SlideShare a Scribd company logo
1 of 10
Download to read offline
BULLETINS.F.NI.
PROPULSIONSYSTtrMSIMULATOR
WITH PROPFANFOR TESTS
ON A LARGESCALtrMODEL
OF IL-114AIRPLANtrIN A FULL-SIZE
WIND TUNNEL OF TsAGI
by A.G. POPOVYAN, B.G. DULSKY, c.W. RODZEVICH
Central,{cro-tff.irodyrar)i.s Institutc. C. Zhukovskv IJ01(;0
lLO.. R<xsirsl<.rla I.t dcraci,va
and E. HOEFLER, B. SIROK
]-urboinstitut. Roysnikora 7. 612t0 l,fubljat1a,
R{?ublic of "Slor?nia
Abstract
In the paper a report on a model of the IL-
114 turbo-prop, passenger airplane is given. The
model was erected with the aim of carrying
out a complex research of takeoff/landing cha-
racteristics, Measurements were carried out in
a wind tunnel T-l0l of TsAGI (Central Aero-
Hydrodynamics Institute in Moscow - named
after Joukowski). The main characteristic of the
airplane model are the two propulsion systern si-
mulated models. Each of these simulated models
consists of a three-stage hot-air turbine, plane-
tary gear, and a six-blade propeller. The simu-
lated rnodel has a power of 482 kW, therefore it
has to be equipped as a real gas turbine should
be. Some of the equiprnent is installed in the
simulated model while the other equipment is
arranged externally. The simulator is equipped
with a complex measuring and control system
which is able to monitor the operation of the
turbine, Various loadings, which may be quasi-
stationary or dynamic, on the power system and
airplane elements can be measured. In the pa-
per characteristic results of measurements are
presented. They include forces and torques in
the propeller shaft, nondimensional coefficients
describing the conditions of the driving system
of the model, and aerodynamic conditions in a
reaction nozzle.
stLruLATEUR QU SvSTEr,rE TURBOHELTCE
POUR LE LIODELE GRANDEECHELLE
D'AyroN tL-11.1ET |OUR LES ESSATS
EN SOUFFLERIE AERODYNANIIQUE
DE TsAGI
Rdsund
Dans lcur a.rticlc lcs autcurs font un rapport sur lc
modd.lcd avion ir turboh6licc IL-111 pour passagcrsqui
a dtd conn^truitpour des recherchessous 1e,sconditions
de ddcollagc/attcrrissagc. Lcs ncsures sort cfect udcs
cn soufierie airodynamique T-101 de TsAGI (Inst.i-
tut Ccntral A4reH,lydrodynarniquc llloscou Licu Jou-
kowski). Lc propra du rnodilc cst d 6trc rnuni dc dcu.r
!-.ais systdmes t urbopropulscurs respectivcmcnt sinru-
latcurs. Chacun c--t constitui par unc turbinc A actiorl
d trois dtagcs.par un r6ductcur ct unc hilicc A six palcs.
A causedirne pui.ssanceconsidirable (482 kW), cbacyrc
turbopropulscur cst muni dc tous lcs systirncs riccs-
saircs d la turbinc d gaz: quclqucs-unssc trouvcnt dalrs
l cnscmblc turboprop lseur. sur 1cnodilc d avion, tar-
dis quc.la p.lupart sont installis hors du rnoddlc. sur.lc
planchcr auprds dc la balancc. Lc cornplexc rrlcsurcur.s
permat. de mettre au point et de suivre:la fonction de
la turbinc, a.insiqrrc d'cffcctucr lcs nrcsurcs dc divcrsc.s
chargcs(quasi-stationnaircs ct dvnam.iqucs)du systdrnc
propul,scur ct des iiiments sdpards. Dans l art)cle on
prdscntc quclqucs rdsultats significatifs i forccs ct lrIo
ments sur I'axe de I'h6lice. coetfrcientssans dimensiorr
conccrnant la propulsion du nodilc ct .ic-^conditions
a4rodynarniqucs .surla tuJ.irc d riaction.
A.(;. POI']O-'.N .i al. Propulsion svstcrr simulator txith propfan for tests on a large scale model
side view
lts. J. 1 : ll-111 airplanc nodcl on thc balanc. ot f 101
"ind
tunnel.
front elevation
1) airplane nodel i 2) prcpfan;3) tail unit;4) bdance
ASPECT OF MODELLING
Thr. lSU-l l-l propulsionststr.tl simulatoris a pro-
pulsioll systcrl u'ith a propfan dcsigueclirr accordancc
qith sirnilitudc laws takilg ilrto accdrnt geomctricand
aoro(lvnaxliccharattcristics of thc airplatrcpropulsiorr
s!stcnr.
Tht'sirnrrlatorprovidcsa similaritv oftlx'jt.ts of thc
progrfauarrtlth('r('a(tiou nozzlcwith thc.ictsol tho rcal
propulsiou svstcnl. Thc :rirplarrt. nrodel which is cquip-
pcd witlr tllc opcratiug sinrulatorsnray be rrscdfor a
rrrulticlisciplinarlrt'scarchin airfrtrurc/propulsionsvs-
tcm intcrfcrcucc.stabilitv of an airplanc (cngincfailurc
conclitionsmav br.includcd) distribution of kradilgs on
colllporroutsof an airplarr<'.i.c.ll,'ingand tail. Thc corrdi-
tions of thc aftcr-landing run $,ith thrust r('v(.rsalcan
alsobc invcstigatcd.
'hc[ thc rnodcl (subscript "nr") is gconrctrically
similar to thc airplanc (subscript"n ). at a scalcK1 =
L,,/L,,, a:nd dcsigncd for iDvcstigationsin au opcn-
scctionwirld tulrltcl.thcn if ba-singon thc gcncralthcorv
of sinilaritr'. thc rclatio|rsof acronrcchanicalsimilitudc
calrl)c writtcu :
similitudc dclining steadincss of flow around propfan
bladcs q,'ill bc satisficd at a high accuracy.
Figurc I shon'sthc modcl of the IL-l14 aircraft on
thc aerodynamic balance: fig. 2 depicts thc propulsion
system simulator in an engine nacellc; fig. 3 shows a
schcuraticof a sirnulator with a turbine-driven propfan.
Figurc ,1is a photograph of thc MSU-114 on the wing of
thc rnodcl. According to thc parametersof the T-101,
wind tunnel of TsACI the geomct c scalc of thc modcl
l(r = 2 had to be takcn into account. Thcrefore thc
modcl wing span is l5 rn.
Ter"hnicaldata of thc cxpcrimonlal systcm :
sizcof clliptic nozzlcof T-101
flow specd
anglc of attack ra[gc
angle of sideslip range
modcl wing span
sinrulator propfan diameter
propfan rotational speed
propfan thrust
24x74rr.
V= < 50m/s
0 = l0' ... + 25'
A - -20" ... + 20"
1", : l5 m
D: 1.8m
n:0...2400rpm
.r : 1000... +7750N
r;,,= t,, 11= Kt
*
-
rcaction nozzlctluust ftc : 0...385 N
equivalent power of simulator N.o,, < 482 kW
Thc turbinc of thc simulator is powered by hot com-
prcsscd air supplied from an external systen through
load-bcaringstruts 4 (fig. l)ofthc acrodynamicbalancc
of T- 101.Paramctcrsofthc working fluid for the turbine
of thc simulator wcrc dcflncd on the basisof power cha-
racteristicsof thc T-101 wind tunnel, operationalrclia-
bility of thc cxperirnental equipment and thc similitude
critcria. Figurcs 5a, b, c and d represent, respectively,
thc valuc of the rclative air-flowratc Gc = G./G"", tltc
total prcssurc in front of thc turbine Pjr, the total tem-
pcraturc q?-. and the available enthalpy drop h" of the
working fluid in the propulsion system simulator. Thcy
arc givt:n a-sfunctions of thc total tcmpcraturc 4: iD
I
;n
R.,,,
R,,
I
;.i (1)
whcrc l's art'thc appropriatcdimcnsious.y is thc fiight
yclocitt (frcc strcanr vclocitl in thc witrd tunncl): n.
tht.propfan spce,d:X. thc thrust of a propfan: R. thc
rcactioDnozzlct hrust.
'lrr:n thc opcn-scctionwild trrrruclis built accor-
dirrgto tho critcria (l) and whcn thc floq.is sclf-sirnilar
(at corrcsporldiugRc1'rurlrlsmrmbors). thcn thc kirx'
nratic/dvnanricsimilituclc critcria and thc critcrion of
Rovuc f'rancaisc dc l6caniquc n" 1992,:l
A.G. POPOVYAN et al. Propulsionsystem simulator with propfan for tcstson e large scalernodel
3520
l'ig.2. - 2 : Installation of MSU-[ll in engine nacelle ol airpla.ne model. l) propu.lsion system simulator MSU-114;2) engine na!:elle:3)
winA;4) reaction nozzle. 5) inlet pipe of turbine
L.ig. 3. 3 j Schemalic ot MSU-IM. I) propfan model: 2) six-component rotating loading gauge. 3) telemetry block; 4) fibre-optic
devicesi 5) casing:6) planetaty reductiongear: 7) thr.c-stage turbinei 8) exhaust ditruser
Revue ftanqaisc de Mecaniquc n" 1992-3
A.(;. POPOVYAN ct al. Propulsior systcm sr'muiator with propfan for tests on a large scale model
0tril
a{trl
ngtlt
l.tri
l'ig 1 l>hot()gruph ofa ri{ht silr |lator on a wing of lL-l|J airy'lane nt'dcl intheT-101 win.l t nnel. On bladcs of the propfan
srralr gauges can oc srcrl
thc rcaction nozzlcjct. mcasllrc(lat tlucc vallx'sof tho
rclativc thrust of lrozzlcsR, - R, I X. Thc nct cfficicncy
of thc turbinc is 4, - 11.65and thc rncan pcriphcral
vclocity of thc turbinc bla<k'sis U,,, = 175ru/s. l)orn
figurc5d the ncccssarl'rrrrnrbcrZr of tllrl)inc stagcs('all
be (lctcrrninc(i.
For thc full size prolnlsion slstcnr. thc (lcsigrr
valucs arc 4" - 801 K. /?,,, = 0.0-17.G,." = L
Thc curvcs shown in lig. 5 arc plottc(l on thc ba-
sis of thc nlonlcntum cquatiou arxl consorvati(rl cqlla-
tiou. Using thcsc curi.csit is possiblcto dctcrnrincthc
workirrg fluid pararnctcmwhich satisfl thc critcria of
similitudc ofjcts of thc propfan and thc rcactionnozzle
of thc simulator in ca-st.of
'f;
<'1.;".Optirnisation fbr
lSU-11,1heusbccrrcarric<lout and thc raluc 11 - 425
K wa^sobtaincd.Thc valucs(J, = Gr. Pir.T;r. h",Zr
rnay tre rk.termincd using thc plots on fig. 5 taking into
accollnt7.:.
MEASURING SYSTEM OF MSU-1T4
Figurc 6 is a block<liagranrofthc nrt'irslrrillgsvst('nl
of thc NISU-111.Table 1 showsits t cchnical(lata. Wit h
thc ai(l of thc ln('?r^,iur(.nl(.lltsvst(.rrrit is possiblt'to :
mca.surcforccsX.Y.Z awI rlolrr('llts llt.ltly.XIz
on thc propfan;
cl'aluatc prcssurcfi. tcmpcraturcs. pressurt' pulsa-
tion. variablcand static straius (strcsscs)in bladcs
and slnlclrlrcof tho propfan:
trrcasurcthc propfan rotational spccrl and pararnc-
tcrs of the reactionnozzlcjct i
(lctcrrnincthc nozzlcthrust l?. :
rccord thc lcvcls of vibratiorrs of thc ca"singand thc
tcmpcraturc of bcaringsof thc propulsionsystcnr
simulator.
Rcvuc !'ranqalsc dc ll6canrquc n" 1992-3
valuc
Nulbcr Rangc
capability
FYequency
rangeIIz
Error
(stand.
deviation),
7a
t'.z
l g
ats
P
P;
T;
Theta
ttI
I
I
I
I
I
I
< l,l
< 1 6
l 3
I
2
< 2 9
I
I
1
't
. 1 0 0 0 . . . + r J 0 0 0 N
-900... + 1900N'm
2000...f 3000N
1700... + 1700N*m
0. . . 700c
0. . . l6'c
0 . . . 3 5 k P a
0 . . . 3 5 k P a
0 . . . 3 5 k P a
0 . . . 5 k P a
2 7 0 . . . s 5 0 " K
0. . .20000mstrain
0 . . . 2 5 0 0 r p m
0. . .6.28rad
0. . . 2000c
u =< 50 mm/s
< l
< l
=< 400
:< 400
< 0.25
=< 10000
< 0.25
< 0.25
= < 10000
0 . . . 5 0
=< 1000
< 0.5
< 0.6
< 2
< 2
< l
< l
< 5
< 0.5
< 2
< l
< 3 . <5
< 0.1
< o.7
< 1 . 5
< l 0
Tablc1
Tccbnicaldata of a mcasurcmcntsystcm
A safety subsystcm of a simulator protccts the
sirrurlator agairlst ovcrspccd of thc propfan, dangcrous
vibrations of thc casing. and overhcating of bearings.
TEST RESULTS
lrr figurcs 7a. b, c. d and figures 8a, b. c thc valucs,
X.Y.z,LIr.R,R,...s","" = /((}) obiaincd during the
tcsts carricd out in thc T-l0l tunnel in order to dctcr-
nrinc thc airplanepolar chft -
"f(C";o) at Md :0118
arc shown. From thc plots. it can bc sccn that at
n = const thc thrust X and thc momcnt Mr (i.e..
A.G. POPOVYAN et al. Propulsrbn sjstc.n simulator witi propfan for tcsts on a large scale model
ql
:<
->
tr<
E
1100
Y- 900
,bzoo
500
J00
2,2
2.0
t.E
'.1'l'6
1.2
1,0
0.E
I'iA.5
.€-.-e R.=0.0470
*---a-F.=o.oSt O
.H R3=0,0564
Revuc Flangaise de Mecanique n" 1992-3
A.C. POPOVryAN et al. Propulsionsystemsimulaaorwitb prcpfen fo. resrsorl a large scalemodel
forceE X, Y, Z
momentE llx,tly ,Uz
temp€ratures tg, Atg
PreEaures, P _
Pressure Pul,aatlon, P
static&variabl€ Etralns
atreEEeE,e, E, e, E
vibrationa, A,v,a,f
rotational sD€ed,n
propel ter poiition
angle, THETA
suPPort
temperature of
bearings, tn
temperature Ta
total pressure P8
statl,c preEEure Pc
20 kBz, 14 bit150 kHz, 12 bit
-trological €quirnt
calibratora
EimulatorB LEVEL I8 computer TIl,lKO
magnetlc tape
recorCler
di.gital voltmeter
oacilloEcope
LEVEL II: computer TIl.l-600
information. proceEEing
grapnrcs
Fig. 6. Measuring system scheme
Rcvu. l-lAnCaise de Mdcaliquc no 1992-3
A,C. POPOVYAN et a.l. - Prcpulsion systern simulator with propfan for teF-tson a large scalenodel 275
4000
z
.2000
x
0
1000
500
z
t
z
N
|500
Froooz
j' soo
Fig.7.
RevueFlanqaisede Mecaniquen" 1992-3
A.C. POPOVYAN et al. PropulsioD qretem simulstor with prcpfan for t6ts on a latge scale model
l-Oc V-40m/g eo:'t- 25o
2.O
a1.s
ct
x l.o
tl
t
0.5
0.0
F'ig.8.
ool
50-
40-
z
I
E
E
z
It
n
Et
E
o
20-
t0-
ffA+=
= 2100rom
= 1500rbm
+Hl Lrft 3imulotor
+{ Rightrlmutotor
n = 2'100rpm
Revue Frangais€ de M6canique no 1992-3
A.G. POPOVYAN et al. Propulsion system simulator with proplan for tests on a laxge scale model
f =oo v =Yoo./" n
Rightsimulotor
Rightsimulotor
. TotoL pnessunePi
o Stotic pnessunePc
- 2100rpm
Y-Y plone
Totol oressure
Z-Z plone
Totolpressurc
Figures 9a, b show the distribution of the static
and total pressure P. and P"* at the exit scction of thc
nozzle in pla.nes Y - Y and Z - Z. Fig.ure 9c shows thc
arrangement of static and total pressure tubes (for P..
and P"). It can be seen that ai o = +25" the prcssure
past the wing in the rcgion of the nozzlc exit section is
lower than the pressure at o = 0o. Thc pressurc P1,is
the static pressurein thc wind tunnel test section. The
reasonlor lowcr prmsurc Pj on the axis ofthe nozzlc lics
in thc fact that in front of the nozzlc thc straightcncr
with flat radial plates and a centrc fairing are installed.
In ccrtain casesit is of interest to carry out modcl
flight investigatioru of the effcct of the propfan speed
on the aerodynamic characteristics. Figure 10showsthe
thrust cocfficient
250
Fis. 9.
the propfan load factor I3) are mirrimum at o = 0o and
uniformly increasewhen o f 0. Therefore. to obtain thc
polar at B = const, the blade angle p or the rotational
speedmust bc followed taking into account thc rclation
n = n(a) for the caseof B being constant. Thc propfan
loa.dlactor B is dctcrmincd by thc relation
(2)
Atx= _.(""1 (3)
A o  n '
Revue Ftanqaise de M6canique no 1992-3
0.3
0.1
-0.'l
0.5
0.J
o" o.t
-o.t
-0.3
- 0.5
I
-
8-s
whcrc Q is thc dynamic pressure for flight vclocity V.
5. the area of propfan circle.
If the angle of attack rr increa^ses,the forccs Y and
Z increa^seuniformly. The forces Z on the left and right
simulators arc in thc samc dircction since the propfans
rotate identically. Fig. 8 a shows that the amplitude of
the altcrnating bcnding stress in blades (at thc point
F = 0.45, on the hump of thc airfoil) riscs if thc anglc of
attack increases.Besides.bladesarc made of aluminium
allov.
l-++a=--'l0o
| +H}d = 0'
-+-+- a = 24o
I o
l ' n
...t_ --. -.
| € d = - " 1 {
1 { } € a = 0 ' ^
' 4-€. a - 24-
27E A.C. POPOVYAN et al. Propuision system simulator with propfsn lor tests on a large scale model
d=oo !=oo V=15+32m/s o.zs = 25o
r.10
r.00
propfonrototlonol
Fig..10.
of thc propfan of thc propulsion system simulator versus
rotational spced n at a const Xo .X" is the value of X
at thc speed of n" = 1000rpm. lt has been shown that
if the rotational spccd increases 2.1 times, the thrust
cocmcient of the propfan of the MSU-114 'increasesby
6.9% from the minimum. This cflect could be explained
by the incrcase of ReynolG number fie,, at the blade
root locations of the propfan. The point velocity W was
detcrmined using the formula
spood rPm
conditionsin the T-101full-scalewind tunnelof the
TsAGI.
b) Va"rious aspects of mathematical modelling of
the operation of the propulsion system simulator are
considered.
c) Experimental tests in the T-101 wind tunnel
havc been carried out. They showed high information
output capability of the measuring system and the
possibility to usc the wind tunnel to investigate different
aspects of aerodynamics of an aircraft with propfan
engines. The function relating axial and lateral forces
(acting on propfans of the left and right simulator)
and the angle of attack has been obtained for an c
range of -10" through +24'. The influence ofthe thrust
coefficientof the propfa.nofthe MSU-l l4 on the propfan
speed at a constant advance ratio ) has be'enstudied.
The load of propfan blades was determined. These data
will be used to estimate the fatigue life of blades of the
MSU-114.
(4)tr. _
CONCLUSIONS
a) The propulsionsystemsimulator,MSU-114,for
the large scalemodel of the IL-114 airplanewith two
simulatorcon a wing wasdevelopedand manufactura-
ted in orderto conductthc testsundertakeoff/landing
[i=0.974975+4.6435r 10-6rn+2.03E06r10-crn2
tr = 60+V/(nrD) = 66651= 9.5
Revue llanqaise de M6canique n" 1992-3

More Related Content

Similar to Propulsion System Simulator of IL-114 Airplane

Car parking composite catalog
Car parking composite catalogCar parking composite catalog
Car parking composite catalogPragmaticSales
 
Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003Venugopala Rao P
 
Investigation of buffet control on transonic airfoil by tangential jet blowing
Investigation of buffet control on transonic airfoil by tangential jet blowingInvestigation of buffet control on transonic airfoil by tangential jet blowing
Investigation of buffet control on transonic airfoil by tangential jet blowingМурад Брутян
 
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTERENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTERijics
 
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTERENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTERijcisjournal
 
Nasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowNasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowJulio Banks
 
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode ControlPower Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode ControlIJPEDS-IAES
 
(47211) trayectoria de esfuerzos en cercanías de zonas falladas
(47211) trayectoria de esfuerzos en cercanías de zonas falladas(47211) trayectoria de esfuerzos en cercanías de zonas falladas
(47211) trayectoria de esfuerzos en cercanías de zonas falladasJorge Luis Arias Alfonso
 
Zarzirbird Project: Modeling RPAS Dynamics for Load Stability
Zarzirbird Project: Modeling RPAS Dynamics for Load StabilityZarzirbird Project: Modeling RPAS Dynamics for Load Stability
Zarzirbird Project: Modeling RPAS Dynamics for Load StabilityAndreia Rossi
 
Dual edge trigger flip flop yogesh
Dual edge trigger flip flop yogeshDual edge trigger flip flop yogesh
Dual edge trigger flip flop yogeshyogeshnpal
 
Valve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdfValve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdfandreikeino1
 
Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...ISA Interchange
 
National advisory committee for aeronautics naca.
National advisory committee for aeronautics   naca.National advisory committee for aeronautics   naca.
National advisory committee for aeronautics naca.BillyQuezada
 
Synthesis of feedback controls using optimization theory
Synthesis of feedback controls using optimization theorySynthesis of feedback controls using optimization theory
Synthesis of feedback controls using optimization theoryJulio Gonzalez-Saenz
 

Similar to Propulsion System Simulator of IL-114 Airplane (20)

Car parking composite catalog
Car parking composite catalogCar parking composite catalog
Car parking composite catalog
 
mc413.pdf
mc413.pdfmc413.pdf
mc413.pdf
 
6th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...
6th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...6th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...
6th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...
 
Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003
 
6th Semester (December; January-2014 and 2015) Electronics and Communication ...
6th Semester (December; January-2014 and 2015) Electronics and Communication ...6th Semester (December; January-2014 and 2015) Electronics and Communication ...
6th Semester (December; January-2014 and 2015) Electronics and Communication ...
 
Investigation of buffet control on transonic airfoil by tangential jet blowing
Investigation of buffet control on transonic airfoil by tangential jet blowingInvestigation of buffet control on transonic airfoil by tangential jet blowing
Investigation of buffet control on transonic airfoil by tangential jet blowing
 
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTERENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
 
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTERENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
ENHANCED DATA DRIVEN MODE-FREE ADAPTIVE YAW CONTROL OF UAV HELICOPTER
 
Nasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flowNasa tech briefs ksk 11495, simplified model of duct flow
Nasa tech briefs ksk 11495, simplified model of duct flow
 
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode ControlPower Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
Power Control of Wind Turbine Based on Fuzzy Sliding-Mode Control
 
(47211) trayectoria de esfuerzos en cercanías de zonas falladas
(47211) trayectoria de esfuerzos en cercanías de zonas falladas(47211) trayectoria de esfuerzos en cercanías de zonas falladas
(47211) trayectoria de esfuerzos en cercanías de zonas falladas
 
5th Semester (December; January-2014 and 2015) Civil Engineering Question Papers
5th Semester (December; January-2014 and 2015) Civil Engineering Question Papers5th Semester (December; January-2014 and 2015) Civil Engineering Question Papers
5th Semester (December; January-2014 and 2015) Civil Engineering Question Papers
 
Zarzirbird Project: Modeling RPAS Dynamics for Load Stability
Zarzirbird Project: Modeling RPAS Dynamics for Load StabilityZarzirbird Project: Modeling RPAS Dynamics for Load Stability
Zarzirbird Project: Modeling RPAS Dynamics for Load Stability
 
Dual edge trigger flip flop yogesh
Dual edge trigger flip flop yogeshDual edge trigger flip flop yogesh
Dual edge trigger flip flop yogesh
 
Valve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdfValve_Spring_Fault_Detection_Final_1.pdf
Valve_Spring_Fault_Detection_Final_1.pdf
 
Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...Real time simulation of nonlinear generalized predictive control for wind ene...
Real time simulation of nonlinear generalized predictive control for wind ene...
 
Ijmet 06 10_001
Ijmet 06 10_001Ijmet 06 10_001
Ijmet 06 10_001
 
4th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...
4th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...4th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...
4th Semester (December; January-2014 and 2015) Mechanical Engineering Questio...
 
National advisory committee for aeronautics naca.
National advisory committee for aeronautics   naca.National advisory committee for aeronautics   naca.
National advisory committee for aeronautics naca.
 
Synthesis of feedback controls using optimization theory
Synthesis of feedback controls using optimization theorySynthesis of feedback controls using optimization theory
Synthesis of feedback controls using optimization theory
 

Propulsion System Simulator of IL-114 Airplane

  • 1. BULLETINS.F.NI. PROPULSIONSYSTtrMSIMULATOR WITH PROPFANFOR TESTS ON A LARGESCALtrMODEL OF IL-114AIRPLANtrIN A FULL-SIZE WIND TUNNEL OF TsAGI by A.G. POPOVYAN, B.G. DULSKY, c.W. RODZEVICH Central,{cro-tff.irodyrar)i.s Institutc. C. Zhukovskv IJ01(;0 lLO.. R<xsirsl<.rla I.t dcraci,va and E. HOEFLER, B. SIROK ]-urboinstitut. Roysnikora 7. 612t0 l,fubljat1a, R{?ublic of "Slor?nia Abstract In the paper a report on a model of the IL- 114 turbo-prop, passenger airplane is given. The model was erected with the aim of carrying out a complex research of takeoff/landing cha- racteristics, Measurements were carried out in a wind tunnel T-l0l of TsAGI (Central Aero- Hydrodynamics Institute in Moscow - named after Joukowski). The main characteristic of the airplane model are the two propulsion systern si- mulated models. Each of these simulated models consists of a three-stage hot-air turbine, plane- tary gear, and a six-blade propeller. The simu- lated rnodel has a power of 482 kW, therefore it has to be equipped as a real gas turbine should be. Some of the equiprnent is installed in the simulated model while the other equipment is arranged externally. The simulator is equipped with a complex measuring and control system which is able to monitor the operation of the turbine, Various loadings, which may be quasi- stationary or dynamic, on the power system and airplane elements can be measured. In the pa- per characteristic results of measurements are presented. They include forces and torques in the propeller shaft, nondimensional coefficients describing the conditions of the driving system of the model, and aerodynamic conditions in a reaction nozzle. stLruLATEUR QU SvSTEr,rE TURBOHELTCE POUR LE LIODELE GRANDEECHELLE D'AyroN tL-11.1ET |OUR LES ESSATS EN SOUFFLERIE AERODYNANIIQUE DE TsAGI Rdsund Dans lcur a.rticlc lcs autcurs font un rapport sur lc modd.lcd avion ir turboh6licc IL-111 pour passagcrsqui a dtd conn^truitpour des recherchessous 1e,sconditions de ddcollagc/attcrrissagc. Lcs ncsures sort cfect udcs cn soufierie airodynamique T-101 de TsAGI (Inst.i- tut Ccntral A4reH,lydrodynarniquc llloscou Licu Jou- kowski). Lc propra du rnodilc cst d 6trc rnuni dc dcu.r !-.ais systdmes t urbopropulscurs respectivcmcnt sinru- latcurs. Chacun c--t constitui par unc turbinc A actiorl d trois dtagcs.par un r6ductcur ct unc hilicc A six palcs. A causedirne pui.ssanceconsidirable (482 kW), cbacyrc turbopropulscur cst muni dc tous lcs systirncs riccs- saircs d la turbinc d gaz: quclqucs-unssc trouvcnt dalrs l cnscmblc turboprop lseur. sur 1cnodilc d avion, tar- dis quc.la p.lupart sont installis hors du rnoddlc. sur.lc planchcr auprds dc la balancc. Lc cornplexc rrlcsurcur.s permat. de mettre au point et de suivre:la fonction de la turbinc, a.insiqrrc d'cffcctucr lcs nrcsurcs dc divcrsc.s chargcs(quasi-stationnaircs ct dvnam.iqucs)du systdrnc propul,scur ct des iiiments sdpards. Dans l art)cle on prdscntc quclqucs rdsultats significatifs i forccs ct lrIo ments sur I'axe de I'h6lice. coetfrcientssans dimensiorr conccrnant la propulsion du nodilc ct .ic-^conditions a4rodynarniqucs .surla tuJ.irc d riaction.
  • 2. A.(;. POI']O-'.N .i al. Propulsion svstcrr simulator txith propfan for tests on a large scale model side view lts. J. 1 : ll-111 airplanc nodcl on thc balanc. ot f 101 "ind tunnel. front elevation 1) airplane nodel i 2) prcpfan;3) tail unit;4) bdance ASPECT OF MODELLING Thr. lSU-l l-l propulsionststr.tl simulatoris a pro- pulsioll systcrl u'ith a propfan dcsigueclirr accordancc qith sirnilitudc laws takilg ilrto accdrnt geomctricand aoro(lvnaxliccharattcristics of thc airplatrcpropulsiorr s!stcnr. Tht'sirnrrlatorprovidcsa similaritv oftlx'jt.ts of thc progrfauarrtlth('r('a(tiou nozzlcwith thc.ictsol tho rcal propulsiou svstcnl. Thc :rirplarrt. nrodel which is cquip- pcd witlr tllc opcratiug sinrulatorsnray be rrscdfor a rrrulticlisciplinarlrt'scarchin airfrtrurc/propulsionsvs- tcm intcrfcrcucc.stabilitv of an airplanc (cngincfailurc conclitionsmav br.includcd) distribution of kradilgs on colllporroutsof an airplarr<'.i.c.ll,'ingand tail. Thc corrdi- tions of thc aftcr-landing run $,ith thrust r('v(.rsalcan alsobc invcstigatcd. 'hc[ thc rnodcl (subscript "nr") is gconrctrically similar to thc airplanc (subscript"n ). at a scalcK1 = L,,/L,,, a:nd dcsigncd for iDvcstigationsin au opcn- scctionwirld tulrltcl.thcn if ba-singon thc gcncralthcorv of sinilaritr'. thc rclatio|rsof acronrcchanicalsimilitudc calrl)c writtcu : similitudc dclining steadincss of flow around propfan bladcs q,'ill bc satisficd at a high accuracy. Figurc I shon'sthc modcl of the IL-l14 aircraft on thc aerodynamic balance: fig. 2 depicts thc propulsion system simulator in an engine nacellc; fig. 3 shows a schcuraticof a sirnulator with a turbine-driven propfan. Figurc ,1is a photograph of thc MSU-114 on the wing of thc rnodcl. According to thc parametersof the T-101, wind tunnel of TsACI the geomct c scalc of thc modcl l(r = 2 had to be takcn into account. Thcrefore thc modcl wing span is l5 rn. Ter"hnicaldata of thc cxpcrimonlal systcm : sizcof clliptic nozzlcof T-101 flow specd anglc of attack ra[gc angle of sideslip range modcl wing span sinrulator propfan diameter propfan rotational speed propfan thrust 24x74rr. V= < 50m/s 0 = l0' ... + 25' A - -20" ... + 20" 1", : l5 m D: 1.8m n:0...2400rpm .r : 1000... +7750N r;,,= t,, 11= Kt * - rcaction nozzlctluust ftc : 0...385 N equivalent power of simulator N.o,, < 482 kW Thc turbinc of thc simulator is powered by hot com- prcsscd air supplied from an external systen through load-bcaringstruts 4 (fig. l)ofthc acrodynamicbalancc of T- 101.Paramctcrsofthc working fluid for the turbine of thc simulator wcrc dcflncd on the basisof power cha- racteristicsof thc T-101 wind tunnel, operationalrclia- bility of thc cxperirnental equipment and thc similitude critcria. Figurcs 5a, b, c and d represent, respectively, thc valuc of the rclative air-flowratc Gc = G./G"", tltc total prcssurc in front of thc turbine Pjr, the total tem- pcraturc q?-. and the available enthalpy drop h" of the working fluid in the propulsion system simulator. Thcy arc givt:n a-sfunctions of thc total tcmpcraturc 4: iD I ;n R.,,, R,, I ;.i (1) whcrc l's art'thc appropriatcdimcnsious.y is thc fiight yclocitt (frcc strcanr vclocitl in thc witrd tunncl): n. tht.propfan spce,d:X. thc thrust of a propfan: R. thc rcactioDnozzlct hrust. 'lrr:n thc opcn-scctionwild trrrruclis built accor- dirrgto tho critcria (l) and whcn thc floq.is sclf-sirnilar (at corrcsporldiugRc1'rurlrlsmrmbors). thcn thc kirx' nratic/dvnanricsimilituclc critcria and thc critcrion of Rovuc f'rancaisc dc l6caniquc n" 1992,:l
  • 3. A.G. POPOVYAN et al. Propulsionsystem simulator with propfan for tcstson e large scalernodel 3520 l'ig.2. - 2 : Installation of MSU-[ll in engine nacelle ol airpla.ne model. l) propu.lsion system simulator MSU-114;2) engine na!:elle:3) winA;4) reaction nozzle. 5) inlet pipe of turbine L.ig. 3. 3 j Schemalic ot MSU-IM. I) propfan model: 2) six-component rotating loading gauge. 3) telemetry block; 4) fibre-optic devicesi 5) casing:6) planetaty reductiongear: 7) thr.c-stage turbinei 8) exhaust ditruser Revue ftanqaisc de Mecaniquc n" 1992-3
  • 4. A.(;. POPOVYAN ct al. Propulsior systcm sr'muiator with propfan for tests on a large scale model 0tril a{trl ngtlt l.tri l'ig 1 l>hot()gruph ofa ri{ht silr |lator on a wing of lL-l|J airy'lane nt'dcl intheT-101 win.l t nnel. On bladcs of the propfan srralr gauges can oc srcrl thc rcaction nozzlcjct. mcasllrc(lat tlucc vallx'sof tho rclativc thrust of lrozzlcsR, - R, I X. Thc nct cfficicncy of thc turbinc is 4, - 11.65and thc rncan pcriphcral vclocity of thc turbinc bla<k'sis U,,, = 175ru/s. l)orn figurc5d the ncccssarl'rrrrnrbcrZr of tllrl)inc stagcs('all be (lctcrrninc(i. For thc full size prolnlsion slstcnr. thc (lcsigrr valucs arc 4" - 801 K. /?,,, = 0.0-17.G,." = L Thc curvcs shown in lig. 5 arc plottc(l on thc ba- sis of thc nlonlcntum cquatiou arxl consorvati(rl cqlla- tiou. Using thcsc curi.csit is possiblcto dctcrnrincthc workirrg fluid pararnctcmwhich satisfl thc critcria of similitudc ofjcts of thc propfan and thc rcactionnozzle of thc simulator in ca-st.of 'f; <'1.;".Optirnisation fbr lSU-11,1heusbccrrcarric<lout and thc raluc 11 - 425 K wa^sobtaincd.Thc valucs(J, = Gr. Pir.T;r. h",Zr rnay tre rk.termincd using thc plots on fig. 5 taking into accollnt7.:. MEASURING SYSTEM OF MSU-1T4 Figurc 6 is a block<liagranrofthc nrt'irslrrillgsvst('nl of thc NISU-111.Table 1 showsits t cchnical(lata. Wit h thc ai(l of thc ln('?r^,iur(.nl(.lltsvst(.rrrit is possiblt'to : mca.surcforccsX.Y.Z awI rlolrr('llts llt.ltly.XIz on thc propfan; cl'aluatc prcssurcfi. tcmpcraturcs. pressurt' pulsa- tion. variablcand static straius (strcsscs)in bladcs and slnlclrlrcof tho propfan: trrcasurcthc propfan rotational spccrl and pararnc- tcrs of the reactionnozzlcjct i (lctcrrnincthc nozzlcthrust l?. : rccord thc lcvcls of vibratiorrs of thc ca"singand thc tcmpcraturc of bcaringsof thc propulsionsystcnr simulator. Rcvuc !'ranqalsc dc ll6canrquc n" 1992-3 valuc Nulbcr Rangc capability FYequency rangeIIz Error (stand. deviation), 7a t'.z l g ats P P; T; Theta ttI I I I I I I < l,l < 1 6 l 3 I 2 < 2 9 I I 1 't . 1 0 0 0 . . . + r J 0 0 0 N -900... + 1900N'm 2000...f 3000N 1700... + 1700N*m 0. . . 700c 0. . . l6'c 0 . . . 3 5 k P a 0 . . . 3 5 k P a 0 . . . 3 5 k P a 0 . . . 5 k P a 2 7 0 . . . s 5 0 " K 0. . .20000mstrain 0 . . . 2 5 0 0 r p m 0. . .6.28rad 0. . . 2000c u =< 50 mm/s < l < l =< 400 :< 400 < 0.25 =< 10000 < 0.25 < 0.25 = < 10000 0 . . . 5 0 =< 1000 < 0.5 < 0.6 < 2 < 2 < l < l < 5 < 0.5 < 2 < l < 3 . <5 < 0.1 < o.7 < 1 . 5 < l 0 Tablc1 Tccbnicaldata of a mcasurcmcntsystcm A safety subsystcm of a simulator protccts the sirrurlator agairlst ovcrspccd of thc propfan, dangcrous vibrations of thc casing. and overhcating of bearings. TEST RESULTS lrr figurcs 7a. b, c. d and figures 8a, b. c thc valucs, X.Y.z,LIr.R,R,...s","" = /((}) obiaincd during the tcsts carricd out in thc T-l0l tunnel in order to dctcr- nrinc thc airplanepolar chft - "f(C";o) at Md :0118 arc shown. From thc plots. it can bc sccn that at n = const thc thrust X and thc momcnt Mr (i.e..
  • 5. A.G. POPOVYAN et al. Propulsrbn sjstc.n simulator witi propfan for tcsts on a large scale model ql :< -> tr< E 1100 Y- 900 ,bzoo 500 J00 2,2 2.0 t.E '.1'l'6 1.2 1,0 0.E I'iA.5 .€-.-e R.=0.0470 *---a-F.=o.oSt O .H R3=0,0564 Revuc Flangaise de Mecanique n" 1992-3
  • 6. A.C. POPOVryAN et al. Propulsionsystemsimulaaorwitb prcpfen fo. resrsorl a large scalemodel forceE X, Y, Z momentE llx,tly ,Uz temp€ratures tg, Atg PreEaures, P _ Pressure Pul,aatlon, P static&variabl€ Etralns atreEEeE,e, E, e, E vibrationa, A,v,a,f rotational sD€ed,n propel ter poiition angle, THETA suPPort temperature of bearings, tn temperature Ta total pressure P8 statl,c preEEure Pc 20 kBz, 14 bit150 kHz, 12 bit -trological €quirnt calibratora EimulatorB LEVEL I8 computer TIl,lKO magnetlc tape recorCler di.gital voltmeter oacilloEcope LEVEL II: computer TIl.l-600 information. proceEEing grapnrcs Fig. 6. Measuring system scheme Rcvu. l-lAnCaise de Mdcaliquc no 1992-3
  • 7. A,C. POPOVYAN et a.l. - Prcpulsion systern simulator with propfan for teF-tson a large scalenodel 275 4000 z .2000 x 0 1000 500 z t z N |500 Froooz j' soo Fig.7. RevueFlanqaisede Mecaniquen" 1992-3
  • 8. A.C. POPOVYAN et al. PropulsioD qretem simulstor with prcpfan for t6ts on a latge scale model l-Oc V-40m/g eo:'t- 25o 2.O a1.s ct x l.o tl t 0.5 0.0 F'ig.8. ool 50- 40- z I E E z It n Et E o 20- t0- ffA+= = 2100rom = 1500rbm +Hl Lrft 3imulotor +{ Rightrlmutotor n = 2'100rpm Revue Frangais€ de M6canique no 1992-3
  • 9. A.G. POPOVYAN et al. Propulsion system simulator with proplan for tests on a laxge scale model f =oo v =Yoo./" n Rightsimulotor Rightsimulotor . TotoL pnessunePi o Stotic pnessunePc - 2100rpm Y-Y plone Totol oressure Z-Z plone Totolpressurc Figures 9a, b show the distribution of the static and total pressure P. and P"* at the exit scction of thc nozzle in pla.nes Y - Y and Z - Z. Fig.ure 9c shows thc arrangement of static and total pressure tubes (for P.. and P"). It can be seen that ai o = +25" the prcssure past the wing in the rcgion of the nozzlc exit section is lower than the pressure at o = 0o. Thc pressurc P1,is the static pressurein thc wind tunnel test section. The reasonlor lowcr prmsurc Pj on the axis ofthe nozzlc lics in thc fact that in front of the nozzlc thc straightcncr with flat radial plates and a centrc fairing are installed. In ccrtain casesit is of interest to carry out modcl flight investigatioru of the effcct of the propfan speed on the aerodynamic characteristics. Figure 10showsthe thrust cocfficient 250 Fis. 9. the propfan load factor I3) are mirrimum at o = 0o and uniformly increasewhen o f 0. Therefore. to obtain thc polar at B = const, the blade angle p or the rotational speedmust bc followed taking into account thc rclation n = n(a) for the caseof B being constant. Thc propfan loa.dlactor B is dctcrmincd by thc relation (2) Atx= _.(""1 (3) A o n ' Revue Ftanqaise de M6canique no 1992-3 0.3 0.1 -0.'l 0.5 0.J o" o.t -o.t -0.3 - 0.5 I - 8-s whcrc Q is thc dynamic pressure for flight vclocity V. 5. the area of propfan circle. If the angle of attack rr increa^ses,the forccs Y and Z increa^seuniformly. The forces Z on the left and right simulators arc in thc samc dircction since the propfans rotate identically. Fig. 8 a shows that the amplitude of the altcrnating bcnding stress in blades (at thc point F = 0.45, on the hump of thc airfoil) riscs if thc anglc of attack increases.Besides.bladesarc made of aluminium allov. l-++a=--'l0o | +H}d = 0' -+-+- a = 24o I o l ' n ...t_ --. -. | € d = - " 1 { 1 { } € a = 0 ' ^ ' 4-€. a - 24-
  • 10. 27E A.C. POPOVYAN et al. Propuision system simulator with propfsn lor tests on a large scale model d=oo !=oo V=15+32m/s o.zs = 25o r.10 r.00 propfonrototlonol Fig..10. of thc propfan of thc propulsion system simulator versus rotational spced n at a const Xo .X" is the value of X at thc speed of n" = 1000rpm. lt has been shown that if the rotational spccd increases 2.1 times, the thrust cocmcient of the propfan of the MSU-114 'increasesby 6.9% from the minimum. This cflect could be explained by the incrcase of ReynolG number fie,, at the blade root locations of the propfan. The point velocity W was detcrmined using the formula spood rPm conditionsin the T-101full-scalewind tunnelof the TsAGI. b) Va"rious aspects of mathematical modelling of the operation of the propulsion system simulator are considered. c) Experimental tests in the T-101 wind tunnel havc been carried out. They showed high information output capability of the measuring system and the possibility to usc the wind tunnel to investigate different aspects of aerodynamics of an aircraft with propfan engines. The function relating axial and lateral forces (acting on propfans of the left and right simulator) and the angle of attack has been obtained for an c range of -10" through +24'. The influence ofthe thrust coefficientof the propfa.nofthe MSU-l l4 on the propfan speed at a constant advance ratio ) has be'enstudied. The load of propfan blades was determined. These data will be used to estimate the fatigue life of blades of the MSU-114. (4)tr. _ CONCLUSIONS a) The propulsionsystemsimulator,MSU-114,for the large scalemodel of the IL-114 airplanewith two simulatorcon a wing wasdevelopedand manufactura- ted in orderto conductthc testsundertakeoff/landing [i=0.974975+4.6435r 10-6rn+2.03E06r10-crn2 tr = 60+V/(nrD) = 66651= 9.5 Revue llanqaise de M6canique n" 1992-3