul><li>Progressive  Angin...
SPECTACL: Lipid Signal at Culprit Culprit <ul><li>71y, M </li></ul><ul><li>BMI 28.3 kg/m2 </li></ul><ul><li>MI (<72 hrs) <...
<ul><li>Yellow plaques have been associated with: </li></ul><ul><ul><li>Culprit lesions of ACS </li></ul></ul><ul><ul><li>...
“ Eyeball” Colorimetry: Higher  Yellow Color Intensity  is Associated with Higher Prevalence of  Plaque Thrombus <ul><li>8...
Ishibashi, Waxman et al. Am J Cardiol 2007 Quantitative Colorimetry with Angioscopy High Yellow Color  Intensity of Culpri...
Number  of Yellow Plaques in a Coronary Artery is Associated with Future ACS Marker of disease burden, not predictive of l...
Balakrishnan, K. R. et al. Circulation  2006;113:e41-43e <ul><li>Macrophage infiltration </li></ul><ul><li>Delivery of inf...
Magnets and coils incorporated into intravascular catheter Intravascular MRI: Plaque Detection <ul><li>IVMRI transmits a s...
Proximal  Distal  s Lipid fraction index (LFI):  High   Intermediate Low  Void D P <ul><li>48 year old female with stable ...
Summary <ul><li>Despite aggressive medical therapy a significant number of patients suffer from death, myocardial infarcti...
 
Upcoming SlideShare
Loading in …5
×

Dr. Alexander Parkhomenko. Utilidad de las nuevas técnicas de imagen invasivas

2,087 views

Published on

Focus en el diagnóstico y tratamiento de las enfermedades coronarias. Utilidad de las nuevas técnicas de imagen invasivas

Published in: Health & Medicine
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,087
On SlideShare
0
From Embeds
0
Number of Embeds
68
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • VH-IVUS automatically classified the plaque into 4 major components: fibrous (labeled green color), fibro-fatty (labeled greenish-yellow color), necrotic core (labeled red color), and dense calcium (labeled white color).
  • 500553-LV4
  • Dr. Alexander Parkhomenko. Utilidad de las nuevas técnicas de imagen invasivas

    1. 1. Focus on the diagnosis and treatment of coronary heart disease: A.Parkhomenko, MD, PhD, FESC, FICA National Scientific Center “Institute of Cardiology”, Kiev, Ukraine Usefulness of New Invasive Imaging Techniques
    2. 2. Proposed Determinants of Anatomic and Clinical Natural History of CAD Course Dependent on Atherosclerosis Progression and Remodeling Pattern (Chatzizisis, et al. JACC 2007)
    3. 3. 70% of ACS culprit lesions (Naghavi et al. Circulation 2003;108:1664-72) “ Vulnerable Plaque” = thrombosis-prone plaque and plaque with a high probability of undergoing rapid progression
    4. 4. Background <ul><li>We are approaching a new era where multiple coronary imaging modalities are becoming available. </li></ul><ul><li>Each technology has its own unique features and added diagnostic value in detecting atherosclerosis . </li></ul><ul><li>However, there are not many data about the potential clinical utility of each imaging modality and its presumed impact on disease management and/or outcomes. </li></ul>
    5. 5. Coronary Imaging <ul><li>Conventional 2D angiography </li></ul><ul><li>3D coronary angiography </li></ul><ul><li>CT scan </li></ul><ul><li>Intravascular ultrasound </li></ul><ul><li>Virtual histology (VH) </li></ul><ul><li>Optical coherence tomography (OCT) </li></ul><ul><li>Intravascular MRI </li></ul><ul><li>Thermographic imaging </li></ul><ul><li>Optical-acoustic vascular imaging </li></ul><ul><li>MediGuide coronary imaging </li></ul><ul><li>Physiologic assessment </li></ul><ul><li>Etc… </li></ul>
    6. 6. Palpography Inactive and non-inflamed plaque Active and inflamed plaque vs. IVUS+Vasa vasorum imaging OCT Morphology IVUS+Virtual histology Physical properties Endothelial shear stress Activity - Chemistry Spectroscopy Thermography IV MRI
    7. 7. Why do we need additional imaging tools beyond coronary angiogram? <ul><li>2D imaging </li></ul><ul><li>Lumen imaging only </li></ul><ul><li>No plaque imaging </li></ul><ul><li>Inaccurate severity assessment </li></ul><ul><li>No remodeling parameter </li></ul><ul><li>No tissue characterization </li></ul>
    8. 8. 3D Coronary Angiography
    9. 9. Lesion Analysis <ul><li>Create 3D reconstruction. </li></ul><ul><li>Accurate lesion measurements are presented. </li></ul>
    10. 10. Procedure Planning <ul><li>Using the bars, mark the desired device length and location for deployment on the 2D or 3D images. </li></ul>
    11. 12. 2.9F 20 MHz Solid state transducer (64 elements) <ul><li>Gray scale </li></ul><ul><li>VH IVUS </li></ul><ul><li>Palpography </li></ul>Volcano Eagle Eye Catheter Patrick Serruys, presented at VP Summit AHA 2005 IVUS
    12. 13. Higher-frequency IVUS <ul><li>IVUS images of a coronary artery at (A) 30 MHz, (B) 40 MHz, and (C) 50 MHz </li></ul>Reproduced from Y . Honda, P . J. Fitzgerald . 2008
    13. 14. IVUS profile of ruptured plaques: Insights into pre-rupture morphology (n=112 culprit ruptured plaques) (Fujii et al. Am J Cardiol 2006;98:429-35)
    14. 15. Effect of Rosuvastatin on Coronary Atheroma in Stable Coronary Artery Disease : COSMOS study Percent change of plaque volume, the primary endpoint, was –5.1±14.1% (P<0.0001). Rosuvastatin exerted significant regression of coronary plaque volume in Japanese patients with stable CAD, including those who had previously used other lipid-lowering drugs. T . Takayama et al. 2009
    15. 16. IVUS-Based Therapeutic Decision %DS=52% %CSA=11.0 mm 2 %CSA=6.0 mm 2 AREA STENOSIS=46% CONSERVATIVE TX
    16. 17. Impact of IVUS guidance in stent deployment on 6-month restenosis rate : RESIST Study Crossectional areas were larger in IVUS guided group and restenoses rates did not differ significantly F. Schiele et al. 1998 P<0,05 NS P<0,05 P<0,05 Stent restenosis rates Crossectional area
    17. 18. Clinical benefits of IVUS-guided vs non-IVUS guided stent implantation? Composite end-point: Cardiac death, MI, revasc., abrupt stent closure Acute vessel closure Intraprocedural cost was significantly higher in the IVUS-guided group, $4142 +/- 1547 vs $3635 +/- 1949 (P = 0 .03) JW Choi et al. 2001 RR, 95% CI 0 0,5 1,0 1,5 RR = 0,49 (0,25 – 0,98), p=0,04 P=0,04
    18. 19. In BMS era 10/12 studies supported IVUS-guided PCI Study Angio Better IVUS Better IVUS Also Cheaper Choi et al (AHJ 2001;142:112-8) x CENIC ( JACC 2002;39:54A) X CRUISE ( Circulation 2000;102:523-30) X SIPS ( Circulation 2000;102:2497-502 and AJC 2003;91:143-7) X X AVID ( Circulation 1999;100:I-234) X Gaster et al ( Scan Cardiovasc J 2001;35:80-5 & Heart 2003;89:1043-9) X x RESIST (JACC 1998;32:320-8 & Int J Cardiovasc Intervent 2000;3:207-13) X TULIP ( Circulation 2003;107:62-7) X BEST ( Circulation2003;107:545-551 ) X OPTICUS (Circulation. 2001;104:1343-9) x PRESTO (Am Heart J. 2004;148:501-6) x DIPOL (Am Heart J 2007;154:669-75) X
    19. 20. I VUS optimized drug eluting stent implantation: The PRAVIO study Minimum lumen diameter in IVUS-guided vs angio-guided DES implantation P<0,0001 RT Gerber et al. 2009
    20. 21. All-Cause Mortality After LMCA DES Implantation: Impact of IVUS Guidance (SJ Park et al. TCT 2007) 1.5 1.0 Years after DES implantation 0.0 0.5 2.5 3.0 70 Cumulative Incidence ( %) 100 80 2.0 IVUS (n=595) No IVUS (n=210) 90 95.2% 85.6% HR=0.43, p=0.019 Other independent predictors were previous CHF, chronic renal failure, COPD, and EUROSCORE>6
    21. 22. Intravascular thermography <ul><li>Inflammation is central in the genesis of acute coronary syndromes. </li></ul><ul><li>Detection of areas of focal inflammation may identify “vulnerable plaques,” on the basis of increased heat generation. </li></ul><ul><li>Activated macrophages, increased neovascularization , increased expression of uncoupling proteins may be responsible. </li></ul>
    22. 23. A display of geometrically correct 3D IVUS using a miniaturized electromagnetic position sensor Reproduced from Y . Honda, P . J. Fitzgerald . 2008
    23. 24. IVUS -based temperature monitoring studies normal arterial tissue with the laser illumination photoacoustic response from the region of laser incidence the temperature increase Temperature maps obtained from the arterial tissue Reproduced from S . Sethuraman et al. 2007
    24. 25. IVUS elastography/palpography RL Maurice. 2008 Illustration of the vessel wall segmentation LSME radial strain elastogram, superimposed on the IVUS image Palpography- elastography based on rate of radial deformation (strain) due to pressure difference in the artery.
    25. 26. IBIS study Van Mieghem et al J Am Coll Cardiol 2006;47:1134 <ul><li>High strain spots on palpography </li></ul><ul><li>pre- 4.8 ± 4.5 </li></ul><ul><li>post- 3.6 ± 4.4 </li></ul><ul><li>Significant decrease in </li></ul><ul><li>STEMI patients </li></ul>MSCT VH Palp
    26. 27. Circulation. 2003;108:1664 The 2 nd most common type? Naghavi et al.
    27. 28. Gray-scale IVUS uses only the amplitude (echo intensity) in formation of the image Frequency of echo signal can also vary, depending on the tissue… Virtual Histology uses Amplitude and Frequency of Echoes Virtual Histology (VH)
    28. 29. Power (dB) Frequency (MHz) Fibrous Calcium Fibrolipidic Necrotic core Virtual Histology (VH)
    29. 30. Virtual histilogy IVUS using spectral analysis of radiofrequency data to construct tissue maps Early fibroatheromas (A) thick-cap fibroatheromas (C) thin-cap fibroatheromas (D) extensive calcium (white color) deposition greater fibrous (green color) composition necrotic cores (red color) From Wang-Soo Lee et al. 2009
    30. 31. <ul><ul><li>“ Thin Cap Fibro-Atheroma (TICFA )” or “Vulnerable Plaque” Necrotic Core is significant (>10% of total plaque volume) and located on or near the lumen at VH. </li></ul></ul>“ Vulnerable Plaque” Characterization <ul><li>The fibrous cap of the vulnerable plaque is bellow the resolution of the IVUS-VH system </li></ul><ul><li>Biomechanical properties are absent from the current VH imaging </li></ul>
    31. 32. Use of Virtual Histology to predict distal embolization after PCI for STEMI Kanaguchi et al. J Am Coll Cardiol 2007;50:1641 Non-STR case STR case
    32. 33. Impact of plaque components on no-reflow phenomenon after stent deployment in patients with ACS: VH-IVUS The only independent predictor of no-reflow in multivariate analysis was necrotic core volume ( OR = 1.126; 95% CI 1.045-1.214, P = 0.002) JL Hong et al. 2009 P=0,001 Necrotic core volumes (mm3) in ACS patients with no-reflow post-stenting P<0,001 % Necrotic core volumes in ACS patients with no-reflow post-stenting
    33. 34. Plaque and Lesion Classification by VH IVUS by the Miami Consensus Meeting November 2006 R Virmani MD, P Serruys MD PhD, G Mintz MD, A Lerman MD, S Carlier MD PhD, H Garcia-Garcia MD, G Vince PhD, and P Margolis MD PhD <ul><li>Class 2: Pathological Intimal Thickening (PIT) IMT>600 micron. Fibrofatty >10%, confluent NC or Ca <10% </li></ul><ul><li>Class 4: Fibroatheroma (FA) with or without confluent Ca (CaFA) confluent NC more >10% </li></ul><ul><li>Class 5: Thin Cap FA (TCFA) with or without confluent Ca (CaTCFA) NC >10% and confluent against lumen </li></ul><ul><li>Class 6: Fibrocalcific, FCa, (confluent Ca>10% with NC <10% and FF <10%) </li></ul>
    34. 35. The PROSPECT Trial 700 pts with ACS UA (with ECG Δ ) or NSTEMI or STEMI >24º 1-2 vessel CAD undergoing PCI at up to 40 sites in U.S., Europe PCI of culprit lesion(s) Successful and uncomplicated Formally enrolled <ul><li>Metabolic S. </li></ul><ul><li>Waist circum </li></ul><ul><li>Fast lipids </li></ul><ul><li>Fast glu </li></ul><ul><li>HgbA1C </li></ul><ul><li>Fast insulin </li></ul><ul><li>Creatinine </li></ul><ul><li>Biomarkers </li></ul><ul><li>Hs CRP </li></ul><ul><li>IL-6 </li></ul><ul><li>sCD40L </li></ul><ul><li>MPO </li></ul><ul><li>TNF α </li></ul><ul><li>MMP9 </li></ul><ul><li>Lp-PLA2 </li></ul><ul><li>others </li></ul>PI: Gregg W. Stone Sponsor: Abbott Vascular; Partner: Volcano
    35. 36. 3-vessel imaging post PCI F/U: 1 mo, 6 mo, 1 yr, 2 yr, ±3-5 yrs Culprit artery, followed by non-culprit arteries Angiography (QCA of entire coronary tree) IVUS Virtual histology Palpography (n=~350) Repeat imaging in pts with events Meds rec Aspirin Plavix 1yr Statin Repeat biomarkers @ 30 days, 6 months Proximal 6-8 cm of each coronary artery MSCT Substudy N=50-100
    36. 37. PROSPECT Methodology IVUS/VH Core Lab Analysis Lesions are classified into 13 main sub-types based on VH composition 1. Fibrotic 2. Fibrocalcific 3. Pathological intimal thickening 4-9. Thick cap fibroatheroma 10-13. VH-thin cap fibroatheroma (presumed high risk) Single NC, no DC Single NC, +DC - DC outside NC - DC superficial/within NC Multiple NC, no DC Multiple NC, +DC - DC outside NC - DC superficial/within NC Single NC, no DC Single NC, +DC Multiple NC, no DC Multiple NC, +DC
    37. 38. VH-TCFA Multiple NC Length 3.7 mm F 35 % FF 1 % NC 52 % DC 12 % MRCA fibroatheroma Stent Angiographically near normal IVUS MLA: 6.4 mm 2
    38. 39. 2 nd VH-TCFA Single NC Length 11 mm F 39 % FF 1 % NC 53 % DC 7 % PRCA fibroatheroma Stent Angiographically mild lesion MLA: 6.1 mm 2
    39. 40. Expected Correlation with the Anatomy of Vasa Vasorum Note: Pathology pictures are not related to IVUS (taken from Ritman et al.)
    40. 41.  IVUS after bubbles at same position and cardiac phase timing IVUS at t=0 Differential Echogenecity (t 0 , P 1 ) (t, P 1 ) Vasa vasorum imaging with IVUS blood wall catheter
    41. 42. Thick Fibrous Cap Thin Cap Fibroatheroma Intravascular optical coherence tomography imaging Ran Kornowski, CRT 2008 <ul><li>High-resolution, cross-sectional tomographic imaging of the internal microstrucure. </li></ul><ul><li>Measures magnitude of backscattered light returning from an arterial sample as a function of delay. </li></ul><ul><li>As such it is the optical analog of ultrasound imaging measuring the back-scattered light (optical echoes). </li></ul>< 60 micron cap Lesion > 60 micron cap Lesion
    42. 43. OCT Imaging of Vulnerable Plaques TCFA Ulcerated plaque + spontaneous rupture Eccentric plaque + TCFA + microcacifications flap Ran Kornowski, CRT 2008
    43. 44. Frequency of TCFA Is Greater in Acute Coronary Syndromes (Jang et al. Circulation. 2005;111:1551-5)
    44. 45. Intravascular optical coherence tomography imaging Dissection observed with optical coherence tomography (OCT) (A) and IVUS (B) following balloon dilatation. Although the tissue flap can be seen in the IVUS image, it was difficult to determine the depth of dissection. In the OCT image, the bright-dark-bright banding within the flap suggests involvement of the adventitia. In each image, tick marks represent 1.0 mm, and the guide wire location is denoted by an asterisk. BE Bouma. Heart 2003
    45. 46. OCT (Immediately Post Stenting) Optimal stent expansion Regional stent mal-apposition Tissue prolapse Ran Kornowski, CRT 2008
    46. 47. OCT (Late Post Stenting) Ran Kornowski, CRT 2008
    47. 48. Red Thrombus was identified from the high-backscattering protrusions inside the lumen of the artery, with signal-free shadowing in the OCT image. White Thrombus was identified from the low-backscattering projections in the OCT image.
    48. 49. 6-Month Results – OCT Data 49.5% 30.2% 17.6% 2.7% Stent Strut Appearance – 6 Mos. F/U J Ormiston, et al, Lancet 2008; 371: 899-907. (738 struts visible at baseline versus 671 at follow up) Dissolved Bright Box Dissolved Black Box Preserved Box Open Box
    49. 50. Case Example 24-Month Results – OCT Data P.W.Serruys, TCT 2008 Post Procedure 2 Years
    50. 51. Near infrared (NIR) spectroscopy is commonly used to measure chemical composition of unknown substances and could be applied to lipid-rich plaque detection <ul><li>Concept: The amount of NIR light that is reflected from a substance varies for different chemicals at different NIR wavelengths, providing unique spectral (chemical) signatures </li></ul>
    51. 52. Caplan JD et al. J Am Coll Cardiol 2006;47:C92 Near-infrared spectra of various pure substances possibly related to plaque vulnerability NIR absorbance spectra from 4 chemical components. T he regions around 1200 nm separate the cholesterols from the collagens , whereas the regions around 1500 nm provide more discrimination among the cholesterols Spectroscopy - measurement of the amount of electromagnetic radiation that is absorbed or emitted by molecules as they move from one energy level to another.
    52. 53. SPECTACL: No Lipid Signal at Culprit <ul><li>55y, M </li></ul><ul><li>BMI 32.4 kg/m 2 </li></ul><ul><li>Progressive Angina </li></ul><ul><li>Prior MI </li></ul><ul><li>Prior PCI </li></ul><ul><li>+DM </li></ul><ul><li>HTN, Hyperlipidemia </li></ul><ul><li>No Pre-dilatation </li></ul>Culprit Lahey Clinic Culprit NIR End NIR Start Culprit Lahey Clinic
    53. 54. SPECTACL: Lipid Signal at Culprit Culprit <ul><li>71y, M </li></ul><ul><li>BMI 28.3 kg/m2 </li></ul><ul><li>MI (<72 hrs) </li></ul><ul><li>HTN </li></ul><ul><li>Pre-dilatation </li></ul>Beth Israel Deaconess Medical Center Beth Israel Deaconess Medical Center NIR End NIR Start Culprit Culprit
    54. 55. <ul><li>Yellow plaques have been associated with: </li></ul><ul><ul><li>Culprit lesions of ACS </li></ul></ul><ul><ul><li>Atheroma/degenerated atheroma </li></ul></ul><ul><ul><li>Thrombus/disruption </li></ul></ul><ul><ul><li>Outward remodeling </li></ul></ul><ul><ul><li>Thin-capped lipid pool atheroma </li></ul></ul><ul><ul><li>Future ACS/SCD </li></ul></ul>Quantitative Colorimetry with Angioscopy Why do angioscopy?
    55. 56. “ Eyeball” Colorimetry: Higher Yellow Color Intensity is Associated with Higher Prevalence of Plaque Thrombus <ul><li>843 patients with suspected CAD </li></ul><ul><li>1253 yellow plaques: </li></ul><ul><ul><li>345 grade 1 </li></ul></ul><ul><ul><li>721 grade 2 </li></ul></ul><ul><ul><li>187 grade 3 </li></ul></ul>Ueda Y et al. Am Heart J 2004;148:333 Quantitative Colorimetry with Angioscopy
    56. 57. Ishibashi, Waxman et al. Am J Cardiol 2007 Quantitative Colorimetry with Angioscopy High Yellow Color Intensity of Culprit Lesion is Associated with High Risk Features – Plaque Rupture and Thrombosis
    57. 58. Number of Yellow Plaques in a Coronary Artery is Associated with Future ACS Marker of disease burden, not predictive of lesion-specific risk Ohtani et al. JACC 2006
    58. 59. Balakrishnan, K. R. et al. Circulation 2006;113:e41-43e <ul><li>Macrophage infiltration </li></ul><ul><li>Delivery of inflammatory cells </li></ul><ul><li>to media via neovessels </li></ul>What about red color? Neovascularization and intraplaque hemorrhage may be associated with reddish hue: the color of inflammation? IEL Invading senescent RBCs
    59. 60. Magnets and coils incorporated into intravascular catheter Intravascular MRI: Plaque Detection <ul><li>IVMRI transmits a series of pulses and receives echoes with decaying amplitudes according to content of water and lipids. </li></ul><ul><li>The absolute amplitude is normalized to result in lipid fraction index (LFI: 0-100) </li></ul>
    60. 61. Proximal Distal s Lipid fraction index (LFI): High Intermediate Low Void D P <ul><li>48 year old female with stable angina </li></ul><ul><li>Previous revascularization </li></ul><ul><li>Risk factors: hypertension, hyperlipidemia and family history </li></ul><ul><li>Three vessel disease </li></ul><ul><li>Proximal LAD, 20% stenosis </li></ul>Wilensky RL. In Brauwald’s Heart Disease E-dition. 2008 Focal lipid-rich lesion in 48 year old woman with stable angina.
    61. 62. Summary <ul><li>Despite aggressive medical therapy a significant number of patients suffer from death, myocardial infarction and acute coronary syndromes. </li></ul><ul><li>There are no clinical characteristics which predict those patients who will develop unstable coronary artery disease or angiographic clues to predict which lesion will be the future culprit lesion. </li></ul><ul><li>Invasive approaches, with possible combinations of catheters, may be necessary to demonstrate those specific lesions at increased risk of plaque rupture. </li></ul>

    ×