10 А
Кле́тка  — элементарная единица строения и жизнедеятельности всех  живых   организмов  (кроме  вирусов , о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию
Хлоропласты.  Это зеленые пластиды и их основная функция-  фотосинтез , т.е. превращение энергии солнечного света в энергию макроэргических связей АТФ и синтез за счет этой энергии углеводов из углекислого газа воздуха. Больше всего хлоропластов в клетках листьев. размер хлоропластов 5-10 мкм. . По форме они могут напоминать линзу или мяч для игры в регби. Под наружной гладкой мембраной находится складчатая внутренняя мембрана. Между складками мембран находится стопкисвязанных с ней пузырьков. Каждая отдельная стопка таких пузырьков называется граной. В одном хлоропласте может быть до 50 гран, которые расположены так, чтобы до каждой из них мог доходить свет солнца. В мембранах пузырьков, образующих граны, находится хлорофилл, необходимый для превращения энергии света в химическую энергию АТФ.   Обычно в одной клетке листа растения находится от 20 до 100 хлоропластов. В хромопластах содержатся пигменты красного, оранжевого, фиолетового, желтого цветов. Этих пластид особенно много в клетках лепестков цветков и оболочек плодов. Как и митохондрии, пластиды содержат собственные молекуклы ДНК. Поэтому они также способны самостоятельно размножаться, независимо от деления клетки
Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа- гранулярная и гладкая. Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети- участие в синтезе белка, который осуществляется в рибосомах.
Митохондрии. В цитоплазме расположены также митохондрии-энергетические органоиды клеток. Форма митохондрий различна- они могут овальными, округлыми, палочковидными. Их диаметр около 1 мкм, а длина-до 7-10 мкм. Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы-кристы. В мембрану крист встроены ферменты, синтезирующие за счет энергии питательных веществ, поглощенных клеткой, молекулы аденозинтрифосфата(АТФ). АТФ- это универсальный источник энергии для всех процессов, происходящих в клетке. Количество митохондрий в клетках различных живых существ и тканей неодинаково. Например в сперматозоидах может быть всего одна метохондрия. Зато в клетках тканей, где велики энергетические затраты, бывает до нескольких тысяч
Клеточное ядро - это важнейшая часть клетки. Оно есть почти во всех клетках многоклеточных организмов. Клетки организмов, которые содержат ядро называют эукариотами. Клеточное ядро содержит  ДНК - вещество наследственности, в котором зашифрованы все свойства клетки. Поэтому ядро необходимо для осуществления двух важнейших функций. Во-первых, это деление, при котором образуются новые клетки, во всём подобные материнской. Во-вторых, ядро регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке. Ядро чаще всего имеет шаровидную форму или овальную форму. От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока. В ядерном соке расположены хроматин и ядрышки.
Лизосомы - шаровидные тельца диаметром от 0,2 до 1мкм. Они покрыты элементарной мембраной и содержат около 30 гидролитических ферментов, способных расщеплять белки, нуклеиновые кислоты, жиры и углеводы. Образование лизосом происходит в комплексе Гольджи. Если в цитоплазму клетки попадают пищевые вещества или микроорганизмы, ферменты лизосом принимают участие в их переваривании. При повреждении мембран лизосом содержащиеся в них ферменты могут разрушать структуры самой клетки и временные органы эмбрионов и личинок. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ.
Аппарат Гольджи. Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных животных организмов, несмотря на разнообразие его формы. В состав аппарата Гольджи входят: полости, ограниченны мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс, как это видно на рисунке. Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки- белки, углеводы и жиры.  Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.
Вакуоли  представляют собой участки гиалоплазмы растительных клеток и простейших, ограниченные элементарной мембраной. Они образуются из расширений эндоплазматической сети и пузырьков комплекса Гольджи. Вакуоли растений содержат клеточный и поддерживают тургурное давление. Вакуоли простейших можно разделить на две группы: 1) пищеварительные, в которые поступают гидролитические ферменты лизосом и в которых происходит внутриклеточное пищеварение; 2) сократительные, собирающие и выводящие за пределы клетки продукты диссимиляции и излишки воды и тем самым поддерживающие осмотическое давление клетки.
Началом изучения клетки можно считать 1665 год, когда английский ученый Роберт Гук впервые увидел в микроскоп на тонком срезе пробки мелкие ячейки; он назвал их клетками. К началу 19 века представления о клеточном строение живых организмов получили широкое распространение, но, однако, как устроена клетка, какова ее роль для организма, как она произошла и множество других вопросов оставалось без ответа. Очень важное открытие сделал шотландский ученый Р. Броун в 30-х годах 19 века. Он обнаружил внутри клетки плотное круглое образование, которое назвал ядром. В 1838 году М. Шлейден и Т. Шванн пришли к выводу, что все растительные и животные клетки сходны - у них есть ядра. Обобщив разрозненные факты, Шванн и Шлейден сформулировали основное положение клеточной теории:  все растительные и животные организмы состоят из клеток, сходных по строению. Рудольф Вирхов спустя 20 лет доказал,  что клетка происходит только от клетки.   Клеточная теория
ГУК (Hooke) Роберт  (18 июля 1635, Фрешуотер, о. Уайт — 3 марта 1703, Лондон) английский естествоиспытатель, разносторонний ученый и экспериментатор, архитектор. Открыл (1660) закон, названный его именем. Высказал гипотезу тяготения. Сторонник волновой теории света. Улучшил и изобрел многие приборы, установил (совместно с Х. Гюйгенсом) постоянные точки термометра. Усовершенствовал  микроскоп  и установил клеточное строение тканей, ввел термин «клетка».
ЛЕВЕНГУК  (Leeuwenhoek) Антони ван (1632-1723) нидерландский натуралист, один из основоположников научной микроскопии. Изготовив линзы с 150-300-кратным увеличением, впервые наблюдал и зарисовал (публикации с 1673) ряд простейших, сперматозоиды, бактерии, эритроциты и их движение в капиллярах.
БЭР  Карл Максимович (Карл Эрнст) (1792 - 1876) естествоиспытатель, основатель эмбриологии, один из учредителей Русского географического общества, иностранный член-корреспондент (1826), академик (1828-30 и 1834-62; почетный член с 1862) Петербургской АН. Родился в Эстляндии. Работал в Австрии и Германии; в 1829-30 и с 1834 — в России. Открыл  яйцеклетку  у млекопитающих, описал стадию бластулы; изучил эмбриогенез цыпленка. Установил сходство эмбрионов высших и низших животных, последовательное появление в эмбриогенезе признаков типа, класса, отряда и т. д.; описал развитие всех основных органов позвоночных. Исследовал Новую Землю, Каспийское море. Редактор серии изданий по географии России. Объяснил закономерность подмыва берегов рек (Бэра закон ).

клетка

  • 1.
  • 2.
    Кле́тка —элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов , о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию
  • 3.
    Хлоропласты. Этозеленые пластиды и их основная функция- фотосинтез , т.е. превращение энергии солнечного света в энергию макроэргических связей АТФ и синтез за счет этой энергии углеводов из углекислого газа воздуха. Больше всего хлоропластов в клетках листьев. размер хлоропластов 5-10 мкм. . По форме они могут напоминать линзу или мяч для игры в регби. Под наружной гладкой мембраной находится складчатая внутренняя мембрана. Между складками мембран находится стопкисвязанных с ней пузырьков. Каждая отдельная стопка таких пузырьков называется граной. В одном хлоропласте может быть до 50 гран, которые расположены так, чтобы до каждой из них мог доходить свет солнца. В мембранах пузырьков, образующих граны, находится хлорофилл, необходимый для превращения энергии света в химическую энергию АТФ. Обычно в одной клетке листа растения находится от 20 до 100 хлоропластов. В хромопластах содержатся пигменты красного, оранжевого, фиолетового, желтого цветов. Этих пластид особенно много в клетках лепестков цветков и оболочек плодов. Как и митохондрии, пластиды содержат собственные молекуклы ДНК. Поэтому они также способны самостоятельно размножаться, независимо от деления клетки
  • 4.
    Эндоплазматическая сеть. Всявнутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа- гранулярная и гладкая. Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети- участие в синтезе белка, который осуществляется в рибосомах.
  • 5.
    Митохондрии. В цитоплазмерасположены также митохондрии-энергетические органоиды клеток. Форма митохондрий различна- они могут овальными, округлыми, палочковидными. Их диаметр около 1 мкм, а длина-до 7-10 мкм. Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы-кристы. В мембрану крист встроены ферменты, синтезирующие за счет энергии питательных веществ, поглощенных клеткой, молекулы аденозинтрифосфата(АТФ). АТФ- это универсальный источник энергии для всех процессов, происходящих в клетке. Количество митохондрий в клетках различных живых существ и тканей неодинаково. Например в сперматозоидах может быть всего одна метохондрия. Зато в клетках тканей, где велики энергетические затраты, бывает до нескольких тысяч
  • 6.
    Клеточное ядро -это важнейшая часть клетки. Оно есть почти во всех клетках многоклеточных организмов. Клетки организмов, которые содержат ядро называют эукариотами. Клеточное ядро содержит ДНК - вещество наследственности, в котором зашифрованы все свойства клетки. Поэтому ядро необходимо для осуществления двух важнейших функций. Во-первых, это деление, при котором образуются новые клетки, во всём подобные материнской. Во-вторых, ядро регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке. Ядро чаще всего имеет шаровидную форму или овальную форму. От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока. В ядерном соке расположены хроматин и ядрышки.
  • 7.
    Лизосомы - шаровидныетельца диаметром от 0,2 до 1мкм. Они покрыты элементарной мембраной и содержат около 30 гидролитических ферментов, способных расщеплять белки, нуклеиновые кислоты, жиры и углеводы. Образование лизосом происходит в комплексе Гольджи. Если в цитоплазму клетки попадают пищевые вещества или микроорганизмы, ферменты лизосом принимают участие в их переваривании. При повреждении мембран лизосом содержащиеся в них ферменты могут разрушать структуры самой клетки и временные органы эмбрионов и личинок. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ.
  • 8.
    Аппарат Гольджи. Вомногих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных животных организмов, несмотря на разнообразие его формы. В состав аппарата Гольджи входят: полости, ограниченны мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс, как это видно на рисунке. Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки- белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.
  • 9.
    Вакуоли представляютсобой участки гиалоплазмы растительных клеток и простейших, ограниченные элементарной мембраной. Они образуются из расширений эндоплазматической сети и пузырьков комплекса Гольджи. Вакуоли растений содержат клеточный и поддерживают тургурное давление. Вакуоли простейших можно разделить на две группы: 1) пищеварительные, в которые поступают гидролитические ферменты лизосом и в которых происходит внутриклеточное пищеварение; 2) сократительные, собирающие и выводящие за пределы клетки продукты диссимиляции и излишки воды и тем самым поддерживающие осмотическое давление клетки.
  • 10.
    Началом изучения клеткиможно считать 1665 год, когда английский ученый Роберт Гук впервые увидел в микроскоп на тонком срезе пробки мелкие ячейки; он назвал их клетками. К началу 19 века представления о клеточном строение живых организмов получили широкое распространение, но, однако, как устроена клетка, какова ее роль для организма, как она произошла и множество других вопросов оставалось без ответа. Очень важное открытие сделал шотландский ученый Р. Броун в 30-х годах 19 века. Он обнаружил внутри клетки плотное круглое образование, которое назвал ядром. В 1838 году М. Шлейден и Т. Шванн пришли к выводу, что все растительные и животные клетки сходны - у них есть ядра. Обобщив разрозненные факты, Шванн и Шлейден сформулировали основное положение клеточной теории: все растительные и животные организмы состоят из клеток, сходных по строению. Рудольф Вирхов спустя 20 лет доказал, что клетка происходит только от клетки. Клеточная теория
  • 11.
    ГУК (Hooke) Роберт (18 июля 1635, Фрешуотер, о. Уайт — 3 марта 1703, Лондон) английский естествоиспытатель, разносторонний ученый и экспериментатор, архитектор. Открыл (1660) закон, названный его именем. Высказал гипотезу тяготения. Сторонник волновой теории света. Улучшил и изобрел многие приборы, установил (совместно с Х. Гюйгенсом) постоянные точки термометра. Усовершенствовал микроскоп и установил клеточное строение тканей, ввел термин «клетка».
  • 12.
    ЛЕВЕНГУК (Leeuwenhoek)Антони ван (1632-1723) нидерландский натуралист, один из основоположников научной микроскопии. Изготовив линзы с 150-300-кратным увеличением, впервые наблюдал и зарисовал (публикации с 1673) ряд простейших, сперматозоиды, бактерии, эритроциты и их движение в капиллярах.
  • 13.
    БЭР КарлМаксимович (Карл Эрнст) (1792 - 1876) естествоиспытатель, основатель эмбриологии, один из учредителей Русского географического общества, иностранный член-корреспондент (1826), академик (1828-30 и 1834-62; почетный член с 1862) Петербургской АН. Родился в Эстляндии. Работал в Австрии и Германии; в 1829-30 и с 1834 — в России. Открыл яйцеклетку у млекопитающих, описал стадию бластулы; изучил эмбриогенез цыпленка. Установил сходство эмбрионов высших и низших животных, последовательное появление в эмбриогенезе признаков типа, класса, отряда и т. д.; описал развитие всех основных органов позвоночных. Исследовал Новую Землю, Каспийское море. Редактор серии изданий по географии России. Объяснил закономерность подмыва берегов рек (Бэра закон ).