SlideShare a Scribd company logo
1 of 12
Download to read offline
Lähes nollaenergiarakennus nZEB ja sen
määritelmä

26.1.2012   Jarek Kurnitski
Direktiivin määritelmä

      EPBD recast – Nearly zero energy
              buildings nZEB
 • In the directive ‘nearly zero-energy building’ means a building that has
   a very high energy performance. The nearly zero or very low amount
   of energy required should be covered to a very significant extent by
   energy from renewable sources, including energy from renewable
   sources produced on-site or nearby.

  nZEB = very high energy performance + on-site renewables

 • Definition of “a very high energy performance“ and “significant extent
   of renewables” let for Member States


                     Rakennusten energiatehokkuusdirektiivi EPBD recast 2010:
                     http://eur-lex.europa.eu/JOHtml.do?uri=OJ:L:2010:153:SOM:FI:HTML
                     http://ec.europa.eu/energy/efficiency/buildings/buildings_en.htm

       Federation of European Heating, Ventilation and Air-conditioning Associations
REHVA nZEB definition
                                                                              ZEB has exact performance
net zero energy building (ZEB)
                                                                              level of 0 kWh/(m2 a) primary
energy use of 0 kWh/(m2 a) primary energy
                                                                              energy use

NOTE 1 A nZEB is typically a grid connected building with very high energy performance. nZEB balances its primary
energy use so that the primary energy feed-in to the grid or other energy network equals to the primary energy
delivered to nZEB from energy networks. Annual balance of 0 kWh/(m 2 a) primary energy use typically leads to the
situation where significant amount of the on-site energy generation will be exchanged with the grid. Therefore a nZEB
produces energy when conditions are suitable, and uses delivered energy during rest of the time.


nearly net zero energy building (nZEB)
technically reasonable achievable national energy use of > 0 kWh/(m2 a)
primary energy achieved with best practice energy efficiency measures and
renewable energy technologies which may or may not be cost optimal
NOTE 1 The Commission shall establish by 30 June 2011 a comparative methodology framework for calculation of
cost-optimal levels (EPBD recast).
NOTE 2. Not all renewable energy technologies needed for nearly zero energy building have to be cost-effective, if
appropriate financial incentives are not available.
                                                                              nZEB depends on national
                                                                              conditions
    Federation of European Heating, Ventilation and Air-conditioning Associations
REHVA TF nZEB – system boundary



                                               DELIVERED ENERGY

                                                                          E   Edel,i  Eexp,i  fi
                                               EXPORTED ENERGY                    i




System boundary for nearly net zero energy building definition, connecting a
building to energy networks. Net delivered energy is delivered Edel,i minus
exported energy Eexp,i accounted separately for each energy carrier i. Primary
energy E is calculated with primary energy factors fi (simplified equation with
the same factors for delivered and exported energy carriers)


  Federation of European Heating, Ventilation and Air-conditioning Associations
REHVA nZEB system boundary
                             System boundary of net delivered energy

                             System boundary of delivered energy

            Solar and internal                             On site renewable
            heat gains/loads                               energy w/o fuels

                                 NET ENERGY                                    DELIVERED
                                 NEED                                          ENERGY
       ENERGY NEED
                                                        BUILDING               electricity
       Heating                   heating energy




                                                                                                                         (electricity, district heat, district cooling, fuels)
       Cooling                                          TECHNICAL
                                 cooling energy         SYSTEMS                district heat
       Ventilation




                                                                                                  Net delivered energy
       DHW                                                                     district cooling
                                 electricity for lighting Energy use and
       Lighting
       Appliances                electricity for          production           fuels
                                 appliances                                    (renewable and
                                                          System losses        non-renewable)
            Heat exchange                                 and conversions
            through the
                                                                               EXPORTED
            building envelope
                                                                               ENERGY
                                                                               electricity
                                                                                heating energy

                                                                               cooling energy



 Energy boundary of net delivered energy. The box of “Energy need” refers to rooms
 in a building and both system boundary lines may be interpreted as the building site
 boundary.

Federation of European Heating, Ventilation and Air-conditioning Associations
Example – nZEB Office building

• an office building in Paris
• a gas boiler for heating with seasonal efficiency of 90%
• free cooling from boreholes (about 1/3 of the need) is used and the
  rest is covered with mechanical cooling
• for borehole cooling, seasonal energy efficiency ratio of 10 is used
  and for mechanical cooling 3.5
• Ventilation system with specific fan power of 1.2 kW/(m3/s) will use
  5.6 kWh/(m2 a) fan energy.

• a solar PV system providing 15.0 kWh/(m2 a), from which 6.0 is
  utilized in the building and 9.0 is exported to the grid.




  Federation of European Heating, Ventilation and Air-conditioning Associations
Example – nZEB Office building
                                         System boundary of net delivered energy

                                          System boundary of delivered energy
                    Solar and internal                                                15.0 PV electricity,
                                                                                      from which 6.0 used
                    heat gains/loads                                                  in the building and
                                                                                      9.0 exported
             NET ENERGY NEED (47.2 kWh/(m2 a))               NET ENERGY NEED
                                                Appliances                      BUILDING TECHNICAL
                                                             (47.2 kWh/(m2 a))
                                                (users')                        SYSTEMS
             10,8                               Lighting
                                                                                 Boiler             DELIVERED ENERGY
                                                                3.8 heating      3.8/0.9 = 4.2
                                                Space                                                   Fuel 4.2
                                         21,5   heating                          Free cooling
           1,1
                                                Heating of      11.9 cooling
           0,6                                                                   4.0/10 = 0.4
           3,2
                                                air in AHU                       Compressor cooling
                                                Cooling in      21.5 appliances                         Electricity 33.8




                                                                                                                                  Net delivered energy
                                                room units
                                                                                 7.9/3.5 = 2.3
                                                Cooling of      10.0 lighting       Ventilation 5.6
                    10
                                                air in AHU
                                                                                    Appliances 21.5
                    Heat exchange                                                   Lighting 10.0
                    through the
                                                                                   (Sum of electricity 39.8)
                    building envelope

                                                                                                               EXPORTED ENERGY
                                                                                                                Electricity 9.0


                          Primary energy:
                          4.2*1.0 + (33.8-9.0)*2.5 = 66 kWh/(m2 a)

  • Electricity use of cooling, ventilation, lighting and appliances is 39.8 kWh/(m2 a)
  • Solar electricity of 15.0 kWh/(m2 a) reduces the net delivered electricity to 24.8 kWh/(m2 a)
  • Net delivered fuel energy (caloric value of delivered natural gas) is 4.2 kWh/(m2 a) and primary
    energy is 66 kWh/(m2 a)

Federation of European Heating, Ventilation and Air-conditioning Associations
Energiatodistus: How to integrate nZEB
     into energy certificate scale?

           nZEB as technically reasonable achievable
                cost optimal for new buildings, category B or C


                      req. for new buildings (typically not cost optimal yet)




                                               Revision of certificates scales needed:
                                                 • Cost optimal requirements for new buildings
                                                   cannot be any more in D category, as calculated
                                                   for 30 years period with 3% interest rate
                                                 • Existing A may be split (A+, A++) or changed



   Federation of European Heating, Ventilation and Air-conditioning Associations
D3 2012 kokonaisenergiavaatimus – E-luku

• Kokonaisenergiankulutus esitetään suorituspohjaisella E-luvulla, joka lasketaan
  rakennukseen ostettavien energioiden ja energiamuotojen kertoimien tulona
  ja ilmaistaan kWh/(m2 a) yksiköllä (=primäärienergia)
 Käyttötarkoitusluokka                                    E-lukuvaatimus kWh/m2 vuodessa
 Luokka 1 Pientalo                                        Pinta-alan mukaan
          Rivitalo                                        150
 Luokka 2 Asuinkerrostalo                                 130
 Luokka 3 Toimistorakennus                                170
 Luokka 4 Liikerakennus                                   240
 Luokka 5 Majoitusliikerakennus                           240
 Luokka 6 Opetusrakennus ja päiväkoti                     170
 Luokka 7 Liikuntahalli (pois lukien uima- ja jäähalli)   170
 Luokka 8 Sairaala                                        450
 Luokka 9 Muut rakennukset ja määräaikaiset               E-luku on laskettava, mutta sille ei
          rakennukset                                     ole asetettu vaatimusta
                                                                                                             Energiamuodon kerroin
                                                                          Sähkö                                       1,7
                                                                          Kaukolämpö                                  0,7
                                                                          Kaukojäähdytys                              0,4
                                                                          Fossiiliset polttoaineet                     1
                                                                          Uusiutuvat polttoaineet                     0,5

                                                                                                 Jarek Kurnitski   26.1.2012

                                                                                                                               © Sitra
D3 taseraja
         Ostoenergian (järjestelmien) energiankulutuksen taseraja

          Auringon säteily ikkunoiden läpi          Uusiutuva oma-
                                                    varaisenergia
          Lämpökuorma ihmisistä

      TILOJEN                                  TEKNISET              OSTOENERGIA
      ENERGIANTARVE         NETTOTARPEET       JÄRJESTELMÄT          sähkö
      Lämmitys              lämmitysenergia
      Jäähdytys                                                      kaukolämpö
      Ilmanvaihto           jäähdytysenergia                         kaukojäähdytys
      Käyttövesi                               Järjestelmähäviöt
      Valaistus             sähkö               ja -muunnokset       polttoaineet
      Kuluttajalaitteet                                              uusituvat ja uusiutumattomat

          Lämpöhäviöt




• Ei ole lainsäädäntöä verkkoon syöttämiselle – netto-ostoenergian taseraja
  jätettiin sen takia pois
• Nollaenergiatalojen tekemiseksi pitää olettaa verkkoon syöttäminen


                                                                                         Jarek Kurnitski   26.1.2012

                                                                                                                       © Sitra
Ympäristötalo, Viikki
                                                                               •   Kaksoisjulkisivu etelään aurinkopaneeleilla
                                                                               •   Likaisten tilojen iv LTO 80%, SFP 1,4-1,6
                                                                               •   Tarpeenmukainen iv ei toimistotiloissa
                                                                               •   Valaistuksen päivänvalo-ohjaus, 7 W/m2
                                                                               •   Porareikäjäähdytys 11 kWh/(m2 a) tuotto




E-luku 85 (2012 vaatimus 170)
                                 Energian     Osto-    Energia-    E-luku
                                nettotarve   energia   muodon
                                 kWh/(m2 a) kWh/(m2 a) kerroin, - kWh/(m2 a)
Tilojen ja ilmanvaihdon lämmitys   26,6       32,2        0,7       22,6
Lämpimän käyttöveden lämmitys       4,7        6,1        0,7        4,3
Jäähdytys                          10,6        0,3        1,7        0,5
Pumput ja puhaltimet                9,4        9,4        1,7       16,0
Valaistus                          12,5       12,5        1,7       21,3
Käyttäjäsähkö                      19,3       19,3        1,7       32,7
PV                                            -7,1        1,7       -12,0                                26.1.2012
Yhteensä                            83         73                    85
                                                                                                                     © Sitra
E-luku primäärienergiaindikaattorina
• Lähes nollaenergiamääritelmän mukainen primäärienergiaindikaattori,
  yksikäsitteiset laskentasäännöt ja laskennan lähtötiedot – D3 2012
• Indikaattorina on laskettava käyttötarkoitusta vastaavalla tavalla

• Lähtökohtana BIM/simulointimalli:
  tarkennetaan toteutuksen mukaiseksi
  kalibroidaan käyttövaiheessa

• Määräysten mukaisuuden osoittaminen:
  E-luku/ostoenergiat ko. rakennustyypin
  standardikäytöllä

• Tavoitekulutuksen laskelma:
  Etav-luku/ostoenergiat todellisella käytöllä

• Tavoitekulutuksen seuranta käyttövaiheessa
  Etot-luku/ostoenergiat kalibroitulla mallilla todellisella käytöllä ja säätiedoilla


                                                              Jarek Kurnitski   26.1.2012

                                                                                            © Sitra

More Related Content

More from Sitra Energia

Sitra ohjelma 2012-6-7
Sitra ohjelma 2012-6-7Sitra ohjelma 2012-6-7
Sitra ohjelma 2012-6-7Sitra Energia
 
Sitra Helena Säteri 2012-6-7
Sitra Helena Säteri 2012-6-7Sitra Helena Säteri 2012-6-7
Sitra Helena Säteri 2012-6-7Sitra Energia
 
Sitra Mikko Kosonen 2012-6-7
Sitra Mikko Kosonen 2012-6-7Sitra Mikko Kosonen 2012-6-7
Sitra Mikko Kosonen 2012-6-7Sitra Energia
 
Sitra Jukka Noponen 2012-6-7
Sitra Jukka Noponen 2012-6-7Sitra Jukka Noponen 2012-6-7
Sitra Jukka Noponen 2012-6-7Sitra Energia
 
Sitra Hans Nilsson FourFact 2012-6-7
Sitra Hans Nilsson FourFact 2012-6-7Sitra Hans Nilsson FourFact 2012-6-7
Sitra Hans Nilsson FourFact 2012-6-7Sitra Energia
 
Sitra Olli Seppänen 2012-6-7
Sitra Olli Seppänen 2012-6-7Sitra Olli Seppänen 2012-6-7
Sitra Olli Seppänen 2012-6-7Sitra Energia
 
Sitra Eva Heiskanen 2012-6-7
Sitra Eva Heiskanen 2012-6-7Sitra Eva Heiskanen 2012-6-7
Sitra Eva Heiskanen 2012-6-7Sitra Energia
 
Sitra Jarek Kurnitski 2012-6-7
Sitra Jarek Kurnitski 2012-6-7Sitra Jarek Kurnitski 2012-6-7
Sitra Jarek Kurnitski 2012-6-7Sitra Energia
 
Sitra Håkan Axelsson Vattenfall 2012-6-7
Sitra Håkan Axelsson Vattenfall 2012-6-7Sitra Håkan Axelsson Vattenfall 2012-6-7
Sitra Håkan Axelsson Vattenfall 2012-6-7Sitra Energia
 
Sitra Kimmo Lylykangas 2012-6-7
Sitra Kimmo Lylykangas 2012-6-7Sitra Kimmo Lylykangas 2012-6-7
Sitra Kimmo Lylykangas 2012-6-7Sitra Energia
 
Sitra Maija Virta FIGBC 2012-6-7
Sitra Maija Virta FIGBC 2012-6-7Sitra Maija Virta FIGBC 2012-6-7
Sitra Maija Virta FIGBC 2012-6-7Sitra Energia
 
Sitra Suvi Häkämies 2012-6-7
Sitra Suvi Häkämies 2012-6-7Sitra Suvi Häkämies 2012-6-7
Sitra Suvi Häkämies 2012-6-7Sitra Energia
 
Lantti Marianne Matinlassi ARA 2012-6-18
Lantti Marianne Matinlassi ARA 2012-6-18Lantti Marianne Matinlassi ARA 2012-6-18
Lantti Marianne Matinlassi ARA 2012-6-18Sitra Energia
 
Lantti Panu Kärnä TA 2012-6-18
Lantti Panu Kärnä TA 2012-6-18Lantti Panu Kärnä TA 2012-6-18
Lantti Panu Kärnä TA 2012-6-18Sitra Energia
 
Lantti Pekka Heikkinen Aalto 2012-6-18
Lantti Pekka Heikkinen Aalto 2012-6-18Lantti Pekka Heikkinen Aalto 2012-6-18
Lantti Pekka Heikkinen Aalto 2012-6-18Sitra Energia
 
Lantti Kimmo Lylykangas 2012-6-18
Lantti Kimmo Lylykangas 2012-6-18Lantti Kimmo Lylykangas 2012-6-18
Lantti Kimmo Lylykangas 2012-6-18Sitra Energia
 
Lantti ohjelma 2012-6-18
Lantti ohjelma 2012-6-18Lantti ohjelma 2012-6-18
Lantti ohjelma 2012-6-18Sitra Energia
 
Sitran Energiaohjelman vaikuttavuus ja rooli loppuraportti
Sitran Energiaohjelman vaikuttavuus ja rooli loppuraporttiSitran Energiaohjelman vaikuttavuus ja rooli loppuraportti
Sitran Energiaohjelman vaikuttavuus ja rooli loppuraporttiSitra Energia
 
Kurnitski kaukolämpö 20.11.09
Kurnitski kaukolämpö 20.11.09Kurnitski kaukolämpö 20.11.09
Kurnitski kaukolämpö 20.11.09Sitra Energia
 
Kurnitski roti 20110201
Kurnitski roti 20110201Kurnitski roti 20110201
Kurnitski roti 20110201Sitra Energia
 

More from Sitra Energia (20)

Sitra ohjelma 2012-6-7
Sitra ohjelma 2012-6-7Sitra ohjelma 2012-6-7
Sitra ohjelma 2012-6-7
 
Sitra Helena Säteri 2012-6-7
Sitra Helena Säteri 2012-6-7Sitra Helena Säteri 2012-6-7
Sitra Helena Säteri 2012-6-7
 
Sitra Mikko Kosonen 2012-6-7
Sitra Mikko Kosonen 2012-6-7Sitra Mikko Kosonen 2012-6-7
Sitra Mikko Kosonen 2012-6-7
 
Sitra Jukka Noponen 2012-6-7
Sitra Jukka Noponen 2012-6-7Sitra Jukka Noponen 2012-6-7
Sitra Jukka Noponen 2012-6-7
 
Sitra Hans Nilsson FourFact 2012-6-7
Sitra Hans Nilsson FourFact 2012-6-7Sitra Hans Nilsson FourFact 2012-6-7
Sitra Hans Nilsson FourFact 2012-6-7
 
Sitra Olli Seppänen 2012-6-7
Sitra Olli Seppänen 2012-6-7Sitra Olli Seppänen 2012-6-7
Sitra Olli Seppänen 2012-6-7
 
Sitra Eva Heiskanen 2012-6-7
Sitra Eva Heiskanen 2012-6-7Sitra Eva Heiskanen 2012-6-7
Sitra Eva Heiskanen 2012-6-7
 
Sitra Jarek Kurnitski 2012-6-7
Sitra Jarek Kurnitski 2012-6-7Sitra Jarek Kurnitski 2012-6-7
Sitra Jarek Kurnitski 2012-6-7
 
Sitra Håkan Axelsson Vattenfall 2012-6-7
Sitra Håkan Axelsson Vattenfall 2012-6-7Sitra Håkan Axelsson Vattenfall 2012-6-7
Sitra Håkan Axelsson Vattenfall 2012-6-7
 
Sitra Kimmo Lylykangas 2012-6-7
Sitra Kimmo Lylykangas 2012-6-7Sitra Kimmo Lylykangas 2012-6-7
Sitra Kimmo Lylykangas 2012-6-7
 
Sitra Maija Virta FIGBC 2012-6-7
Sitra Maija Virta FIGBC 2012-6-7Sitra Maija Virta FIGBC 2012-6-7
Sitra Maija Virta FIGBC 2012-6-7
 
Sitra Suvi Häkämies 2012-6-7
Sitra Suvi Häkämies 2012-6-7Sitra Suvi Häkämies 2012-6-7
Sitra Suvi Häkämies 2012-6-7
 
Lantti Marianne Matinlassi ARA 2012-6-18
Lantti Marianne Matinlassi ARA 2012-6-18Lantti Marianne Matinlassi ARA 2012-6-18
Lantti Marianne Matinlassi ARA 2012-6-18
 
Lantti Panu Kärnä TA 2012-6-18
Lantti Panu Kärnä TA 2012-6-18Lantti Panu Kärnä TA 2012-6-18
Lantti Panu Kärnä TA 2012-6-18
 
Lantti Pekka Heikkinen Aalto 2012-6-18
Lantti Pekka Heikkinen Aalto 2012-6-18Lantti Pekka Heikkinen Aalto 2012-6-18
Lantti Pekka Heikkinen Aalto 2012-6-18
 
Lantti Kimmo Lylykangas 2012-6-18
Lantti Kimmo Lylykangas 2012-6-18Lantti Kimmo Lylykangas 2012-6-18
Lantti Kimmo Lylykangas 2012-6-18
 
Lantti ohjelma 2012-6-18
Lantti ohjelma 2012-6-18Lantti ohjelma 2012-6-18
Lantti ohjelma 2012-6-18
 
Sitran Energiaohjelman vaikuttavuus ja rooli loppuraportti
Sitran Energiaohjelman vaikuttavuus ja rooli loppuraporttiSitran Energiaohjelman vaikuttavuus ja rooli loppuraportti
Sitran Energiaohjelman vaikuttavuus ja rooli loppuraportti
 
Kurnitski kaukolämpö 20.11.09
Kurnitski kaukolämpö 20.11.09Kurnitski kaukolämpö 20.11.09
Kurnitski kaukolämpö 20.11.09
 
Kurnitski roti 20110201
Kurnitski roti 20110201Kurnitski roti 20110201
Kurnitski roti 20110201
 

2012 01-26 kurnitski-lähes nollanergia-värkki

  • 1. Lähes nollaenergiarakennus nZEB ja sen määritelmä 26.1.2012 Jarek Kurnitski
  • 2. Direktiivin määritelmä EPBD recast – Nearly zero energy buildings nZEB • In the directive ‘nearly zero-energy building’ means a building that has a very high energy performance. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby.  nZEB = very high energy performance + on-site renewables • Definition of “a very high energy performance“ and “significant extent of renewables” let for Member States Rakennusten energiatehokkuusdirektiivi EPBD recast 2010: http://eur-lex.europa.eu/JOHtml.do?uri=OJ:L:2010:153:SOM:FI:HTML http://ec.europa.eu/energy/efficiency/buildings/buildings_en.htm Federation of European Heating, Ventilation and Air-conditioning Associations
  • 3. REHVA nZEB definition ZEB has exact performance net zero energy building (ZEB) level of 0 kWh/(m2 a) primary energy use of 0 kWh/(m2 a) primary energy energy use NOTE 1 A nZEB is typically a grid connected building with very high energy performance. nZEB balances its primary energy use so that the primary energy feed-in to the grid or other energy network equals to the primary energy delivered to nZEB from energy networks. Annual balance of 0 kWh/(m 2 a) primary energy use typically leads to the situation where significant amount of the on-site energy generation will be exchanged with the grid. Therefore a nZEB produces energy when conditions are suitable, and uses delivered energy during rest of the time. nearly net zero energy building (nZEB) technically reasonable achievable national energy use of > 0 kWh/(m2 a) primary energy achieved with best practice energy efficiency measures and renewable energy technologies which may or may not be cost optimal NOTE 1 The Commission shall establish by 30 June 2011 a comparative methodology framework for calculation of cost-optimal levels (EPBD recast). NOTE 2. Not all renewable energy technologies needed for nearly zero energy building have to be cost-effective, if appropriate financial incentives are not available. nZEB depends on national conditions Federation of European Heating, Ventilation and Air-conditioning Associations
  • 4. REHVA TF nZEB – system boundary DELIVERED ENERGY E   Edel,i  Eexp,i  fi EXPORTED ENERGY i System boundary for nearly net zero energy building definition, connecting a building to energy networks. Net delivered energy is delivered Edel,i minus exported energy Eexp,i accounted separately for each energy carrier i. Primary energy E is calculated with primary energy factors fi (simplified equation with the same factors for delivered and exported energy carriers) Federation of European Heating, Ventilation and Air-conditioning Associations
  • 5. REHVA nZEB system boundary System boundary of net delivered energy System boundary of delivered energy Solar and internal On site renewable heat gains/loads energy w/o fuels NET ENERGY DELIVERED NEED ENERGY ENERGY NEED BUILDING electricity Heating heating energy (electricity, district heat, district cooling, fuels) Cooling TECHNICAL cooling energy SYSTEMS district heat Ventilation Net delivered energy DHW district cooling electricity for lighting Energy use and Lighting Appliances electricity for production fuels appliances (renewable and System losses non-renewable) Heat exchange and conversions through the EXPORTED building envelope ENERGY electricity heating energy cooling energy Energy boundary of net delivered energy. The box of “Energy need” refers to rooms in a building and both system boundary lines may be interpreted as the building site boundary. Federation of European Heating, Ventilation and Air-conditioning Associations
  • 6. Example – nZEB Office building • an office building in Paris • a gas boiler for heating with seasonal efficiency of 90% • free cooling from boreholes (about 1/3 of the need) is used and the rest is covered with mechanical cooling • for borehole cooling, seasonal energy efficiency ratio of 10 is used and for mechanical cooling 3.5 • Ventilation system with specific fan power of 1.2 kW/(m3/s) will use 5.6 kWh/(m2 a) fan energy. • a solar PV system providing 15.0 kWh/(m2 a), from which 6.0 is utilized in the building and 9.0 is exported to the grid. Federation of European Heating, Ventilation and Air-conditioning Associations
  • 7. Example – nZEB Office building System boundary of net delivered energy System boundary of delivered energy Solar and internal 15.0 PV electricity, from which 6.0 used heat gains/loads in the building and 9.0 exported NET ENERGY NEED (47.2 kWh/(m2 a)) NET ENERGY NEED Appliances BUILDING TECHNICAL (47.2 kWh/(m2 a)) (users') SYSTEMS 10,8 Lighting Boiler DELIVERED ENERGY 3.8 heating 3.8/0.9 = 4.2 Space Fuel 4.2 21,5 heating Free cooling 1,1 Heating of 11.9 cooling 0,6 4.0/10 = 0.4 3,2 air in AHU Compressor cooling Cooling in 21.5 appliances Electricity 33.8 Net delivered energy room units 7.9/3.5 = 2.3 Cooling of 10.0 lighting Ventilation 5.6 10 air in AHU Appliances 21.5 Heat exchange Lighting 10.0 through the (Sum of electricity 39.8) building envelope EXPORTED ENERGY Electricity 9.0 Primary energy: 4.2*1.0 + (33.8-9.0)*2.5 = 66 kWh/(m2 a) • Electricity use of cooling, ventilation, lighting and appliances is 39.8 kWh/(m2 a) • Solar electricity of 15.0 kWh/(m2 a) reduces the net delivered electricity to 24.8 kWh/(m2 a) • Net delivered fuel energy (caloric value of delivered natural gas) is 4.2 kWh/(m2 a) and primary energy is 66 kWh/(m2 a) Federation of European Heating, Ventilation and Air-conditioning Associations
  • 8. Energiatodistus: How to integrate nZEB into energy certificate scale? nZEB as technically reasonable achievable cost optimal for new buildings, category B or C req. for new buildings (typically not cost optimal yet) Revision of certificates scales needed: • Cost optimal requirements for new buildings cannot be any more in D category, as calculated for 30 years period with 3% interest rate • Existing A may be split (A+, A++) or changed Federation of European Heating, Ventilation and Air-conditioning Associations
  • 9. D3 2012 kokonaisenergiavaatimus – E-luku • Kokonaisenergiankulutus esitetään suorituspohjaisella E-luvulla, joka lasketaan rakennukseen ostettavien energioiden ja energiamuotojen kertoimien tulona ja ilmaistaan kWh/(m2 a) yksiköllä (=primäärienergia) Käyttötarkoitusluokka E-lukuvaatimus kWh/m2 vuodessa Luokka 1 Pientalo Pinta-alan mukaan Rivitalo 150 Luokka 2 Asuinkerrostalo 130 Luokka 3 Toimistorakennus 170 Luokka 4 Liikerakennus 240 Luokka 5 Majoitusliikerakennus 240 Luokka 6 Opetusrakennus ja päiväkoti 170 Luokka 7 Liikuntahalli (pois lukien uima- ja jäähalli) 170 Luokka 8 Sairaala 450 Luokka 9 Muut rakennukset ja määräaikaiset E-luku on laskettava, mutta sille ei rakennukset ole asetettu vaatimusta Energiamuodon kerroin Sähkö 1,7 Kaukolämpö 0,7 Kaukojäähdytys 0,4 Fossiiliset polttoaineet 1 Uusiutuvat polttoaineet 0,5 Jarek Kurnitski 26.1.2012 © Sitra
  • 10. D3 taseraja Ostoenergian (järjestelmien) energiankulutuksen taseraja Auringon säteily ikkunoiden läpi Uusiutuva oma- varaisenergia Lämpökuorma ihmisistä TILOJEN TEKNISET OSTOENERGIA ENERGIANTARVE NETTOTARPEET JÄRJESTELMÄT sähkö Lämmitys lämmitysenergia Jäähdytys kaukolämpö Ilmanvaihto jäähdytysenergia kaukojäähdytys Käyttövesi Järjestelmähäviöt Valaistus sähkö ja -muunnokset polttoaineet Kuluttajalaitteet uusituvat ja uusiutumattomat Lämpöhäviöt • Ei ole lainsäädäntöä verkkoon syöttämiselle – netto-ostoenergian taseraja jätettiin sen takia pois • Nollaenergiatalojen tekemiseksi pitää olettaa verkkoon syöttäminen Jarek Kurnitski 26.1.2012 © Sitra
  • 11. Ympäristötalo, Viikki • Kaksoisjulkisivu etelään aurinkopaneeleilla • Likaisten tilojen iv LTO 80%, SFP 1,4-1,6 • Tarpeenmukainen iv ei toimistotiloissa • Valaistuksen päivänvalo-ohjaus, 7 W/m2 • Porareikäjäähdytys 11 kWh/(m2 a) tuotto E-luku 85 (2012 vaatimus 170) Energian Osto- Energia- E-luku nettotarve energia muodon kWh/(m2 a) kWh/(m2 a) kerroin, - kWh/(m2 a) Tilojen ja ilmanvaihdon lämmitys 26,6 32,2 0,7 22,6 Lämpimän käyttöveden lämmitys 4,7 6,1 0,7 4,3 Jäähdytys 10,6 0,3 1,7 0,5 Pumput ja puhaltimet 9,4 9,4 1,7 16,0 Valaistus 12,5 12,5 1,7 21,3 Käyttäjäsähkö 19,3 19,3 1,7 32,7 PV -7,1 1,7 -12,0 26.1.2012 Yhteensä 83 73 85 © Sitra
  • 12. E-luku primäärienergiaindikaattorina • Lähes nollaenergiamääritelmän mukainen primäärienergiaindikaattori, yksikäsitteiset laskentasäännöt ja laskennan lähtötiedot – D3 2012 • Indikaattorina on laskettava käyttötarkoitusta vastaavalla tavalla • Lähtökohtana BIM/simulointimalli: tarkennetaan toteutuksen mukaiseksi kalibroidaan käyttövaiheessa • Määräysten mukaisuuden osoittaminen: E-luku/ostoenergiat ko. rakennustyypin standardikäytöllä • Tavoitekulutuksen laskelma: Etav-luku/ostoenergiat todellisella käytöllä • Tavoitekulutuksen seuranta käyttövaiheessa Etot-luku/ostoenergiat kalibroitulla mallilla todellisella käytöllä ja säätiedoilla Jarek Kurnitski 26.1.2012 © Sitra