SlideShare a Scribd company logo
1 of 34
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
Chapter 1: Introduction
©Silberschatz, Korth and Sudarshan
1.2
Database System Concepts - 5th Edition, May 23, 2005
Chapter 1: Introduction
 Purpose of Database Systems
 Database Languages
 Relational Databases
 Database Design
 Data Models
 Database Internals
 Database Users and Administrators
 Overall Structure
 History of Database Systems
©Silberschatz, Korth and Sudarshan
1.3
Database System Concepts - 5th Edition, May 23, 2005
Database Management System (DBMS)
 DBMS contains information about a particular enterprise
 Collection of interrelated data
 Set of programs to access the data
 An environment that is both convenient and efficient to use
 Database Applications:
 Banking: all transactions
 Airlines: reservations, schedules
 Universities: registration, grades
 Sales: customers, products, purchases
 Online retailers: order tracking, customized recommendations
 Manufacturing: production, inventory, orders, supply chain
 Human resources: employee records, salaries, tax deductions
 Databases touch all aspects of our lives
©Silberschatz, Korth and Sudarshan
1.4
Database System Concepts - 5th Edition, May 23, 2005
Purpose of Database Systems
 In the early days, database applications were built directly on top of
file systems
 Drawbacks of using file systems to store data:
 Data redundancy and inconsistency
 Multiple file formats, duplication of information in different files
 Difficulty in accessing data
 Need to write a new program to carry out each new task
 Data isolation — multiple files and formats
 Integrity problems
 Integrity constraints (e.g. account balance > 0) become
“buried” in program code rather than being stated explicitly
 Hard to add new constraints or change existing ones
©Silberschatz, Korth and Sudarshan
1.5
Database System Concepts - 5th Edition, May 23, 2005
Purpose of Database Systems (Cont.)
 Drawbacks of using file systems (cont.)
 Atomicity of updates
 Failures may leave database in an inconsistent state with partial
updates carried out
 Example: Transfer of funds from one account to another should
either complete or not happen at all
 Concurrent access by multiple users
 Concurrent accessed needed for performance
 Uncontrolled concurrent accesses can lead to inconsistencies
– Example: Two people reading a balance and updating it at the
same time
 Security problems
 Hard to provide user access to some, but not all, data
 Database systems offer solutions to all the above problems
©Silberschatz, Korth and Sudarshan
1.6
Database System Concepts - 5th Edition, May 23, 2005
Levels of Abstraction
 Physical level: describes how a record (e.g., customer) is stored.
 Logical level: describes data stored in database, and the relationships
among the data.
type customer = record
customer_id : string;
customer_name : string;
customer_street : string;
customer_city : string;
end;
 View level: application programs hide details of data types. Views can
also hide information (such as an employee’s salary) for security
purposes.
©Silberschatz, Korth and Sudarshan
1.7
Database System Concepts - 5th Edition, May 23, 2005
View of Data
An architecture for a database system
©Silberschatz, Korth and Sudarshan
1.8
Database System Concepts - 5th Edition, May 23, 2005
Instances and Schemas
 Similar to types and variables in programming languages
 Schema – the logical structure of the database
 Example: The database consists of information about a set of customers and
accounts and the relationship between them)
 Analogous to type information of a variable in a program
 Physical schema: database design at the physical level
 Logical schema: database design at the logical level
 Instance – the actual content of the database at a particular point in time
 Analogous to the value of a variable
 Physical Data Independence – the ability to modify the physical schema without
changing the logical schema
 Applications depend on the logical schema
 In general, the interfaces between the various levels and components should
be well defined so that changes in some parts do not seriously influence others.
©Silberschatz, Korth and Sudarshan
1.9
Database System Concepts - 5th Edition, May 23, 2005
Data Models
 A collection of tools for describing
 Data
 Data relationships
 Data semantics
 Data constraints
 Relational model
 Entity-Relationship data model (mainly for database design)
 Object-based data models (Object-oriented and Object-relational)
 Semistructured data model (XML)
 Other older models:
 Network model
 Hierarchical model
©Silberschatz, Korth and Sudarshan
1.10
Database System Concepts - 5th Edition, May 23, 2005
Data Manipulation Language (DML)
 Language for accessing and manipulating the data organized by the
appropriate data model
 DML also known as query language
 Two classes of languages
 Procedural – user specifies what data is required and how to get
those data
 Declarative (nonprocedural) – user specifies what data is
required without specifying how to get those data
 SQL is the most widely used query language
©Silberschatz, Korth and Sudarshan
1.11
Database System Concepts - 5th Edition, May 23, 2005
Data Definition Language (DDL)
 Specification notation for defining the database schema
Example: create table account (
account_number char(10),
branch_name char(10),
balance integer)
 DDL compiler generates a set of tables stored in a data dictionary
 Data dictionary contains metadata (i.e., data about data)
 Database schema
 Data storage and definition language
 Specifies the storage structure and access methods used
 Integrity constraints
 Domain constraints
 Referential integrity (e.g. branch_name must correspond to a
valid branch in the branch table)
 Authorization
©Silberschatz, Korth and Sudarshan
1.12
Database System Concepts - 5th Edition, May 23, 2005
Relational Model
 Example of tabular data in the relational model
Attributes
©Silberschatz, Korth and Sudarshan
1.13
Database System Concepts - 5th Edition, May 23, 2005
A Sample Relational Database
©Silberschatz, Korth and Sudarshan
1.14
Database System Concepts - 5th Edition, May 23, 2005
SQL
 SQL: widely used non-procedural language
 Example: Find the name of the customer with customer-id 192-83-7465
select customer.customer_name
from customer
where customer.customer_id = ‘192-83-7465’
 Example: Find the balances of all accounts held by the customer with
customer-id 192-83-7465
select account.balance
from depositor, account
where depositor.customer_id = ‘192-83-7465’ and
depositor.account_number = account.account_number
 Application programs generally access databases through one of
 Language extensions to allow embedded SQL
 Application program interface (e.g., ODBC/JDBC) which allow SQL
queries to be sent to a database
©Silberschatz, Korth and Sudarshan
1.15
Database System Concepts - 5th Edition, May 23, 2005
Database Design
The process of designing the general structure of the database:
 Logical Design – Deciding on the database schema. Database design
requires that we find a “good” collection of relation schemas.
 Business decision – What attributes should we record in the
database?
 Computer Science decision – What relation schemas should we
have and how should the attributes be distributed among the various
relation schemas?
 Physical Design – Deciding on the physical layout of the database
©Silberschatz, Korth and Sudarshan
1.16
Database System Concepts - 5th Edition, May 23, 2005
The Entity-Relationship Model
 Models an enterprise as a collection of entities and relationships
 Entity: a “thing” or “object” in the enterprise that is distinguishable
from other objects
 Described by a set of attributes
 Relationship: an association among several entities
 Represented diagrammatically by an entity-relationship diagram:
©Silberschatz, Korth and Sudarshan
1.17
Database System Concepts - 5th Edition, May 23, 2005
Other Data Models
 Object-oriented data model
 Object-relational data model
©Silberschatz, Korth and Sudarshan
1.18
Database System Concepts - 5th Edition, May 23, 2005
Database Application Architectures
(web browser)
Old Modern
©Silberschatz, Korth and Sudarshan
1.19
Database System Concepts - 5th Edition, May 23, 2005
Database Management System Internals
 Storage management
 Query processing
 Transaction processing
©Silberschatz, Korth and Sudarshan
1.20
Database System Concepts - 5th Edition, May 23, 2005
Storage Management
 Storage manager is a program module that provides the interface
between the low-level data stored in the database and the application
programs and queries submitted to the system.
 The storage manager is responsible to the following tasks:
 Interaction with the file manager
 Efficient storing, retrieving and updating of data
 Issues:
 Storage access
 File organization
 Indexing and hashing
©Silberschatz, Korth and Sudarshan
1.21
Database System Concepts - 5th Edition, May 23, 2005
Query Processing
1. Parsing and translation
2. Optimization
3. Evaluation
©Silberschatz, Korth and Sudarshan
1.22
Database System Concepts - 5th Edition, May 23, 2005
Query Processing (Cont.)
 Alternative ways of evaluating a given query
 Equivalent expressions
 Different algorithms for each operation
 Cost difference between a good and a bad way of evaluating a query can
be enormous
 Need to estimate the cost of operations
 Depends critically on statistical information about relations which the
database must maintain
 Need to estimate statistics for intermediate results to compute cost of
complex expressions
©Silberschatz, Korth and Sudarshan
1.23
Database System Concepts - 5th Edition, May 23, 2005
Transaction Management
 A transaction is a collection of operations that performs a single
logical function in a database application
 Transaction-management component ensures that the database
remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction failures.
 Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.
©Silberschatz, Korth and Sudarshan
1.24
Database System Concepts - 5th Edition, May 23, 2005
Overall System Structure
©Silberschatz, Korth and Sudarshan
1.25
Database System Concepts - 5th Edition, May 23, 2005
History of Database Systems
 1950s and early 1960s:
 Data processing using magnetic tapes for storage
 Tapes provide only sequential access
 Punched cards for input
 Late 1960s and 1970s:
 Hard disks allow direct access to data
 Network and hierarchical data models in widespread use
 Ted Codd defines the relational data model
 Would win the ACM Turing Award for this work
 IBM Research begins System R prototype
 UC Berkeley begins Ingres prototype
 High-performance (for the era) transaction processing
©Silberschatz, Korth and Sudarshan
1.26
Database System Concepts - 5th Edition, May 23, 2005
History (cont.)
 1980s:
 Research relational prototypes evolve into commercial systems
 SQL becomes industry standard
 Parallel and distributed database systems
 Object-oriented database systems
 1990s:
 Large decision support and data-mining applications
 Large multi-terabyte data warehouses
 Emergence of Web commerce
 2000s:
 XML and XQuery standards
 Automated database administration
 Increasing use of highly parallel database systems
 Web-scale distributed data storage systems
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use
End of Chapter 1
©Silberschatz, Korth and Sudarshan
1.28
Database System Concepts - 5th Edition, May 23, 2005
Database Users
Users are differentiated by the way they expect to interact with
the system
 Application programmers – interact with system through DML calls
 Sophisticated users – form requests in a database query language
 Specialized users – write specialized database applications that do
not fit into the traditional data processing framework
 Naïve users – invoke one of the permanent application programs that
have been written previously
 Examples, people accessing database over the web, bank tellers,
clerical staff
©Silberschatz, Korth and Sudarshan
1.29
Database System Concepts - 5th Edition, May 23, 2005
Database Administrator
 Coordinates all the activities of the database system
 has a good understanding of the enterprise’s information resources
and needs.
 Database administrator's duties include:
 Storage structure and access method definition
 Schema and physical organization modification
 Granting users authority to access the database
 Backing up data
 Monitoring performance and responding to changes
 Database tuning
©Silberschatz, Korth and Sudarshan
1.30
Database System Concepts - 5th Edition, May 23, 2005
Database Architecture
The architecture of a database systems is greatly influenced by
the underlying computer system on which the database is running:
 Centralized
 Client-server
 Parallel (multiple processors and disks)
 Distributed
©Silberschatz, Korth and Sudarshan
1.31
Database System Concepts - 5th Edition, May 23, 2005
Object-Relational Data Models
 Extend the relational data model by including object orientation and
constructs to deal with added data types.
 Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.
 Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.
 Provide upward compatibility with existing relational languages.
©Silberschatz, Korth and Sudarshan
1.32
Database System Concepts - 5th Edition, May 23, 2005
XML: Extensible Markup Language
 Defined by the WWW Consortium (W3C)
 Originally intended as a document markup language not a
database language
 The ability to specify new tags, and to create nested tag structures
made XML a great way to exchange data, not just documents
 XML has become the basis for all new generation data interchange
formats.
 A wide variety of tools is available for parsing, browsing and
querying XML documents/data
©Silberschatz, Korth and Sudarshan
1.33
Database System Concepts - 5th Edition, May 23, 2005
Figure 1.4
©Silberschatz, Korth and Sudarshan
1.34
Database System Concepts - 5th Edition, May 23, 2005
Figure 1.7

More Related Content

Similar to Presentation on DBMS systems for IT Professionals

Similar to Presentation on DBMS systems for IT Professionals (20)

DBMS
DBMS DBMS
DBMS
 
Ch1
Ch1Ch1
Ch1
 
DBMS PPT 3.pptx
DBMS PPT 3.pptxDBMS PPT 3.pptx
DBMS PPT 3.pptx
 
ch1.ppt
ch1.pptch1.ppt
ch1.ppt
 
PPT (2).ppt
PPT (2).pptPPT (2).ppt
PPT (2).ppt
 
ch1.ppt
ch1.pptch1.ppt
ch1.ppt
 
ch1.ppt
ch1.pptch1.ppt
ch1.ppt
 
Ch1
Ch1Ch1
Ch1
 
SQL.pptx
SQL.pptxSQL.pptx
SQL.pptx
 
databasemanagementsystempptforbeginners.ppt
databasemanagementsystempptforbeginners.pptdatabasemanagementsystempptforbeginners.ppt
databasemanagementsystempptforbeginners.ppt
 
DBMS_Ch1
 DBMS_Ch1 DBMS_Ch1
DBMS_Ch1
 
Ch 1.pdf
Ch 1.pdfCh 1.pdf
Ch 1.pdf
 
Data base management systems ppt
Data base management systems pptData base management systems ppt
Data base management systems ppt
 
DownloadClassSessionFile (37).pdf
DownloadClassSessionFile (37).pdfDownloadClassSessionFile (37).pdf
DownloadClassSessionFile (37).pdf
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Introduction to Database System Concepts
Introduction to Database System ConceptsIntroduction to Database System Concepts
Introduction to Database System Concepts
 
GFGC CHIKKABASUR ( DBMS )
GFGC CHIKKABASUR ( DBMS )GFGC CHIKKABASUR ( DBMS )
GFGC CHIKKABASUR ( DBMS )
 
Ch1 Introduction
Ch1 IntroductionCh1 Introduction
Ch1 Introduction
 
PPT demo
PPT demoPPT demo
PPT demo
 
RDBMS, theory class - 1 (UIU CSI 221)
RDBMS, theory class - 1 (UIU CSI 221)RDBMS, theory class - 1 (UIU CSI 221)
RDBMS, theory class - 1 (UIU CSI 221)
 

Recently uploaded

Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Jack DiGiovanna
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptSonatrach
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubaihf8803863
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一fhwihughh
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Sapana Sha
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...Florian Roscheck
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPramod Kumar Srivastava
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDRafezzaman
 
DBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfDBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfJohn Sterrett
 
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改atducpo
 

Recently uploaded (20)

Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
Building on a FAIRly Strong Foundation to Connect Academic Research to Transl...
 
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.pptdokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
dokumen.tips_chapter-4-transient-heat-conduction-mehmet-kanoglu.ppt
 
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls DubaiDubai Call Girls Wifey O52&786472 Call Girls Dubai
Dubai Call Girls Wifey O52&786472 Call Girls Dubai
 
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Defence Colony Delhi 💯Call Us 🔝8264348440🔝
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
办理学位证纽约大学毕业证(NYU毕业证书)原版一比一
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
 
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...From idea to production in a day – Leveraging Azure ML and Streamlit to build...
From idea to production in a day – Leveraging Azure ML and Streamlit to build...
 
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptxPKS-TGC-1084-630 - Stage 1 Proposal.pptx
PKS-TGC-1084-630 - Stage 1 Proposal.pptx
 
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
VIP Call Girls Service Charbagh { Lucknow Call Girls Service 9548273370 } Boo...
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
 
DBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdfDBA Basics: Getting Started with Performance Tuning.pdf
DBA Basics: Getting Started with Performance Tuning.pdf
 
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
代办国外大学文凭《原版美国UCLA文凭证书》加州大学洛杉矶分校毕业证制作成绩单修改
 
E-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptxE-Commerce Order PredictionShraddha Kamble.pptx
E-Commerce Order PredictionShraddha Kamble.pptx
 
Decoding Loan Approval: Predictive Modeling in Action
Decoding Loan Approval: Predictive Modeling in ActionDecoding Loan Approval: Predictive Modeling in Action
Decoding Loan Approval: Predictive Modeling in Action
 

Presentation on DBMS systems for IT Professionals

  • 1. Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use Chapter 1: Introduction
  • 2. ©Silberschatz, Korth and Sudarshan 1.2 Database System Concepts - 5th Edition, May 23, 2005 Chapter 1: Introduction  Purpose of Database Systems  Database Languages  Relational Databases  Database Design  Data Models  Database Internals  Database Users and Administrators  Overall Structure  History of Database Systems
  • 3. ©Silberschatz, Korth and Sudarshan 1.3 Database System Concepts - 5th Edition, May 23, 2005 Database Management System (DBMS)  DBMS contains information about a particular enterprise  Collection of interrelated data  Set of programs to access the data  An environment that is both convenient and efficient to use  Database Applications:  Banking: all transactions  Airlines: reservations, schedules  Universities: registration, grades  Sales: customers, products, purchases  Online retailers: order tracking, customized recommendations  Manufacturing: production, inventory, orders, supply chain  Human resources: employee records, salaries, tax deductions  Databases touch all aspects of our lives
  • 4. ©Silberschatz, Korth and Sudarshan 1.4 Database System Concepts - 5th Edition, May 23, 2005 Purpose of Database Systems  In the early days, database applications were built directly on top of file systems  Drawbacks of using file systems to store data:  Data redundancy and inconsistency  Multiple file formats, duplication of information in different files  Difficulty in accessing data  Need to write a new program to carry out each new task  Data isolation — multiple files and formats  Integrity problems  Integrity constraints (e.g. account balance > 0) become “buried” in program code rather than being stated explicitly  Hard to add new constraints or change existing ones
  • 5. ©Silberschatz, Korth and Sudarshan 1.5 Database System Concepts - 5th Edition, May 23, 2005 Purpose of Database Systems (Cont.)  Drawbacks of using file systems (cont.)  Atomicity of updates  Failures may leave database in an inconsistent state with partial updates carried out  Example: Transfer of funds from one account to another should either complete or not happen at all  Concurrent access by multiple users  Concurrent accessed needed for performance  Uncontrolled concurrent accesses can lead to inconsistencies – Example: Two people reading a balance and updating it at the same time  Security problems  Hard to provide user access to some, but not all, data  Database systems offer solutions to all the above problems
  • 6. ©Silberschatz, Korth and Sudarshan 1.6 Database System Concepts - 5th Edition, May 23, 2005 Levels of Abstraction  Physical level: describes how a record (e.g., customer) is stored.  Logical level: describes data stored in database, and the relationships among the data. type customer = record customer_id : string; customer_name : string; customer_street : string; customer_city : string; end;  View level: application programs hide details of data types. Views can also hide information (such as an employee’s salary) for security purposes.
  • 7. ©Silberschatz, Korth and Sudarshan 1.7 Database System Concepts - 5th Edition, May 23, 2005 View of Data An architecture for a database system
  • 8. ©Silberschatz, Korth and Sudarshan 1.8 Database System Concepts - 5th Edition, May 23, 2005 Instances and Schemas  Similar to types and variables in programming languages  Schema – the logical structure of the database  Example: The database consists of information about a set of customers and accounts and the relationship between them)  Analogous to type information of a variable in a program  Physical schema: database design at the physical level  Logical schema: database design at the logical level  Instance – the actual content of the database at a particular point in time  Analogous to the value of a variable  Physical Data Independence – the ability to modify the physical schema without changing the logical schema  Applications depend on the logical schema  In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.
  • 9. ©Silberschatz, Korth and Sudarshan 1.9 Database System Concepts - 5th Edition, May 23, 2005 Data Models  A collection of tools for describing  Data  Data relationships  Data semantics  Data constraints  Relational model  Entity-Relationship data model (mainly for database design)  Object-based data models (Object-oriented and Object-relational)  Semistructured data model (XML)  Other older models:  Network model  Hierarchical model
  • 10. ©Silberschatz, Korth and Sudarshan 1.10 Database System Concepts - 5th Edition, May 23, 2005 Data Manipulation Language (DML)  Language for accessing and manipulating the data organized by the appropriate data model  DML also known as query language  Two classes of languages  Procedural – user specifies what data is required and how to get those data  Declarative (nonprocedural) – user specifies what data is required without specifying how to get those data  SQL is the most widely used query language
  • 11. ©Silberschatz, Korth and Sudarshan 1.11 Database System Concepts - 5th Edition, May 23, 2005 Data Definition Language (DDL)  Specification notation for defining the database schema Example: create table account ( account_number char(10), branch_name char(10), balance integer)  DDL compiler generates a set of tables stored in a data dictionary  Data dictionary contains metadata (i.e., data about data)  Database schema  Data storage and definition language  Specifies the storage structure and access methods used  Integrity constraints  Domain constraints  Referential integrity (e.g. branch_name must correspond to a valid branch in the branch table)  Authorization
  • 12. ©Silberschatz, Korth and Sudarshan 1.12 Database System Concepts - 5th Edition, May 23, 2005 Relational Model  Example of tabular data in the relational model Attributes
  • 13. ©Silberschatz, Korth and Sudarshan 1.13 Database System Concepts - 5th Edition, May 23, 2005 A Sample Relational Database
  • 14. ©Silberschatz, Korth and Sudarshan 1.14 Database System Concepts - 5th Edition, May 23, 2005 SQL  SQL: widely used non-procedural language  Example: Find the name of the customer with customer-id 192-83-7465 select customer.customer_name from customer where customer.customer_id = ‘192-83-7465’  Example: Find the balances of all accounts held by the customer with customer-id 192-83-7465 select account.balance from depositor, account where depositor.customer_id = ‘192-83-7465’ and depositor.account_number = account.account_number  Application programs generally access databases through one of  Language extensions to allow embedded SQL  Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database
  • 15. ©Silberschatz, Korth and Sudarshan 1.15 Database System Concepts - 5th Edition, May 23, 2005 Database Design The process of designing the general structure of the database:  Logical Design – Deciding on the database schema. Database design requires that we find a “good” collection of relation schemas.  Business decision – What attributes should we record in the database?  Computer Science decision – What relation schemas should we have and how should the attributes be distributed among the various relation schemas?  Physical Design – Deciding on the physical layout of the database
  • 16. ©Silberschatz, Korth and Sudarshan 1.16 Database System Concepts - 5th Edition, May 23, 2005 The Entity-Relationship Model  Models an enterprise as a collection of entities and relationships  Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects  Described by a set of attributes  Relationship: an association among several entities  Represented diagrammatically by an entity-relationship diagram:
  • 17. ©Silberschatz, Korth and Sudarshan 1.17 Database System Concepts - 5th Edition, May 23, 2005 Other Data Models  Object-oriented data model  Object-relational data model
  • 18. ©Silberschatz, Korth and Sudarshan 1.18 Database System Concepts - 5th Edition, May 23, 2005 Database Application Architectures (web browser) Old Modern
  • 19. ©Silberschatz, Korth and Sudarshan 1.19 Database System Concepts - 5th Edition, May 23, 2005 Database Management System Internals  Storage management  Query processing  Transaction processing
  • 20. ©Silberschatz, Korth and Sudarshan 1.20 Database System Concepts - 5th Edition, May 23, 2005 Storage Management  Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.  The storage manager is responsible to the following tasks:  Interaction with the file manager  Efficient storing, retrieving and updating of data  Issues:  Storage access  File organization  Indexing and hashing
  • 21. ©Silberschatz, Korth and Sudarshan 1.21 Database System Concepts - 5th Edition, May 23, 2005 Query Processing 1. Parsing and translation 2. Optimization 3. Evaluation
  • 22. ©Silberschatz, Korth and Sudarshan 1.22 Database System Concepts - 5th Edition, May 23, 2005 Query Processing (Cont.)  Alternative ways of evaluating a given query  Equivalent expressions  Different algorithms for each operation  Cost difference between a good and a bad way of evaluating a query can be enormous  Need to estimate the cost of operations  Depends critically on statistical information about relations which the database must maintain  Need to estimate statistics for intermediate results to compute cost of complex expressions
  • 23. ©Silberschatz, Korth and Sudarshan 1.23 Database System Concepts - 5th Edition, May 23, 2005 Transaction Management  A transaction is a collection of operations that performs a single logical function in a database application  Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.  Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.
  • 24. ©Silberschatz, Korth and Sudarshan 1.24 Database System Concepts - 5th Edition, May 23, 2005 Overall System Structure
  • 25. ©Silberschatz, Korth and Sudarshan 1.25 Database System Concepts - 5th Edition, May 23, 2005 History of Database Systems  1950s and early 1960s:  Data processing using magnetic tapes for storage  Tapes provide only sequential access  Punched cards for input  Late 1960s and 1970s:  Hard disks allow direct access to data  Network and hierarchical data models in widespread use  Ted Codd defines the relational data model  Would win the ACM Turing Award for this work  IBM Research begins System R prototype  UC Berkeley begins Ingres prototype  High-performance (for the era) transaction processing
  • 26. ©Silberschatz, Korth and Sudarshan 1.26 Database System Concepts - 5th Edition, May 23, 2005 History (cont.)  1980s:  Research relational prototypes evolve into commercial systems  SQL becomes industry standard  Parallel and distributed database systems  Object-oriented database systems  1990s:  Large decision support and data-mining applications  Large multi-terabyte data warehouses  Emergence of Web commerce  2000s:  XML and XQuery standards  Automated database administration  Increasing use of highly parallel database systems  Web-scale distributed data storage systems
  • 27. Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use End of Chapter 1
  • 28. ©Silberschatz, Korth and Sudarshan 1.28 Database System Concepts - 5th Edition, May 23, 2005 Database Users Users are differentiated by the way they expect to interact with the system  Application programmers – interact with system through DML calls  Sophisticated users – form requests in a database query language  Specialized users – write specialized database applications that do not fit into the traditional data processing framework  Naïve users – invoke one of the permanent application programs that have been written previously  Examples, people accessing database over the web, bank tellers, clerical staff
  • 29. ©Silberschatz, Korth and Sudarshan 1.29 Database System Concepts - 5th Edition, May 23, 2005 Database Administrator  Coordinates all the activities of the database system  has a good understanding of the enterprise’s information resources and needs.  Database administrator's duties include:  Storage structure and access method definition  Schema and physical organization modification  Granting users authority to access the database  Backing up data  Monitoring performance and responding to changes  Database tuning
  • 30. ©Silberschatz, Korth and Sudarshan 1.30 Database System Concepts - 5th Edition, May 23, 2005 Database Architecture The architecture of a database systems is greatly influenced by the underlying computer system on which the database is running:  Centralized  Client-server  Parallel (multiple processors and disks)  Distributed
  • 31. ©Silberschatz, Korth and Sudarshan 1.31 Database System Concepts - 5th Edition, May 23, 2005 Object-Relational Data Models  Extend the relational data model by including object orientation and constructs to deal with added data types.  Allow attributes of tuples to have complex types, including non-atomic values such as nested relations.  Preserve relational foundations, in particular the declarative access to data, while extending modeling power.  Provide upward compatibility with existing relational languages.
  • 32. ©Silberschatz, Korth and Sudarshan 1.32 Database System Concepts - 5th Edition, May 23, 2005 XML: Extensible Markup Language  Defined by the WWW Consortium (W3C)  Originally intended as a document markup language not a database language  The ability to specify new tags, and to create nested tag structures made XML a great way to exchange data, not just documents  XML has become the basis for all new generation data interchange formats.  A wide variety of tools is available for parsing, browsing and querying XML documents/data
  • 33. ©Silberschatz, Korth and Sudarshan 1.33 Database System Concepts - 5th Edition, May 23, 2005 Figure 1.4
  • 34. ©Silberschatz, Korth and Sudarshan 1.34 Database System Concepts - 5th Edition, May 23, 2005 Figure 1.7