TRIGONOMETRIC IDENTITIES HAZBER SAMSON
TRIGONOMETRIC IDENTITIES
Basic Formulas
1.
θ
θ
sin
1
csc = ,
θ
θ
cos
1
sec = and
θ
θ
tan
1
cot =
2.
θ
θ
θ
cos
sin
tan = and
θ
θ
θ
sin
cos
cot =
3. 122
=+ θθ CosSin
4. θθ 22
sectan1 =+
5. θθ 22
csccot1 =+
Compound Angle Identities
6. ( ) βαβαβα sincoscossin +=+Sin
7. ( ) βαβαβα sincoscossin −=−Sin
8. ( ) βαβαβα sinsincoscos −=+Cos
9. ( ) βαβαβα sinsincoscos +=−Cos
10. ( )
βα
βα
βα
tantan1
tantan
−
+
=+Tan
11. ( )
βα
βα
βα
tantan1
tantan
+
−
=−Tan
12. ( ) θθ SinSin =− ,
( ) θθ CosCos =−
( ) θθ TanTan −=−
13. ( ) ,2 θθπ SinSin =+
( ) θθπ CosCos =+2
( ) θθπ TanTan =+
Half-Angle Identities
14.
2
cos1
2
2 θθ −
=Sin or
2
2cos12 θ
θ
−
=Sin
15.
2
cos1
2
2 θθ +
=Cos or
2
2cos12 θ
θ
+
=Cos
16.
θ
θθ
cos1
cos1
2
2
+
−
=Tan or
θ
θ
θ
2cos1
2cos12
+
−
=Tan
Double Angle Identities
17. θθθ cossin22 =Sin
2
cos
2
sin2
θθ
θ =Sin
18. θθθ 22
sincos2 −=Cos
2
sin
2
cos 22 θθ
θ −=Cos
19.
θ
θ
θ 2
tan1
tan2
2
−
=Tan
2
tan1
2
tan2
2 θ
θ
θ
−
=Tan
Triple Angle Identities
20. θθθ 3
sin4sin33 −=Sin
21. θθθ cos3cos43 3
−=Cos
22.
θ
θθ
θ 2
3
tan31
tantan3
3
−
−
=Tan
Sums into Products
23.
22
2
BA
Cos
BA
SinBSinASin
−+
=+
24.
22
2
BA
Sin
BA
CosBSinASin
−+
=−
25.
22
2
BA
Cos
BA
CosBCosACos
−+
=+
26.
22
2
BA
Sin
BA
SinBCosACos
−+
−=−
Product into Sums
27. ( ) ( )QPSinQPSinSinPCosQ −++=2
28. ( ) ( )QPSinQPSinCosPSinQ −−+=2
29. ( ) ( )QPCosQPCosCosPCosQ −++=2
30. ( ) ( )QPCosQPCosSinPSinQ −−+=− 2

Trigonometric identities

  • 1.
    TRIGONOMETRIC IDENTITIES HAZBERSAMSON TRIGONOMETRIC IDENTITIES Basic Formulas 1. θ θ sin 1 csc = , θ θ cos 1 sec = and θ θ tan 1 cot = 2. θ θ θ cos sin tan = and θ θ θ sin cos cot = 3. 122 =+ θθ CosSin 4. θθ 22 sectan1 =+ 5. θθ 22 csccot1 =+ Compound Angle Identities 6. ( ) βαβαβα sincoscossin +=+Sin 7. ( ) βαβαβα sincoscossin −=−Sin 8. ( ) βαβαβα sinsincoscos −=+Cos 9. ( ) βαβαβα sinsincoscos +=−Cos 10. ( ) βα βα βα tantan1 tantan − + =+Tan 11. ( ) βα βα βα tantan1 tantan + − =−Tan 12. ( ) θθ SinSin =− , ( ) θθ CosCos =− ( ) θθ TanTan −=− 13. ( ) ,2 θθπ SinSin =+ ( ) θθπ CosCos =+2 ( ) θθπ TanTan =+ Half-Angle Identities 14. 2 cos1 2 2 θθ − =Sin or 2 2cos12 θ θ − =Sin 15. 2 cos1 2 2 θθ + =Cos or 2 2cos12 θ θ + =Cos 16. θ θθ cos1 cos1 2 2 + − =Tan or θ θ θ 2cos1 2cos12 + − =Tan Double Angle Identities 17. θθθ cossin22 =Sin 2 cos 2 sin2 θθ θ =Sin 18. θθθ 22 sincos2 −=Cos 2 sin 2 cos 22 θθ θ −=Cos 19. θ θ θ 2 tan1 tan2 2 − =Tan 2 tan1 2 tan2 2 θ θ θ − =Tan Triple Angle Identities 20. θθθ 3 sin4sin33 −=Sin 21. θθθ cos3cos43 3 −=Cos 22. θ θθ θ 2 3 tan31 tantan3 3 − − =Tan Sums into Products 23. 22 2 BA Cos BA SinBSinASin −+ =+ 24. 22 2 BA Sin BA CosBSinASin −+ =− 25. 22 2 BA Cos BA CosBCosACos −+ =+ 26. 22 2 BA Sin BA SinBCosACos −+ −=− Product into Sums 27. ( ) ( )QPSinQPSinSinPCosQ −++=2 28. ( ) ( )QPSinQPSinCosPSinQ −−+=2 29. ( ) ( )QPCosQPCosCosPCosQ −++=2 30. ( ) ( )QPCosQPCosSinPSinQ −−+=− 2