Álgebra Booleana

6,431 views

Published on

Álgebra Booleana, postulados, teoremas, formas canônicas e padrão, simplificação

Published in: Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
6,431
On SlideShare
0
From Embeds
0
Number of Embeds
2,714
Actions
Shares
0
Downloads
115
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Oct 6, 2013 Boolean Algebra
  • Álgebra Booleana

    1. 1. Álbebra Booleana Prof. Tony Alexander Hild Lógica Digital – 1 CC – Unicentro – 2013
    2. 2. Princípio da Dualidade ● Em álgebra Booleana a dualidade pode ser obtida trocando operadores · e + e substituindo 0s por 1s e vice-versa. Exemplo: (a · b) + c' = (a' + b') · c 2
    3. 3. Postulados e Teoremas da Álgebra Booleana ● Postulado 1 – Operações: A álgebra Booleana tem um conjunto K de 2 ou mais valores e duas operações · e +, de modo que para todo a, b pertencentes a K: a·b∈K a+b∈K ● Postulado 2 – Valores Neutros: Existem valores 0 e 1 tais que: a+0=a a·1=a 3
    4. 4. Postulados e Teoremas da Álgebra Booleana ● Postulado 3 – comutatividade: a+b=b+a a·b=b·a ● Postulado 4 – associatividade: a + (b + c) = (a + b) + c a · (b · c) = (a · b) · c ● Postulado 5 – distributividade: a + (b · c) = (a + b) · (a + c) a · (b + c) = (a · b) + (a · c) 4
    5. 5. Postulados e Teoremas da Álgebra Booleana ● Postulado 6 – existência de complemento: Para todo a ∈ K, existe um e apenas um a' ∈ K, chamado de complemento de a, tal que: a + a' = 1 a · a' = 0 5
    6. 6. Postulados e Teoremas da Álgebra Booleana ● Teorema 1 (Idempotência): A soma ou o produto de um valor por ele mesmo é igual a ele mesmo. a+a=a a·a=a ____________________________ Prova 6
    7. 7. Postulados e Teoremas da Álgebra Booleana ● Teorema 2 (Aniquilação): a+1=1 a·0=0 ____________________________ Prova 7
    8. 8. Postulados e Teoremas da Álgebra Booleana ● Teorema 3 (Involução): ● Teorema 4 (Absorção): a + (a · b) = a a · (a + b) = a ____________________________ Prova 8
    9. 9. Postulados e Teoremas da Álgebra Booleana ● Teorema 5: a + a' · b = a + b a · (a' + b) = a · b ____________________________ Prova 9
    10. 10. Postulados e Teoremas da Álgebra Booleana ● Teorema 6 (Adjacência lógica): a · b + a · b' = a (a + b) · (a + b) = a ____________________________ Prova 10
    11. 11. Postulados e Teoremas da Álgebra Booleana ● Teorema 7: a · b + a · b' · c = a · b + a · c (a + b) · (a + b + c) = (a + b) · (a + c) ____________________________ Prova 11
    12. 12. Postulados e Teoremas da Álgebra Booleana ● Teorema 8 (Leis de DeMorgan): (a + b)' = a' · b' (a · b)' = a' + b' ____________________________ Prova 12
    13. 13. Postulados e Teoremas da Álgebra Booleana ● Teorema 9 (Teorema do Consenso): a · b + a' · c + b · c = a · b + a' · c (a + b) · (a' + c) · (b + c) = (a + b) · (a' + c) ____________________________ Prova 13
    14. 14. Leis de DeMorgan 14
    15. 15. Leis de DeMorgan 15
    16. 16. Universalidade das portas NAND 16
    17. 17. Universalidade das portas NOR 17
    18. 18. Resumo dos Postulados e Teoremas 18
    19. 19. Postulados e Teoremas expressos por meio de portas lógicas 19
    20. 20. Representação alternativa 20
    21. 21. Exemplos de simplificações 21
    22. 22. Exemplos de simplificações 22
    23. 23. Exemplos de simplificações 23
    24. 24. Exemplos de simplificações 24
    25. 25. Exemplos de simplificações 25
    26. 26. Exemplos de simplificações 26
    27. 27. Mais exemplos de simplificações 27
    28. 28. Formas Canônica e Padrão ● Precisamos considerar técnicas formais para a simplificação de funções booleanas. – – – – – Funções idênticas terão exatamente a mesma forma canônica; Mintermos e maxtermos; Soma dos mintermos e Produtos dos maxtermos; Produto e soma de termos; Soma de Produtos (SOP) e Produto de Somas (POS). 28
    29. 29. Definições ● Literal: Uma variável ou o seu complemento; ● Termo Produto: literais conectados por ·; ● Termo Soma: literais conectados por +; ● ● Mintermo: um termo Produto em que todas as variáveis aparecem exatamente uma vez, seja complementada ou não complementada; Maxtermo: um termo de Soma em que todas as variáveis aparecem exatamente uma vez, seja complementada ou não complementada. 29
    30. 30. Mintermo ● ● ● ● Representa exatamente uma combinação na tabela verdade; Denotado por mj, onde j é o equivalente decimal dos mintermos correspondente à combinação binária (bj); Uma variável em mj é complementada se seu valor em bj for 0, caso contrário é não complementada; Exemplo: Dadas 3 variáveis (A,B,C), e j=3. Então, bj = 011 e seu mintermo correspondente é denotado por mj = A’BC. 30
    31. 31. Maxtermo ● ● ● ● Representa exatamente uma combinação na tabela verdade; Denotado por Mj, onde j é o equivalente decimal dos maxtermos correspondente à combinação binária (bj); Uma variável em Mj é complementada se seu valor em bj for 1, caso contrário é não complementada; Exemplo: Dadas 3 variáveis (A,B,C), e j=3. Então, bj = 011 e seu maxtermo correspondente é denotado por Mj = A+B'+C'. 31
    32. 32. Tabela verdade para a notação de Mintermos e Maxtermos ● ● Mintermos e Maxtermos são fáceis de denotar usando uma tabela verdade; Examplo: Assuma 3 variáveis A,B,C (com ordem fixa). Decimal A 0 0 1 0 2 0 3 0 4 1 5 1 6 1 7 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 f(A,B,C) 1 0 1 1 0 0 1 1 Mintermos m0 = A'B'C' m1 = A'B'C m2 = A'BC' m3 = A'BC m4 = AB'C' m5 = AB'C m6 = ABC' m7 = ABC Maxtermos M0 = A + B + C M1 = A + B + C' M2 = A + B' + C M3 = A + B' + C' M4 = A' + B + C M5 = A' + B + C' M6 = A' + B' + C M7 = A' + B' + C' 32
    33. 33. Formas Canônicas (Únicas) ● ● Qualquer função Booleana f( ) pode ser expressada como uma soma única de mintermos ou um produto único de maxtermos (sob uma ordem de variáveis fixa); Em outras palavras, toda função f( ) possui duas formas canônicas: – – Soma de Produtos Canônica (soma de mintermos); Produto de Somas Canônico (produto de maxtermos). 33
    34. 34. Formas Canônicas (cont.) ● Soma de Produtos Canônica: Os mintermos incluídos são os mj tal que f( ) = 1 na linha j da tabela verdade para f( ). Produto de Somas Canônico: – ● – Os maxtermos incluídos são os Mj tal que f( ) = 0 na linha j da tabela verdade para f( ). 34
    35. 35. Exemplo ● Tabela verdade para f(A,B,C); ● A forma canônica de soma de produtos para f é: – ● A forma canônica de produto de somas para F é: – ● f(A,B,C) = m1 + m2 + m4 + m6 = A’B’C + A’BC’ + AB’C’ + ABC’ f(A,B,C) = M0 · M3 · M5 · M7 = (A+B+C) · (A+B’+C’) · (A’+B+C’) · (A’+B’+C’) Observe que: mj = Mj’. 0 1 2 3 4 5 6 7 A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 F 0 1 1 0 1 0 1 0 35
    36. 36. Abreviatura: ∑ e ∏ ● ● ● f(A,B,C) = ∑ m(1,2,4,6), onde ∑ indica que é a forma Soma de Produtos, e m(1,2,4,6) indica que os mintermos que devem ser incluídos são m1, m2, m4, e m6. f(A,B,C) = ∏ M(0,3,5,7), onde ∏ indica que é a forma Produto de Somas, e M(0,3,5,7) indica que os maxtermos que devem ser incluídos são M0, M3, M5, e M7. Como mj = Mj’ para todo j, ∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f(A,B,C) 36
    37. 37. Conversão entre Formas Canônicas ● ● Substitua ∑ por ∏ (ou vice versa) e substitua os j’s que estão na forma original pelos que não estão. Example: f(A,B,C) = A’B’C + A’BC’ + AB’C’ + ABC’ = m1 + m2 + m4 + m6 = ∑(1,2,4,6) = ∏(0,3,5,7) = (A+B+C)·(A+B’+C’)·(A’+B+C’)·(A’+B’+C’) 37
    38. 38. Formas Padrão (Não Únicas) ● ● ● Formas Padrão são “como” Formas Canônicas, exceto que nem todas as variáveis precisam aparecer nos termos produto (SOP) ou soma (POS) individuais; Exemplo: f(A,B,C) = A’B’C + BC’ + AC’ é uma forma padrão de soma de produtos. f(A,B,C) = (A+B+C)·(B’+C’)·(A’+C’) é uma forma padrão de produto de somas. 38
    39. 39. Conversão de SOP da forma padrão para a forma canônica ● ● ● Expanda os termos não-canônicos inserindo o equivalente a 1 em cada variável x ausente: (x + x’) = 1 Remova os mintermos duplicados f(A,B,C) = A’B’C + BC’ + AC’ = A’B’C + (A+A’)BC’ + A(B+B’)C’ = A’B’C + ABC’ + A’BC’ + ABC’ + AB’C’ = A’B’C + ABC’ + A’BC + AB’C’ 39
    40. 40. Conversão de POS da forma padrão para a forma canônica ● ● ● Expanda os termos não-canônicos adicionando 0 nos termos com variáveis faltantes (e.g., xx’ = 0) e use a lei distributiva. Remova os maxtermos duplicados. f(A,B,C) = (A+B+C)·(B’+C’)·(A’+C’) = (A+B+C)·(AA’+B’+C’)·(A’+BB’+C’) = (A+B+C)·(A+B’+C’)·(A’+B’+C’)· (A’+B+C’)·(A’+B’+C’) = (A+B+C)·(A+B’+C’)·(A’+B’+C’)·(A’+B+C’) 40

    ×