NoSQL Databases
Professional Lecture
Introduction
• • NoSQL = Not Only SQL
• • Non-relational databases for large,
distributed data
• • Handles structured, semi-structured, and
unstructured data
• • Provides flexibility, scalability, and high
performance
Why NoSQL?
• • Explosion of Big Data (IoT, Social Media, E-
commerce)
• • Need for horizontal scalability
• • Real-time and high-velocity data processing
• • Schema flexibility for evolving applications
Key Characteristics
• • Schema-less / Flexible Schema
• • Horizontal Scalability
• • High Performance
• • Polyglot Persistence
• • CAP Theorem: Consistency, Availability,
Partition Tolerance
CAP Theorem
• • Consistency: All nodes have the same data
• • Availability: Every request gets a response
• • Partition Tolerance: System works despite
failures
• ⚠️Cannot achieve all 3 simultaneously
• Examples:
• - Cassandra: AP
• - MongoDB: CP
Types of NoSQL Databases
• 1. Key-Value Stores (Redis, DynamoDB)
• 2. Document Stores (MongoDB, CouchDB)
• 3. Column-Family Stores (Cassandra, HBase)
• 4. Graph Databases (Neo4j, Amazon Neptune)
SQL vs NoSQL
• SQL (RDBMS):
• • Fixed Schema
• • Vertical Scaling
• • ACID Transactions
• • Examples: MySQL, Oracle
• NoSQL:
• • Flexible Schema
• • Horizontal Scaling
Advantages & Disadvantages
• ✅ Advantages:
• • Scalability, Performance, Flexibility
• • Real-time Big Data processing
• • Cost-effective with commodity hardware
• ❌ Disadvantages:
• • Lack of standardization
• • Eventual consistency
• • Limited ACID support
Real-World Use Cases
• • MongoDB → E-commerce catalogs, content
management
• • Redis → Caching, session storage,
leaderboard
• • Cassandra → IoT data, time-series analytics
• • Neo4j → Social networks, fraud detection,
recommendation engines
Future Trends
• • Multi-model databases (document + graph +
key-value)
• • Stronger ACID support
• • Cloud-native & serverless NoSQL systems
• • Integration with AI/ML pipelines for real-
time analytics

NoSQL_Database_Lecture.pptx. Yhgghhhhhhvvh

  • 1.
  • 2.
    Introduction • • NoSQL= Not Only SQL • • Non-relational databases for large, distributed data • • Handles structured, semi-structured, and unstructured data • • Provides flexibility, scalability, and high performance
  • 3.
    Why NoSQL? • •Explosion of Big Data (IoT, Social Media, E- commerce) • • Need for horizontal scalability • • Real-time and high-velocity data processing • • Schema flexibility for evolving applications
  • 4.
    Key Characteristics • •Schema-less / Flexible Schema • • Horizontal Scalability • • High Performance • • Polyglot Persistence • • CAP Theorem: Consistency, Availability, Partition Tolerance
  • 5.
    CAP Theorem • •Consistency: All nodes have the same data • • Availability: Every request gets a response • • Partition Tolerance: System works despite failures • ⚠️Cannot achieve all 3 simultaneously • Examples: • - Cassandra: AP • - MongoDB: CP
  • 6.
    Types of NoSQLDatabases • 1. Key-Value Stores (Redis, DynamoDB) • 2. Document Stores (MongoDB, CouchDB) • 3. Column-Family Stores (Cassandra, HBase) • 4. Graph Databases (Neo4j, Amazon Neptune)
  • 7.
    SQL vs NoSQL •SQL (RDBMS): • • Fixed Schema • • Vertical Scaling • • ACID Transactions • • Examples: MySQL, Oracle • NoSQL: • • Flexible Schema • • Horizontal Scaling
  • 8.
    Advantages & Disadvantages •✅ Advantages: • • Scalability, Performance, Flexibility • • Real-time Big Data processing • • Cost-effective with commodity hardware • ❌ Disadvantages: • • Lack of standardization • • Eventual consistency • • Limited ACID support
  • 9.
    Real-World Use Cases •• MongoDB → E-commerce catalogs, content management • • Redis → Caching, session storage, leaderboard • • Cassandra → IoT data, time-series analytics • • Neo4j → Social networks, fraud detection, recommendation engines
  • 10.
    Future Trends • •Multi-model databases (document + graph + key-value) • • Stronger ACID support • • Cloud-native & serverless NoSQL systems • • Integration with AI/ML pipelines for real- time analytics