SlideShare a Scribd company logo
1 of 7
Life Expectancy by Country
Regression Analysis Project
Michael Wallace & Brandon Berube
12/12/2013
For our project,mypartner,BrandonBerube andI decidedtouse regressionanalysistosee whattype
of variables affecthowlonga personwill live due tothe countrythat theyinhibit.We were ableto
utilize variousvariable screeningmethodsinordertorun an effectivemodelthatallowedustonotonly
make inferencesabouthowlongpeople of acountrywill live,butalsoshow how accurate ourmodel is.
There were 20 RandomlySelectedCountries.
- We randomlyselectedthe countriesbygivingeachcountrya numberfrom1-213 and using
Random.orgto pick20 randomnumberswhichrelate tothe correspondingcountries.
1. Iraq
2. Mongolia
3. Lesotho
4. Canada
5. Mauritius
6. Oman
7. Samoa
8. Mali
9. Bangladesh
10. Suriname
11. Tonga
12. Qatar
13. Bulgaria
14. Micronesia,Fed.Sts.
15. Spain
16. TrinidadAndTobago
17. PapuaNewGuinea
18. Tanzania
19. Austria
20. Sao Tome & Principe
- We pickedvariablesthat we assume wouldaffectlife expectancythe most.
Response Variable (Y):Life ExpectancyatBirth,Male and Female
 Life expectancyatbirthindicatesthe numberof yearsanewborninfant
wouldlive if prevailingpatternsof mortalityatthe time of itsbirthwere to
stay the same throughoutitslife.
 http://data.worldbank.org/indicator/SP.DYN.LE00.IN
X1 : Accessto improvedsanitationfacilities(measuredas% of total population)
 percentage of the populationusing improvedsanitationfacilities whichare
flush/pourfacilities
 http://data.worldbank.org/indicator/SH.STA.ACSN.UR/countries/1W?displa
y=default
X2 : Healthexpenditure percapita –(measuredincurrentUS dollars)
 Sumof publicandprivate healthexpendituresasa ratioof total population
 http://data.worldbank.org/indicator/SH.XPD.PCAP
X3 Accessto improvedwatersource (measuredas% of total population)
 Percentage of the populationusingan improveddrinkingwatersource.
Improvedwaterincludespipedwater,protecteddugwells,andprotected
springs.
 http://data.worldbank.org/indicator/SH.H2O.SAFE.ZS
X4 FoodProductionIndex
 Foodproductionindex coversfoodcropsthatare considerededible and
that containnutrients.
 http://data.worldbank.org/indicator/AG.PRD.FOOD.XD
X5 : AirQuality(CO2emissions(kt))
 CarbonDioxide emissionsare burningof fossil fuelsandthe manufacture of
cement.
 http://data.worldbank.org/indicator/EN.ATM.CO2E.KT/countries
 1 If greateror equal to 62938.95
 0 if lessthan62938.95
- NOTE*: These variablesare notlistedinorderof importance;because intuitiondoesnot
resultinappropriate mathematical procedure,until we utilize stepwise regression, we are
unable todetermine whichvariable are useful.
- We startedto insertourdata for our variables.We ranintoan issue withsome countriesnot
havingthe mostrecentinformation,soinorderto keepasample size of 20, we disregarded
the countriesthatdidnot have complete data andpicked replacementcountriesrandomly.
1. In orderto projecta complete regressionanalysisexperience,we are disregarding
informationwithoutcomplete datasets.
- To clarifyour variables,we writethemas:
 X1 = SanitationScore
 X2 = healthcare
 X3 = Water Quality
 X4 = FoodProductionIndex
 X5 = Air Quality
 1 If greateror equal to 62938.95
 0 if lessthan62938.95
Model One: Linear First Order
We are usinga basicmodel,justtosee how we landas a startingpoint.
Ho: β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 = 0 (Model Isn’tUseful)
Ha: β0 + β1X1 + β2X2 + β3X3 + β4X4 +β5X5 ≠ 0 (Model Has Utility)
The fittedmodel is:
Y= β0 + β1X1 + β2X2 + β3X3 + β4X4
Where
Y= Life Expectancy
β0 = Intercept
β1 =Coefficientforsanitationscore
β2 = Coefficientforhealthcare productionindex
β3 =Coefficientforaccesstoimprovedwaterquality
β4 = Coefficientforfoodproductionindex
The regression equation is
Life Expectancy = 36.2 + 0.233 Sanitation Score + 0.00139 Healthcare
+ 0.0632 Water Quality + 0.0763 Food
Predictor Coef SE Coef T P
Constant 36.16 11.79 3.07 0.008
Sanitation Score 0.23250 0.05535 4.20 0.001
Healthcare 0.0013937 0.0006336 2.20 0.044
Water Quality 0.06319 0.08017 0.79 0.443
Food 0.07626 0.07634 1.00 0.334
S = 4.02304 R-Sq = 83.3% R-Sq(adj) = 78.9%
Analysis of Variance
Source DF SS MS F P
Regression 4 1212.43 303.11 18.73 0.000
Residual Error 15 242.77 16.18
Total 19 1455.20
Important observations:
1. Our overall model’sp-value is.000
2. Our adjustedR2
ais78.9%
3. We rejectourH0, whichstatesthat our model isuseful inpredictinglife expectancyof
Model Two: Higher Order Model with Qualitative variable
Here we believe thatwe cansee some possibletrendswhenwe plotpointsonascatter plot,
thuswe decidedonincorporating higherorderterms.
Ho: β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X3X4 + β6X5 + β7X3
2
+ β8X2
2
= 0 (Model Isn’tUseful)
Ha: β0 + β1X1 + β2X2 + β3X3 + β4X4 +β5X3X4+β6X5 + β7X3
2
+ β8X2
2
≠ 0 (Model Has Utility)
The fittedmodel is:
Y= β0 + β1X1 + β2X2 + β3X3 + β4X4
Where
Y= Life Expectancy
β0 = Intercept
β1 =CoefficientforSanitation Score
Β2 = CoefficientforHealthcare ProductionIndex
Β3 =CoefficientforAccesstoImprovedWaterQuality
Β4 = CoefficientforFoodProductionIndex
Β5 =CoefficientforInteractionof FoodProductionIndex andWaterQuality
Β6 = CoefficientforAirQuality
Β7 = CoefficientforWaterQualitySquared
Β8 = CoefficientforHealthcare Squared
Note* we are utilizingAirQualityasaqualitative variable.
We have calculatedthe average CO2
emissionsof the sample,anddecidedthatitwouldbe a good
qualitative variable.The average numberwas 62938.95, thus anycountry witha numbergreaterthanor
equal tothe average will getrepresentedbya‘1’, and anynumberwitha value lowerthan62938.95 will
be witha 0.
- 1 if X ≥ 62938.95
- 0 if X < 62938.95
The regression equation is
Life Expectancy = 67.7 + 0.185 Sanitation Score + 0.00080 Healthcare
- 0.927 Water Quality + 0.078 Food + 0.00045 Food*Water
+ 1.28 Air Quality + 0.00686 Waterquality ^2 + 0.000000 Healthcare
^2
Predictor Coef SE Coef T P
Constant 67.70 53.76 1.26 0.234
Sanitation Score 0.18515 0.06870 2.69 0.021
Healthcare 0.000800 0.004100 0.20 0.849
Water Quality -0.9275 0.8215 -1.13 0.283
Food 0.0784 0.4459 0.18 0.864
Food*Water 0.000445 0.005229 0.09 0.934
Air Quality 1.279 4.078 0.31 0.760
Waterquality ^2 0.006860 0.004546 1.51 0.160
Healthcare ^2 0.00000000 0.00000063 0.00 0.998
S = 4.24554 R-Sq = 86.4% R-Sq(adj) = 76.5%
Analysis of Variance
Source DF SS MS F P
Regression 8 1256.93 157.12 8.72 0.001
Residual Error 11 198.27 18.02
Total 19 1455.20
Important observations:
1. Our overall model’sp-value is.001,whichisan increase fromthe othermodel.
2. Our adjustedR2
ais76.5%, whichislowerthanour initial firstorderlinearmodel.
3. We rejectourH0, whichstatesthat our model isuseful inpredictinglife expectancy
Model Three: Reduced Model with Qualitative variable
We are usinga nested(reduced) model,totryto be more straightforward,due tothe fact thatour R2
a
has dropped.
Ho: β0 + β1X1 + β2X2 + β3X3 + β4X4 β5 X3X4 + β6X5 = 0 (Model Isn’tUseful)
Ha: β0 + β1X1 + β2X2 + β3X3 + β4X4 β5X5 + β6X6 ≠0 (Model Has Utility)
The fittedmodel is:
Y= β0 + β1X1 + β2X2 + β3X3 + β4X4 β5X5 + β6X6
The regression equation is
Life Expectancy = 49.0 + 0.228 Sanitation Score + 0.00131 Healthcare
- 0.082 Water Quality - 0.033 Food + 0.00128 Food*Water
+ 0.47 Air Quality
Predictor Coef SE Coef T P
Constant 49.00 53.12 0.92 0.373
Sanitation Score 0.22756 0.06163 3.69 0.003
Healthcare 0.0013147 0.0009828 1.34 0.204
Water Quality -0.0821 0.6107 -0.13 0.895
Food -0.0325 0.4462 -0.07 0.943
Food*Water 0.001275 0.005276 0.24 0.813
Air Quality 0.470 3.673 0.13 0.900
S = 4.30674 R-Sq = 83.4% R-Sq(adj) = 75.8%
Analysis of Variance
Source DF SS MS F P
Regression 6 1214.08 202.35 10.91 0.000
Residual Error 13 241.12 18.55
Total 19 1455.20
Y= Life Expectancy
β0 = Intercept
β1 =CoefficientforSanitationScore
Β2 = CoefficientforHealthcare ProductionIndex
Β3 =CoefficientforAccesstoImprovedWaterQuality
Β4 = CoefficientforFoodProductionIndex
Β5 =CoefficientforInteractionof FoodProductionIndex andWaterQuality
Β6 = CoefficientforAirQuality
Important observations:
1. Our overall model’sp-value is.001,whichisan increase fromthe othermodel.
2. Our adjustedR2
ais76.5%, whichislowerthanour initial firstorderlinearmodel.
3. We rejectourH0, whichstatesthat our model isuseful inpredictinglife expectancy
Conclusion:
In conclusion,we have developedanequationthatholdsarelativelyhighregressionscore.The first
model isourbestmodel indetermininganequationforlife expectancy.

More Related Content

Viewers also liked

Human life expectancy
Human life expectancyHuman life expectancy
Human life expectancyOther Mother
 
Top Five Ideas -- Statistics for Project Management
Top Five Ideas -- Statistics for Project ManagementTop Five Ideas -- Statistics for Project Management
Top Five Ideas -- Statistics for Project ManagementJohn Goodpasture
 
Regression analysis
Regression analysisRegression analysis
Regression analysisbijuhari
 
MKT6337_FinalPPT_1
MKT6337_FinalPPT_1MKT6337_FinalPPT_1
MKT6337_FinalPPT_1Ishan Dua
 
Continuous probability Business Statistics, Management
Continuous probability Business Statistics, ManagementContinuous probability Business Statistics, Management
Continuous probability Business Statistics, ManagementDebjit Das
 
Advantages And Benefits Of MIS In Your Career
Advantages And Benefits Of MIS In Your CareerAdvantages And Benefits Of MIS In Your Career
Advantages And Benefits Of MIS In Your Careermisc
 
Multiple Regression Analysis
Multiple Regression AnalysisMultiple Regression Analysis
Multiple Regression AnalysisMinha Hwang
 
Topic 18 multiple regression
Topic 18 multiple regressionTopic 18 multiple regression
Topic 18 multiple regressionSizwan Ahammed
 
EC4417 Econometrics Project
EC4417 Econometrics ProjectEC4417 Econometrics Project
EC4417 Econometrics ProjectLonan Carroll
 
CSS Regression Tests
CSS Regression TestsCSS Regression Tests
CSS Regression TestsKaloyan Kosev
 
Econometrics Final Project
Econometrics Final ProjectEconometrics Final Project
Econometrics Final ProjectAliaksey Narko
 
multiple regression
multiple regressionmultiple regression
multiple regressionPriya Sharma
 
Chapter 4 - multiple regression
Chapter 4  - multiple regressionChapter 4  - multiple regression
Chapter 4 - multiple regressionTauseef khan
 
How to use Logistic Regression in GIS using ArcGIS and R statistics
How to use Logistic Regression in GIS using ArcGIS and R statisticsHow to use Logistic Regression in GIS using ArcGIS and R statistics
How to use Logistic Regression in GIS using ArcGIS and R statisticsOmar F. Althuwaynee
 

Viewers also liked (19)

Life expectancy
Life expectancyLife expectancy
Life expectancy
 
Human life expectancy
Human life expectancyHuman life expectancy
Human life expectancy
 
Life expectancy: a comparison
Life expectancy: a comparisonLife expectancy: a comparison
Life expectancy: a comparison
 
Top Five Ideas -- Statistics for Project Management
Top Five Ideas -- Statistics for Project ManagementTop Five Ideas -- Statistics for Project Management
Top Five Ideas -- Statistics for Project Management
 
Regression analysis
Regression analysisRegression analysis
Regression analysis
 
Regression analysis
Regression analysisRegression analysis
Regression analysis
 
MKT6337_FinalPPT_1
MKT6337_FinalPPT_1MKT6337_FinalPPT_1
MKT6337_FinalPPT_1
 
Continuous probability Business Statistics, Management
Continuous probability Business Statistics, ManagementContinuous probability Business Statistics, Management
Continuous probability Business Statistics, Management
 
Advantages And Benefits Of MIS In Your Career
Advantages And Benefits Of MIS In Your CareerAdvantages And Benefits Of MIS In Your Career
Advantages And Benefits Of MIS In Your Career
 
Multiple Regression Analysis
Multiple Regression AnalysisMultiple Regression Analysis
Multiple Regression Analysis
 
Topic 18 multiple regression
Topic 18 multiple regressionTopic 18 multiple regression
Topic 18 multiple regression
 
EC4417 Econometrics Project
EC4417 Econometrics ProjectEC4417 Econometrics Project
EC4417 Econometrics Project
 
CSS Regression Tests
CSS Regression TestsCSS Regression Tests
CSS Regression Tests
 
Econometrics Final Project
Econometrics Final ProjectEconometrics Final Project
Econometrics Final Project
 
Econometrics project final edited
Econometrics project final editedEconometrics project final edited
Econometrics project final edited
 
multiple regression
multiple regressionmultiple regression
multiple regression
 
Chapter 4 - multiple regression
Chapter 4  - multiple regressionChapter 4  - multiple regression
Chapter 4 - multiple regression
 
Multiple regression
Multiple regressionMultiple regression
Multiple regression
 
How to use Logistic Regression in GIS using ArcGIS and R statistics
How to use Logistic Regression in GIS using ArcGIS and R statisticsHow to use Logistic Regression in GIS using ArcGIS and R statistics
How to use Logistic Regression in GIS using ArcGIS and R statistics
 

Regression Analysis Project

  • 1. Life Expectancy by Country Regression Analysis Project Michael Wallace & Brandon Berube 12/12/2013 For our project,mypartner,BrandonBerube andI decidedtouse regressionanalysistosee whattype of variables affecthowlonga personwill live due tothe countrythat theyinhibit.We were ableto utilize variousvariable screeningmethodsinordertorun an effectivemodelthatallowedustonotonly make inferencesabouthowlongpeople of acountrywill live,butalsoshow how accurate ourmodel is.
  • 2. There were 20 RandomlySelectedCountries. - We randomlyselectedthe countriesbygivingeachcountrya numberfrom1-213 and using Random.orgto pick20 randomnumberswhichrelate tothe correspondingcountries. 1. Iraq 2. Mongolia 3. Lesotho 4. Canada 5. Mauritius 6. Oman 7. Samoa 8. Mali 9. Bangladesh 10. Suriname 11. Tonga 12. Qatar 13. Bulgaria 14. Micronesia,Fed.Sts. 15. Spain 16. TrinidadAndTobago 17. PapuaNewGuinea 18. Tanzania 19. Austria 20. Sao Tome & Principe - We pickedvariablesthat we assume wouldaffectlife expectancythe most. Response Variable (Y):Life ExpectancyatBirth,Male and Female  Life expectancyatbirthindicatesthe numberof yearsanewborninfant wouldlive if prevailingpatternsof mortalityatthe time of itsbirthwere to stay the same throughoutitslife.  http://data.worldbank.org/indicator/SP.DYN.LE00.IN X1 : Accessto improvedsanitationfacilities(measuredas% of total population)  percentage of the populationusing improvedsanitationfacilities whichare flush/pourfacilities  http://data.worldbank.org/indicator/SH.STA.ACSN.UR/countries/1W?displa y=default X2 : Healthexpenditure percapita –(measuredincurrentUS dollars)
  • 3.  Sumof publicandprivate healthexpendituresasa ratioof total population  http://data.worldbank.org/indicator/SH.XPD.PCAP X3 Accessto improvedwatersource (measuredas% of total population)  Percentage of the populationusingan improveddrinkingwatersource. Improvedwaterincludespipedwater,protecteddugwells,andprotected springs.  http://data.worldbank.org/indicator/SH.H2O.SAFE.ZS X4 FoodProductionIndex  Foodproductionindex coversfoodcropsthatare considerededible and that containnutrients.  http://data.worldbank.org/indicator/AG.PRD.FOOD.XD X5 : AirQuality(CO2emissions(kt))  CarbonDioxide emissionsare burningof fossil fuelsandthe manufacture of cement.  http://data.worldbank.org/indicator/EN.ATM.CO2E.KT/countries  1 If greateror equal to 62938.95  0 if lessthan62938.95 - NOTE*: These variablesare notlistedinorderof importance;because intuitiondoesnot resultinappropriate mathematical procedure,until we utilize stepwise regression, we are unable todetermine whichvariable are useful. - We startedto insertourdata for our variables.We ranintoan issue withsome countriesnot havingthe mostrecentinformation,soinorderto keepasample size of 20, we disregarded the countriesthatdidnot have complete data andpicked replacementcountriesrandomly. 1. In orderto projecta complete regressionanalysisexperience,we are disregarding informationwithoutcomplete datasets. - To clarifyour variables,we writethemas:  X1 = SanitationScore  X2 = healthcare  X3 = Water Quality  X4 = FoodProductionIndex  X5 = Air Quality
  • 4.  1 If greateror equal to 62938.95  0 if lessthan62938.95 Model One: Linear First Order We are usinga basicmodel,justtosee how we landas a startingpoint. Ho: β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 = 0 (Model Isn’tUseful) Ha: β0 + β1X1 + β2X2 + β3X3 + β4X4 +β5X5 ≠ 0 (Model Has Utility) The fittedmodel is: Y= β0 + β1X1 + β2X2 + β3X3 + β4X4 Where Y= Life Expectancy β0 = Intercept β1 =Coefficientforsanitationscore β2 = Coefficientforhealthcare productionindex β3 =Coefficientforaccesstoimprovedwaterquality β4 = Coefficientforfoodproductionindex The regression equation is Life Expectancy = 36.2 + 0.233 Sanitation Score + 0.00139 Healthcare + 0.0632 Water Quality + 0.0763 Food Predictor Coef SE Coef T P Constant 36.16 11.79 3.07 0.008 Sanitation Score 0.23250 0.05535 4.20 0.001 Healthcare 0.0013937 0.0006336 2.20 0.044 Water Quality 0.06319 0.08017 0.79 0.443 Food 0.07626 0.07634 1.00 0.334 S = 4.02304 R-Sq = 83.3% R-Sq(adj) = 78.9% Analysis of Variance Source DF SS MS F P Regression 4 1212.43 303.11 18.73 0.000 Residual Error 15 242.77 16.18 Total 19 1455.20 Important observations: 1. Our overall model’sp-value is.000 2. Our adjustedR2 ais78.9% 3. We rejectourH0, whichstatesthat our model isuseful inpredictinglife expectancyof
  • 5. Model Two: Higher Order Model with Qualitative variable Here we believe thatwe cansee some possibletrendswhenwe plotpointsonascatter plot, thuswe decidedonincorporating higherorderterms. Ho: β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X3X4 + β6X5 + β7X3 2 + β8X2 2 = 0 (Model Isn’tUseful) Ha: β0 + β1X1 + β2X2 + β3X3 + β4X4 +β5X3X4+β6X5 + β7X3 2 + β8X2 2 ≠ 0 (Model Has Utility) The fittedmodel is: Y= β0 + β1X1 + β2X2 + β3X3 + β4X4 Where Y= Life Expectancy β0 = Intercept β1 =CoefficientforSanitation Score Β2 = CoefficientforHealthcare ProductionIndex Β3 =CoefficientforAccesstoImprovedWaterQuality Β4 = CoefficientforFoodProductionIndex Β5 =CoefficientforInteractionof FoodProductionIndex andWaterQuality Β6 = CoefficientforAirQuality Β7 = CoefficientforWaterQualitySquared Β8 = CoefficientforHealthcare Squared Note* we are utilizingAirQualityasaqualitative variable. We have calculatedthe average CO2 emissionsof the sample,anddecidedthatitwouldbe a good qualitative variable.The average numberwas 62938.95, thus anycountry witha numbergreaterthanor equal tothe average will getrepresentedbya‘1’, and anynumberwitha value lowerthan62938.95 will be witha 0. - 1 if X ≥ 62938.95 - 0 if X < 62938.95 The regression equation is Life Expectancy = 67.7 + 0.185 Sanitation Score + 0.00080 Healthcare - 0.927 Water Quality + 0.078 Food + 0.00045 Food*Water + 1.28 Air Quality + 0.00686 Waterquality ^2 + 0.000000 Healthcare ^2
  • 6. Predictor Coef SE Coef T P Constant 67.70 53.76 1.26 0.234 Sanitation Score 0.18515 0.06870 2.69 0.021 Healthcare 0.000800 0.004100 0.20 0.849 Water Quality -0.9275 0.8215 -1.13 0.283 Food 0.0784 0.4459 0.18 0.864 Food*Water 0.000445 0.005229 0.09 0.934 Air Quality 1.279 4.078 0.31 0.760 Waterquality ^2 0.006860 0.004546 1.51 0.160 Healthcare ^2 0.00000000 0.00000063 0.00 0.998 S = 4.24554 R-Sq = 86.4% R-Sq(adj) = 76.5% Analysis of Variance Source DF SS MS F P Regression 8 1256.93 157.12 8.72 0.001 Residual Error 11 198.27 18.02 Total 19 1455.20 Important observations: 1. Our overall model’sp-value is.001,whichisan increase fromthe othermodel. 2. Our adjustedR2 ais76.5%, whichislowerthanour initial firstorderlinearmodel. 3. We rejectourH0, whichstatesthat our model isuseful inpredictinglife expectancy Model Three: Reduced Model with Qualitative variable We are usinga nested(reduced) model,totryto be more straightforward,due tothe fact thatour R2 a has dropped. Ho: β0 + β1X1 + β2X2 + β3X3 + β4X4 β5 X3X4 + β6X5 = 0 (Model Isn’tUseful) Ha: β0 + β1X1 + β2X2 + β3X3 + β4X4 β5X5 + β6X6 ≠0 (Model Has Utility) The fittedmodel is: Y= β0 + β1X1 + β2X2 + β3X3 + β4X4 β5X5 + β6X6 The regression equation is Life Expectancy = 49.0 + 0.228 Sanitation Score + 0.00131 Healthcare - 0.082 Water Quality - 0.033 Food + 0.00128 Food*Water + 0.47 Air Quality
  • 7. Predictor Coef SE Coef T P Constant 49.00 53.12 0.92 0.373 Sanitation Score 0.22756 0.06163 3.69 0.003 Healthcare 0.0013147 0.0009828 1.34 0.204 Water Quality -0.0821 0.6107 -0.13 0.895 Food -0.0325 0.4462 -0.07 0.943 Food*Water 0.001275 0.005276 0.24 0.813 Air Quality 0.470 3.673 0.13 0.900 S = 4.30674 R-Sq = 83.4% R-Sq(adj) = 75.8% Analysis of Variance Source DF SS MS F P Regression 6 1214.08 202.35 10.91 0.000 Residual Error 13 241.12 18.55 Total 19 1455.20 Y= Life Expectancy β0 = Intercept β1 =CoefficientforSanitationScore Β2 = CoefficientforHealthcare ProductionIndex Β3 =CoefficientforAccesstoImprovedWaterQuality Β4 = CoefficientforFoodProductionIndex Β5 =CoefficientforInteractionof FoodProductionIndex andWaterQuality Β6 = CoefficientforAirQuality Important observations: 1. Our overall model’sp-value is.001,whichisan increase fromthe othermodel. 2. Our adjustedR2 ais76.5%, whichislowerthanour initial firstorderlinearmodel. 3. We rejectourH0, whichstatesthat our model isuseful inpredictinglife expectancy Conclusion: In conclusion,we have developedanequationthatholdsarelativelyhighregressionscore.The first model isourbestmodel indetermininganequationforlife expectancy.