DAIP WILLYDAIP WILLY
cmacavilca@hotmail.com
TEOREMA DE PITÁGORAS
A
B C
CATETO
CATETO
HIPOTENUSA
2 2
(CATETO) (CATETO)+ = 2
(HIPOTENUSA)
3
45 512
13
20
21 29
RAZONES TRIGONOMÉTRICAS DE
ANGULOS AGUDOS
q
=q
CatetoOpuestoa
sen
Hipotenusa
θ
θ =
CatetoAdyacentea
cos
Hipotenusa
θ =
θ
Hipotenusa
sec
CatetoAdyacentea
θ =
θ
Hipotenusa
csc
CatetoOpuestoa
θ
θ =
θ
CatetoAdyacentea
cot
CatetoOpuestoa
θ
θ =
θ
CatetoOpuestoa
tan
CatetoAdyacentea
CATETO
OPUESTO
A
θCATETO ADYACENTE A
θ
HIPOTENUSA
θ
SENO COSENO
TANGENTE COTANGENTE
SECANTE COSECANTE
12
35
H
2 2 2
H 12 35= +
TEOREMA DE PITÁGORAS
H 1369= = 37
senθ =
cosθ =
tanθ =
12
37
35
37
12
35
cot θ =
sec θ =
csc θ =
35
12
37
35
37
12
EJEMPLO :
EJEMPLO :
Sabiendo que θ es un ángulo agudo tal que senθ=2/3.....
23
θ
θ
TRIÁNGULOS NOTABLES
1 2
3
o
30 (
)
O
60
1
1
2
o
45
o
45
(
)
3
4
5
o
37
o
53
(
)
o
sen30 =
1
2
o
tan60 = 3
o
sec 45 = 2
o
cot 37 =
4
3
o
tan30 =
1
3
3
x
3
3
3
=
o
sen45 =
1
2
2
x
2
2
2
=
TRIÁNGULOS NOTABLES
1 2
3
o
30 (
)
O
60
1
1
2
o
45
o
45
(
)
3
4
5
o
37
o
53
(
)
o
sen30 =
1
2
o
tan60 = 3
o
sec 45 = 2
o
cot 37 =
4
3
o
tan30 =
1
3
3
x
3
3
3
=
o
sen45 =
1
2
2
x
2
2
2
=

Rt de syd

  • 1.
  • 3.
    TEOREMA DE PITÁGORAS A BC CATETO CATETO HIPOTENUSA 2 2 (CATETO) (CATETO)+ = 2 (HIPOTENUSA) 3 45 512 13 20 21 29
  • 4.
    RAZONES TRIGONOMÉTRICAS DE ANGULOSAGUDOS q =q CatetoOpuestoa sen Hipotenusa θ θ = CatetoAdyacentea cos Hipotenusa θ = θ Hipotenusa sec CatetoAdyacentea θ = θ Hipotenusa csc CatetoOpuestoa θ θ = θ CatetoAdyacentea cot CatetoOpuestoa θ θ = θ CatetoOpuestoa tan CatetoAdyacentea CATETO OPUESTO A θCATETO ADYACENTE A θ HIPOTENUSA θ SENO COSENO TANGENTE COTANGENTE SECANTE COSECANTE
  • 5.
    12 35 H 2 2 2 H12 35= + TEOREMA DE PITÁGORAS H 1369= = 37 senθ = cosθ = tanθ = 12 37 35 37 12 35 cot θ = sec θ = csc θ = 35 12 37 35 37 12 EJEMPLO : EJEMPLO : Sabiendo que θ es un ángulo agudo tal que senθ=2/3..... 23 θ θ
  • 6.
    TRIÁNGULOS NOTABLES 1 2 3 o 30( ) O 60 1 1 2 o 45 o 45 ( ) 3 4 5 o 37 o 53 ( ) o sen30 = 1 2 o tan60 = 3 o sec 45 = 2 o cot 37 = 4 3 o tan30 = 1 3 3 x 3 3 3 = o sen45 = 1 2 2 x 2 2 2 =
  • 7.
    TRIÁNGULOS NOTABLES 1 2 3 o 30( ) O 60 1 1 2 o 45 o 45 ( ) 3 4 5 o 37 o 53 ( ) o sen30 = 1 2 o tan60 = 3 o sec 45 = 2 o cot 37 = 4 3 o tan30 = 1 3 3 x 3 3 3 = o sen45 = 1 2 2 x 2 2 2 =