SlideShare a Scribd company logo
1	
  
	
  
Actions speak louder than words?
Examining the Evidence for a gestural
genesis of human language.
	
  
	
  
	
  
	
  
Student	
  ID:	
  200604286	
  
Supervisor:	
  Dr.	
  Diane	
  Nelson	
  
Ling	
  3200	
  –	
  Linguistics	
  Dissertation	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Word	
  Count:	
  11,067	
  
	
  
	
  
	
  
	
  
The	
  University	
  of	
  Leeds,	
  29th	
  April	
  2015	
  	
  
	
  
	
  
	
  
	
  
2	
  
Abstract
  
The  prevailing  theory  in  language  emergence  is  that  it  developed  vocally,  either  in  a  
continuous  fashion  from  the  calls  of  early  primates,  or  discontinuously  as  the  result  of  
a  tremendous  genetic  occurrence  that  endowed  our  forefathers  with  the  gift  of  
language.  However,  in  this  dissertation  I  examine  an  alternative,  and  I  believe  more  
plausible,  possibility  that  language  emerged  first  from  a  system  of  gestures.  Using  
evidence  from  a  combination  of  primate  studies,  neurolinguistics,  child  language  and  
sign  languages,  I  form  a  picture  of  language  evolution  that  builds  upon  the  cognitive  
and  linguistic  capacities  of  extant  ape  species,  the  capacities  of  which  are  assumed  to  
have  been  present  in  the  last  common  ancestor  of  humans  and  apes.  This  begins  with  
early  bipedal  hominids  using  their  now  freed  hands  to  use  iconic  gestures  to  shape  
and  describe  the  world  around  them,  leading  to  a  proto-­‐language-­‐like  capacity  based  
on  manual  gestures,  before  speech  assumed  dominance  perhaps  as  late  as  the  
emergence  of  Homo  sapiens  and  the  ‘human  revolution’  35,000-­‐100,000  years  ago.    
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
3	
  
Table of Contents
LIST	
  OF	
  FIGURES	
  ..............................................................................................................................	
  4	
  
1.	
  INTRODUCTION	
  ...........................................................................................................................	
  5	
  
2.	
  PRIMATE	
  STUDIES	
  ......................................................................................................................	
  8	
  
2.1	
  VOCAL	
  CONTROL	
  VS.	
  MANUAL	
  CONTROL	
  ..............................................................................................	
  8	
  
2.2	
  PAN	
  ...............................................................................................................................................................	
  9	
  
2.3	
  PRIMATE	
  LANGUAGE	
  EXPERIMENTS	
  ....................................................................................................	
  12	
  
2.3.1	
  Washoe	
  the	
  Signing	
  Chimpanzee	
  .............................................................................................	
  12	
  
2.3.2	
  Kanzi’s	
  Keyboard	
  ............................................................................................................................	
  13	
  
2.3.3	
  A	
  Critical	
  Period	
  for	
  Ape	
  Language?	
  ......................................................................................	
  14	
  
3.	
  THE	
  BRAIN	
  ..................................................................................................................................	
  15	
  
3.1	
  MIRROR	
  NEURONS	
  AND	
  BROCA’S	
  AREA	
  ..............................................................................................	
  15	
  
3.1.1	
  Reflections	
  on	
  Mirror	
  Neurons	
  and	
  Theory	
  of	
  Mind	
  ........................................................	
  17	
  
3.2	
  THE	
  MOTOR	
  THEORY	
  OF	
  SPEECH	
  PERCEPTION	
  .................................................................................	
  18	
  
3.3	
  BIPEDALISM	
  AND	
  BRAIN	
  GROWTH	
  .......................................................................................................	
  19	
  
3.4	
  ADAPTATIONS	
  FOR	
  SPEECH	
  –	
  A	
  MODERN	
  PHENOMENON?	
  .............................................................	
  20	
  
3.4.1	
  Changes	
  to	
  Anatomy	
  –	
  Speech	
  Came	
  Later	
  .........................................................................	
  20	
  
3.4.2	
  The	
  Hypoglossal	
  Canal,	
  Articulation	
  and	
  Breathing	
  Control	
  ......................................	
  22	
  
3.4.3	
  FOXP2	
  ...................................................................................................................................................	
  22	
  
4.	
  SIGN	
  LANGUAGE	
  ........................................................................................................................	
  23	
  
4.1	
  LATERALISATION	
  OF	
  LANGUAGE	
  AND	
  HANDEDNESS	
  ........................................................................	
  24	
  
4.2	
  CHILD	
  LANGUAGE	
  .....................................................................................................................................	
  25	
  
4.2.1	
  Manual	
  Babbling	
  .............................................................................................................................	
  26	
  
4.2.2	
  Children’s	
  Gestures	
  .........................................................................................................................	
  26	
  
4.3	
  NOVEL	
  SIGN	
  LANGUAGES	
  ........................................................................................................................	
  27	
  
4.3.1	
  Homesign	
  in	
  Deaf	
  Children	
  .........................................................................................................	
  28	
  
4.3.2	
  Nicaraguan	
  Sign	
  Language,	
  (LSN)	
  and	
  Idioma	
  de	
  Signos	
  Nicaragünese	
  (ISN)	
  ..	
  29	
  
4.3.3	
  Al-­‐Sayyid	
  Bedouin	
  Sign	
  Language	
  (ABSL)	
  ...........................................................................	
  30	
  
4.3.4	
  Creating	
  a	
  New	
  Communication	
  System	
  from	
  Scratch	
  ..................................................	
  31	
  
5.	
  BUT	
  WHY	
  THE	
  SWITCH	
  TO	
  SPEECH?	
  ..................................................................................	
  34	
  
6.	
  CONCLUSION	
  ..............................................................................................................................	
  36	
  
7.	
  REFERENCES	
  ...............................................................................................................................	
  38	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
4	
  
List	
  of	
  Figures	
  
	
  
Fig.	
  1	
  Phylogenetic	
  tree	
  of	
  extant	
  great	
  ape	
  species………………………………………………….9	
  
Fig.	
  2	
  Flexibility	
  of	
  different	
  communication	
  types	
  in	
  chimpanzees	
  and	
  bonobos….…11	
  
Fig.	
  3	
  A	
  comparison	
  of	
  the	
  macaque	
  and	
  human	
  cerebral	
  cortex…………………………….16	
  
Fig.	
  4	
  Brain	
  size	
  comparison	
  of	
  extant	
  primates	
  and	
  other	
  species………………………….20	
  
Fig.	
  5	
  Comparing	
  the	
  human	
  and	
  chimpanzee	
  vocal	
  tract………………..……………………..21	
  
Fig.	
  6	
  Frequency	
  of	
  interaction	
  type	
  in	
  chimpanzees	
  and	
  bonobos…………………………..32	
  
Fig.	
  7	
  Success	
  of	
  different	
  gesture	
  types	
  judged	
  by	
  identification	
  accuracy……………..32	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
5	
  
1.	
  Introduction	
  
  
Ever  since  scientists  and  thinkers  began  to  doubt  the  traditional,  religious  stance  on  
language  as  a  gift  from  God,  scattered  from  the  mythical  Tower  of  Babel  to  form  the  
world’s  myriad  tongues,  language’s  origin  has  enthralled  and  perplexed  generations.  
Among  them  are  proponents  of  the  gesture-­‐first  theory,  who  have  put  forward  the  
idea  in  various  guises  since  John  Bulwer’s  ‘The  Natural  Language  of  the  Hand’  (1644),  
before  Cordemoy  (1668/1972:3)  called  gestures  ‘the  most  natural  way  to  express  our  
thoughts...  also  the  first  of  all  the  languages,’  citing  its  ubiquitous  understanding  
across  countries  and  cultures  as  a  reason  for  its  feasibility.  The  18th
  century  
philosopher  Giambattista  Vico  (1953/1744)  imagined  an  original  system  of  mimetic  
gestures  which  represented  images  of  the  imagination,  before  de  Condillac  
(1971/1746)  proposed  a  similar  idea  demonstrated  by  a  fable  of  two  strangers  
communicating  by  sign  alone.  The  19th
  century  saw  Darwin  haltingly  acknowledge  
that  language  in  its  original  form  was  perhaps  ‘aided  by  signs  and  gestures’  (Darwin,  
1871:86).  However,  this  speculation  was  not  well  received  by  bodies  in  both  France  
and  England.  The  Linguistics  Society  of  Paris,  founded  in  1865,  banned  from  the  
outset  all  debates  that  focused  on  the  origin  of  language,  and  in  1873  the  President  of  
the  Philological  Society  admonished:  ‘We  shall  do  more  by  tracing  the  development  of  
one  work-­‐a-­‐day  tongue,  than  by  filling  waste-­‐paper  baskets  by  reams  of  paper  
covered  with  speculations  on  the  origins  of  all  tongues.’  (McNeill,  2005:11).    
Despite  its  troubled  beginnings,  the  gestural  theory  picked  up  speed  in  the  
20th
  century  with  the  publication  of  Gordon  Hewes’  ‘Primate  Communication  and  the  
Gestural  Origin  of  Language’  (1973)  in  which  he  sets  forth  his  argument  with  evidence  
from  recently  conducted  primate  language  experiments.  Using  more  modern  
technology,  Rizzolatti  et  al  (1998)  published  a  paper  describing  the  presence  and  
importance  of  mirror  neurons  in  certain  areas  of  the  brain.  Their  hypothesis  provides  
support  for  the  gestural  origin  theory  as  it  evidences  a  strong  relationship  between  
action  of  the  arm  and  mouth  in  non-­‐human  primates,  as  well  as  a  crucial  role  in  
seeing  and  mimicking  the  actions  of  others  (to  be  discussed  in  more  detail  in  3.1).  This  
paved  the  way  for  other  linguists  to  further  examine  its  merit,  notably  Corballis  (2002,  
6	
  
2003,  2012),  Armstrong  &  Wilcox  (1995,  2007),  Pollick  &  de  Waal  (2007)  and  
Tomasello  (2008).    
   Proponents  of  the  vocal  theory  argue  that  language  evolved  not  from  signs  
but  from  a  system  evolved  in  the  auditory-­‐vocal  modality  (Dunbar  1996;  Deacon  
1997;  Fitch  2000;  Knight  2008).  The  literature  on  the  speech-­‐first  argument  focuses  
on  either  a  discontinuous  view  that  language  arose  suddenly  and  in  a  near-­‐perfect  
form,  perhaps  by  the  appearance  of  a  new  gene  (FOXP2)  coinciding  with  the  ‘human  
revolution’  some  40,000  years  ago  (Chomsky,  1996,  2004;  Lenneberg,  1967),  or  by  a  
continuous  evolutionary  process  in  a  similar  way  to  other  adapted-­‐for  traits  (Pinker  
and  Bloom,  1990).                         
   New  evidence  collected  over  the  past  few  decades  bolsters  the  argument  that  
the  speech-­‐first  scenario  is  inferior:  the  FOXP2  gene  has  recently  been  shown  to  have  
existed  in  Neanderthals  and  has  also  been  seen  to  influence  both  language  processing  
and  motor  sequencing  ability,  including  finger  movements  (Peter  et  al,  2011),  giving  
compelling  evidence  that  this  gene  may  have  had  an  influence  in  a  gestural  precursor  
to  language.  The  idea  that  language  arose  fully  formed  is  also  flawed.  As  Kirby  
(2007:674)  argues,  ‘this  is  only  really  plausible  if  language  isn’t  as  complex  as  it  
appears.  The  appearance  of  eyes  fully  formed  in  evolution  in  one  step  is  implausible  
precisely  because  the  eye  is  a  complex  organ’.  Furthermore  those  who  suggest  that  
language  could  have  evolved  from  the  vocal  calls  of  non-­‐human  primates  (Aiello  &  
Dunbar,  1993;  Dunbar,  1996;  Zuberbühler,  2005)  do  not  account  for  the  fact  that  
these  vocalisations  are  inflexible  and  cannot  be  broken  down  or  combined  into  
sequences,  and  that  these  calls  are  primarily  instinctive  and  emotionally-­‐driven:	
  
‘production  of  sound  in  the  absence  of  the  appropriate  emotional  state  seems  to  be  
an  almost  impossible  task  for  a  chimpanzee’  notes  eminent  primatologist  Jane  
Goodall  (1986:125).  Despite  a  recent  study  of  putty-­‐nosed  monkeys  that  claimed  they  
combine  sounds  to  encode  slightly  different  meanings,  the  compositional,  recursive  
power  of  human  language  was  still  lacking  (Arnold  &  Zuberbühler  2006).  However,  
this  basic  combinatorial  ability  that  seems  to  be  present  in  these  primates  could  signal  
a  rudimentary  precursor  to  a  complex  aptitude  for  syntax  that  may  well  have  been  
present  in  the  last  common  ancestor  (‘LCA’  hereafter)  (Fay  et  al,  2014;  Cheney  &  
Seyfarth,  2005).  A  final  objection  to  the  theory  is  that  if  gesture  was  the  first  way  in  
7	
  
which  language  was  used,  then  why  do  we  now  exclusively  use  speech  to  
communicate?  MacNeilage  suggests  that  a  gestural  system  ‘would  have  proved  so  
indispensable  that  we  would  never  have  abandoned  it’  (2011:  434),  however  there  
are  several  advantages  that  signed  languages  provide,  as  well  as  other  reasons  as  to  
why  a  switch  to  a  vocal  modality  could  have  occurred.     
   Instinctively,  the  iconic  nature  of  the  majority  of  signs  lends  itself  better  to  the  
earliest  form  of  language;  by  describing  the  world  around  them  iconically  and  
mimetically,  our  early  bipedal  ancestors  gained  the  ability  to  transfer  meaning  from  
one  member  of  the  group  to  another  without  the  use  of  speech.  As  Stokoe  (2001:xii)  
puts  it,  ‘who  could  possibly  have  told  the  first  speakers  what  the  sounds  they  
produced  were  supposed  to  mean[?]’.  He  argues  that  the  earliest  communicative  
system  was  based  on  gestures,  where  hand  shapes  represented  aspects  of  the  visual  
world  around  our  early  ancestors:  people,  places,  things,  and  the  movements  of  the  
hands  represented  actions  and  changes,  and  that  these  were  the  earliest  form  of  
sentences:  ‘The  key  to  this  development  is  that  only  gesture  use  could  have  initiated  
syntax,  a  necessary  feature  of  language.’  (2001:xiii)                      
   In  order  to  examine  the  support  for  the  gestural  theory  of  language  evolution,  
it  is  useful  to  turn  to  Bickerton’s  three  aspects  of  linguistic  behaviour  that  he  terms  
‘living  fossils’  (1990:105;  1995)  of  an  earlier  protolanguage.  These  consist  of  (i)  the  
Language  of  Trained  Apes,  (ii)  Child  Language  and  (iii)  Pidgin  Communication.  
Although  Bickerton  is  a  speech-­‐first  advocate,  he  comments  that  ‘what  form  of  signal  
was  first  used  is  relatively  unimportant’  (1990:156),  and  adapting  his  model  to  
examine  the  viability  of  the  gestural  equivalents  instead  of  speech  in  language  
evolution  can  provide  clues  to  how  language  may  have  emerged  gesturally.  Since  
evidence  for  the  gesture  theory  has  broadly  been  taken  from  a  combination  of  
primate  language  studies,  analysis  of  child  language  development  and  aspects  of  
pidgin  sign  language  (such  as  Nicaraguan  Sign  Language),  Bickerton’s  model  applies  
perfectly  to  a  gestural  protolanguage.  This  evidence,  combined  with  an  examination  
of  language  in  the  brain  -­‐  including  the  action  of  mirror  neurons-­‐  will  be  the  focus  of  
this  dissertation;  the  strength  of  each  of  these  lines  of  inquiry  will  be  evaluated  in  an  
attempt  to  answer  the  question:  did  language  emerge  gesturally  in  our  ancestors?  
8	
  
2.	
  Primate	
  Studies	
  
  
Since  no  animal  in  the  wild  has  ever  acquired  the  command  of  anything  approaching  
human  language,  it  could  seem  unlikely  to  turn  to  this  source  of  evidence  to  attempt  
to  explain  it.  However  some  linguists  argue  that  by  examining  the  abilities  and  
shortcomings  of  primate  communication,  the  capabilities  of  the  LCA  can  be  
elucidated  (Rizolatti  &  Arbib,  1998).  This  means  it  is  possible  to  track  the  
development  of  traits  necessary  for  fully  articulate  language  through  the  Homo  line  
that  were  not  present  in  our  cousins’  lineage  over  the  last  ~8  million  years  of  
evolution  (Pinker,  2003).    
2.1  Vocal  Control  vs.  Manual  Control    
	
  
Theories  in  support  of  the  gesture-­‐first  argument  have  focused  on  the  inability  of  
apes  to  control  their  vocalisations,  compared  to  the  ‘excellent  cortical  control  over  
the  hands  and  arms’  (Corballis,  2009:22)  that  nonhuman  primates  demonstrate.  In  
primates,  vocalisations  lack  the  range  and  combinatorial  power  of  human  speech,  and  
are  controlled  by  the  limbic  system,  an  ancient  area  of  the  brain  associated  with  
emotion,  and  are  not  under  the  voluntary  control  of  the  motor  cortex  (Ploog  2002;  
Fogassi  &  Ferrari,  2007).  These  primate  vocalisations  are  primarily  a  reaction  to  a  
specific  emotion  or  need,  such  as  fear,  hunger  or  sexual  desire  (Deacon,  1997),  and  
have  their  evolutionary  human  counterparts  in  primal  sounds  like  moaning,  crying  
and  screaming  (Pinker,  1994).  This  is  in  comparison  to  a  large  range  of  voluntary  
manual  movements,  which  are  under  the  control  of  the  lateral  motor  cortex  and  are  
used  flexibly  (Hurford,  2003;  Corballis,  2009),  a  skill  that  has  been  utilised  in  primate  
language  experiments  (Gardner  &  Gardner,  1969;  Savage-­‐Rambaugh  et  al,  1998).  
Further,  both  humans  and  nonhuman  primates  are  primarily  visual  creatures,  
with  sight  superior  to  hearing  in  both  species,  perhaps  an  evolutionary  adaptation  to  
visual  predation.  This  means  that  they  are  better  adapted  for  communication  in  the  
visual  modality  than  the  auditory  (Corballis,  2010),  and  thus  early  hominids  may  have  
had  the  tools  to  communicate  using  gesture  before  speech.    
  
9	
  
2.2  Pan  
  
Many  animals  in  the  wild  commonly  communicate  with  vocal  calls,  but  the  manual  
gestures  of  humans  and  apes  are  considered  practically  unique  (Maestripieri  2005;  
Pollick  &  de  Waal,  2007;  Roberts  et  al,  2012).  Hobaiter  &  Byrne  (2014)  argue  that  ape  
gestures  often  have  specific  meanings  and  that  captive  and  wild  gorillas  and  
chimpanzees  use  intentional  signs  to  serve  specific  functions.  These  flexible,  
intentional  gestures  of  the  hands  and  limbs  provide  evidence  of  an  ancestral  trait  
common  to  Homo  sapiens  and  our  great  ape  relatives  that  support  the  gestural  
theory  of  language  evolution  (Roberts  et  al,  2012;  Pika  et  al,  2005;  Pollick  &  de  Waal,  
2007).  The  studies  below  demonstrate  how  language-­‐trained,  wild,  and  captive  apes  
help  to  elucidate  the  gestural  theory  of  language  evolution.	
  	
  
The  phylogenetic  tree  below  displays  the  relationship  between  extant  great  
apes  and  humans,  and  is  consistent  with  the  general  estimate  that  the  Pan  line  
separated  from  the  Homo  line  around  5-­‐7  million  years  ago  (Kumar  et  al,  2005).    
While  all  primates  exhibit  facial  expressions  and  vocalisations,  apes  and  
monkeys  differ  in  that  monkeys  lack  the  free,  ritualised  hand  gestures  that  are  
present  in  chimpanzees  and  bonobos,  which  include  begging  for  food  with  an  
Figure	
  1.	
  Phylogenetic	
  tree	
  of	
  extant	
  great	
  ape	
  species	
  	
  (www-­‐tc.pbs.org)	
  
10	
  
upturned  palm,  impatient  wrist  shaking,  and  domineering  arm  movements  over  a  
subservient  conspecific  (Pollick  et  al,  2008).    
Since  bonobos  and  chimpanzees  split  from  the  Homo  line  the  most  recently,  
they  are  the  most  closely  related  primates  to  human  beings  and  the  evolutionary  
ancestry  we  share  may  shed  light  on  the  kind  of  abilities  present  in  the  LCA  of  humans  
and  apes,  and  therefore  on  how  language  may  have  evolved  in  our  species  (Corballis,  
2009).  Manual  gestures  have  become  of  particular  interest  as  the  neural  structures  
associated  with  them  in  great  apes  are  homologous  with  those  associated  with  
language  in  the  human  brain  (Roberts  et  al,  2013)  (examined  further  in  3).  Using  this  
logic,  Pollick  and  de  Waal  (2007)  ran  a  study  to  compare  the  flexibility  of  chimpanzee  
and  bonobo  manual  gestures  with  orofacial  movements  and  vocalisations.  The  aim  of  
the  study  was  to  assess  how  context-­‐driven  these  were,  and  to  what  extent  gestures  
were  more  flexible  than  vocalisations.  They  observed  two  groups  of  bonobos  and  two  
groups  of  chimpanzees  in  captive  environments,  all  of  which  exhibited  aspects  of  
gesture,  broadly  defined  by  Kendon  (2004:14)  as  ‘movements  that…  manifest  
deliberate  expressiveness  to  an  obvious  degree’.  By  this  he  means  that  to  qualify  as  a  
gesture,  it  must  be  meaningful,  intentional  and  easily  discerned  by  the  audience  
(Zlatev,  2015).    
Firstly  they  found  that  gestures  were  far  more  flexible  than  either  facial  or  
vocal  signals,  in  that  they  were  less  bound  to  being  produced  in  a  particular  context.  
Corballis  (2009:554)  asserts  that  ‘freedom  from  context  is  one  of  the  characteristics  
of  language’,  and  it  is  with  this  in  mind  that  Pollick  &  de  Waal  enacted  their  study:  
they  calculated  the  ‘CTI’,  or  Context-­‐Tie  Index,  which  was  the  percentage  of  times  
that  a  signal  was  used  in  its  most  typical  social  context,  e.g.  during  grooming,  to  
initiate  sex,  etc.  Fig.  2  shows  that  the  vocalisations  ‘scream’  and  ‘pant  hoot’  had  a  
very  high  correlation  across  contexts,  meaning  that  they  were  produced  far  more  
commonly  in  their  typical  contexts  in  comparison  to  gestures,  which  did  not  reach  a  
high  CTI.  Strikingly,  four  of  the  gestures  correlated  negatively  across  contexts,  
suggesting  that  they  are  used  in  vastly  different  contexts  by  both  the  bonobo  and  
chimpanzee  groups  (Pollick  &  de  Waal,  2007).    
This  discrepancy  between  species  acts  as  further  evidence  that  human  
language  may  have  its  roots  in  the  abilities  of  our  primate  cousins;  their  gestures  vary  
11	
  
between  species  just  as  human  gestures  vary  across  cultures  as  a  result  of  cultural  
transmission.  In  addition,  human  facial  expressions  tend  to  be  far  more  universal  than  
culture-­‐specific  gestures  (Kendon,  1995),  and  apes  also  tend  to  share  facial  
movements,  evinced  by  the  high  CTI  ‘silent  bared  teeth’  and  ‘relaxed  open  mouth’  
that  is  shared  between  chimps  and  bonobos  (Fig.  2).  
  
  
  
A  comparable  study  conducted  by  Roberts  et  al  (2012:466)  garnered  similar  
results;  they  studied  a  wild  population  of  chimpanzees  and  found  that  their  gestures  
‘are  perceived  semantically  and  manipulate  the  recipient’s  movements  and  attention,  
while  recipients  also  infer  the  broader  goal  of  the  signaller  from  context.’    
Overall  gestures  show  greater  contextual  variation  in  both  wild  and  captive  
chimpanzees  than  facial  and  vocal  signals,  and  do  not  necessarily  need  to  be  viewed  
in  a  particular  context  to  elicit  a  response  unlike  vocalisations,  which  are  closely  tied  
to  context.  De  Waal  and  Pollick  (2012)  argue  that  this  makes  gesture  a  likely  
candidate  for  the  modality  in  which  symbolic  meaning  may  have  evolved  in  the  early  
hominid  population.    
  
  
Figure	
  2:	
  Flexibility	
  of	
  different	
  communication	
  types	
  in	
  chimpanzees	
  and	
  
bonobos,	
  taken	
  from	
  Pollick	
  &	
  de	
  Waal	
  (2007:	
  8187).  
12	
  
2.3  Primate  Language  Experiments    
	
  
The  language  of  trained  apes  is  one  of  Bickerton’s  (1990:105)  ‘living  fossils’,  aspects  of  
language  that  share  some  -­‐  but  not  all-­‐  of  the  characteristics  of  modern  human  
language.  Tallerman  argues  that  language  trained  apes  such  as  those  described  below  
likely  show  ‘the  type  of  cognition  early  hominins  brought  to  protolanguage’  (2011:  
489),  and  thus  can  illuminate  the  aspects  of  cognition  that  were  built  upon  to  develop  
language.  
2.3.1	
  Washoe	
  the	
  Signing	
  Chimpanzee	
  
	
  
There  have  been  many  attempts  to  teach  primates  language  that  have  largely  focused  
on  our  closest  relatives,  chimps  and  bonobos  (Gardner  &  Gardner  1969;  Savage-­‐
Rumbaugh  et  al,  1998).  These  experiments  have  shown  that  nonhuman  primates  
have  no  ability  to  speak  whatsoever,  having  been  inhibited  by  the  shape  of  their  vocal  
tract  -­‐  the  larynx  is  descended  in  humans,  and  the  greater  flexibility  of  our  tongue  
allows  us  to  produce  a  larger  array  of  sounds  (Gillespie-­‐Lynch  et  al,  2014).  Voluntary  
cortical  command  over  their  vocalisations  is  also  limited,  and  is  controlled  largely  by  
the  ‘cingulate  system’,  an  area  deep  in  the  brain  associated  with  emotion  that  is  not  
homologous  with  language  areas  (Vilain  et  al,  2011).  Tellingly,  attempts  to  teach  
primates  signed  language  have  been  far  more  successful.    
Washoe  the  chimpanzee  was  adopted  by  the  Gardners  at  ten  months  and  was  
raised  by  them  as  though  she  were  a  human  child.  She  was  taught  a  variety  of  signs  in  
simple  ASL  (American  Sign  Language)  through  imitation  as  well  as  by  instruction.  She  
achieved  a  degree  of  proficiency  in  ASL  beyond  any  vocal  ability  that  was  
demonstrated  (Gardner  &  Gardner,  1969),  and  after  8  years  had  a  repertoire  of  over  
150  signs.  Importantly  she  also  displayed  some  ability  at  creating  spontaneous  signs,  
notably  combining  the  signs  for  ‘water’  and  ‘bird’  when  viewing  a  swan,  as  well  as  
‘rock  berry’  for  a  brazil  nut  (Fouts,  1975;  Fouts  &  Rigby,  1977).  This  kind  of  
spontaneous  combination  of  gestures  to  create  a  novel  sign  was  taken  as  evidence  
that  Washoe  understood  the  meanings  of  the  signs,  and  was  not  simply  producing  
them  in  response  to  specific  stimuli.    
13	
  
Furthermore,  a  secondary  experiment  exposed  Washoe’s  adopted  son  Loulis  
exclusively  to  the  sign  language  of  four  signing  chimps  (including  Washoe),  and  found  
that  he  actively  learnt  the  signs  through  teaching  as  well  as  by  the  moulding  of  his  
hands  to  the  correct  configuration  (Fouts  et  al,  1989).  This  mirrors  the  mother-­‐child  
interaction,  imitation  and  pedagogy  prerequisite  in  human  language  acquisition.  
2.3.2	
  Kanzi’s	
  Keyboard	
  	
  
  
Kanzi  is  considered  the  most  accomplished  of  all  the  language-­‐trained  apes  (Savage-­‐  
Rumbaugh  et  al,  1998;  Corballis,  2012a)  and  communicates  by  pointing  to  a  keyboard  
with  a  range  of  lexigrams,  as  well  as  with  some  ASL.  He  was  present  while  the  
researchers  attempted  to  teach  his  mother  to  use  the  lexical  board  to  no  success,  and  
acquired  the  ability  spontaneously  without  implicit  teaching  or  rewards  (Savage-­‐
Rumbaugh  et  al,  1986).  Kanzi  used  the  keyboard  to  string  together  combinations  of  
two  or  three  symbols  to  create  simple  phrases,  as  well  as  inventing  his  own  gestures  
to  add  to  his  repertoire  when  he  outstripped  the  300  symbols  available  to  him  on  the  
lexical  board.  The  keyboard  required  fine  control  to  operate,  and  he  also  combined  
pointing  with  other  gestures  to  elucidate  meaning.  The  combinations  he  put  together  
showed  some  capacity  for  English  word  order,  as  well  as  basic  ability  to  assign  
grammatical  rules  (Greenfield  &  Savage-­‐Rumbaugh,  1990).    
Strikingly,  Kanzi’s  ability  to  perceive  human  speech  was  more  developed  than  
his  production,  and  he  frequently  acted  on  complex,  novel  sentences  even  when  the  
requests  were  unusual  or  counterintuitive.  For  example,  using  toy  equivalents  he  
correctly  performed  ‘make  the  doggie  bite  the  snake’,  as  well  as  completing  the  task  
with  the  animals’  roles  reversed  (Savage-­‐Rumbaugh  et  al,  1993:  96).    His  
comprehension  was  compared  to  that  of  Alia,  a  human  child  at  a  similar  age  of  
linguistic  development,  and  was  found  to  outstrip  hers  when  tested  on  a  variety  of  
sentence  types.  Kanzi  responded  correctly  on  74%  of  occasions  compared  to  Alia’s  
65%  (Savage-­‐Rumbaugh  et  al,  1993:76).  While  Savage-­‐Rumbaugh  argues  that  ‘more  
than  any  previous  ape,  the  nature  and  the  scope  of  Kanzi's  language  acquisition  has  
paralleled  that  of  the  human  child’  (1993:  12).  This  is  not  to  say  that  Kanzi  displayed  
human  levels  of  intelligence,  or  even  an  extraordinary  aptitude  for  human  language.  
His  production  was  limited  to  simple  phrases  and  requests,  and  showed  little  of  the  
14	
  
boundless  expression  that  children  express  a  little  later  in  their  development.  Further,  
96%  of  his  ‘utterances’  were  requests,  a  far  larger  percentage  than  would  be  normal  
for  a  human  child.  Towards  the  end  of  the  study  Alia’s  production  and  comprehension  
leapt  far  beyond  Kanzi’s  (1993:567).  This  suggests  that  Kanzi’s  abilities,  although  
impressive,  are  limited,  and  they  resemble  a  large  lexicon  coupled  with  a  very  basic  
‘proto-­‐grammar’  that  is  not  akin  to  human  language  (Pinker,  1994;  Tallerman,  2011;  
Fitch,  2010,  who  argues  that  this  is  no  more  than  word  order)  and  a  good  perception  
of  complex  strings  of  lexical  items.  However  there  is  little  evidence  to  suggest  that  he  
truly  understands  the  more  complex  grammar  that  he  hears.  Tallerman  (2011:  453)  
provides  the  example  ‘Go  get  the  balloon  that’s  in  the  microwave’-­‐  and  argues  that  
there  is  no  way  of  telling  that  Kanzi  understands  the  relative  clause  and  is  instead  
acting  on  the  basic  lexical  items  in  the  phrase  ‘get  –  balloon  –  microwave’,  and  infers  
the  rest  from  context.  This  type  of  processing,  a  kind  of  telegraphic  connecting  of  
gestures  with  basic  understanding  of  objects  and  actions  without  complex  grammar  
in  the  manual  mode,  seems  the  most  likely  candidate  to  have  been  a  precursor  for  
language  in  the  LCA  and  early  hominids.                
2.3.3	
  A	
  Critical	
  Period	
  for	
  Ape	
  Language?	
  
	
  
A  largely  under-­‐addressed  finding  from  the  study  was  that  of  the  nine  apes  that  were  
reared  together,  those  who  were  not  exposed  to  language  until  after  the  age  of  2½  
did  not  acquire  the  use  of  signs  without  prolonged,  explicit  language  training  
(Rumbaugh,  1977;  Savage-­‐Rumbaugh  et  al,  1993).  Their  comprehension  too  was  
greatly  diminished,  and  by  9  years  of  age  the  late-­‐exposed  apes  only  understood  a  
few  words  compared  to  the  early-­‐exposed  chimps  that  all  understood  at  least  40  
different  spoken  words  by  2½  years.  The  fact  that  humans  also  have  a  critical  window  
for  language  acquisition  (Penfield  &  Roberts,  1959;  Lenneberg,  1967)  strengthens  the  
gesture-­‐first  argument  in  that  humans  and  apes  share  similar  neural  traits,  such  as  
brain  plasticity  in  language  learning,  which  may  therefore  have  been  present  in  the  
LCA.  It  also  weakens  the  musical  protolanguage  theory  (Mithen,  2011),  as  human  
song  transmission  has  no  such  critical  period  (Tallerman,  2007).      
While  these  attempts  at  teaching  and  monitoring  apes’  language  have  been  
somewhat  successful,  their  actual  language  ability  has  barely  progressed  past  the  
15	
  
capability  of  a  2½-­‐year-­‐old  girl.  There  is  no  doubt  that  apes  can  assign  meaning  to  a  
sign  in  hundreds  of  pairs  (Fitch  2010),  but  the  real  merit  in  these  studies  is  that  they  
show  that  the  more  likely  scenario  for  language  emergence  is  that  it  was  based  on  a  
system  of  manual  gestures  rather  than  vocalisations.  They  demonstrate  an  ability  to  
assign  a  symbol  to  a  real-­‐world  referent  in  the  manual  domain,  as  well  as  a  capacity  
for  a  ‘proto-­‐grammar’  (Greenfield  &  Savage-­‐Rumbaugh,  1990:  572)  in  the  perception  
of  basic  syntax.  Further,  they  show  that  ape  gestures  are  susceptible  to  both  social  
learning  and  the  attentional  state  of  the  recipient,  which  are  both  prerequisites  for  
language  (Corballis,  2009).  ‘Communicative  capacities  observed  across  members  of  a  
clade  (sibling  species  with  a  common  ancestor,  such  as  humans,  chimpanzees,  and  
bonobos)  are  likely  inherited  from  a  common  ancestor’  (Gillespie-­‐Lynch  et  al,  2014:2).  
Hence,  these  abilities  are  likely  to  be  present  in  the  LCA  and  our  hominin  ancestors  
were  likely  to  have  been  better  preadapted  for  control  of  limbs  and  hand  movements  
than  for  vocal  control.  This  was  shown  by  the  success  of  our  great  ape  relatives  in  
types  of  sign  language  learning,  as  well  as  the  greater  flexibility  of  gesture  in  
communication  than  vocal  calls.  
3.	
  The	
  Brain	
  	
  
	
  
I  have  described  the  likely  cognitive  and  linguistic  capabilities  of  our  hominid  
ancestors,  as  well  as  the  similarities  and  differences  between  the  Homo  and  Pan  
branch  of  the  Hominidae.  The  following  is  an  examination  of  the  brain’s  role  in  
language  and  its  evolution,  and  specifically  how  the  visuo-­‐manual  modality  was  
crucial  in  the  emergence  and  evolution  of  language.  By  studying  both  the  human  and  
nonhuman  primate  brain  in  tandem,  as  well  as  the  varying  brain  structures  and  
capacities  of  modern  and  ancient  humans,  a  picture  of  how  gesture  could  have  been  
the  origin  of  language  is  elucidated.  
3.1  Mirror  Neurons  and  Broca’s  Area  
	
  
At  the  simplest  level,  in  order  for  language  to  evolve  it  is  crucial  that  a  sender  and  
receiver  of  a  message  are  both  able  to  produce  and  perceive  a  signal.  Rizzolatti  &  
Craighero  (2004:183)  argue  that  mirror  neurons  are  central  in  the  development  of  
16	
  
this  ability:  ‘Mirror  neurons  represent  the  neural  basis  of  a  mechanism  that  creates  a  
direct  link  between  the  sender  of  a  message  and  its  receiver…actions  done  by  other  
individuals  become  messages  that  are  understood  by  an  observer  without  any  
cognitive  mediation.’  Thus,  mirror  neurons  have  provided  a  fresh  perspective  on  the  
gesture  theory.  First  observed  in  macaques  (Rizzolatti  et  al,  1998),  and  further  
elaborated  in  the  discovery  of  a  mirror  system  (Arbib,  2005a;  Rizzolatti  &  Sinigaglia,  
2008),  these  are  motor  neurons  that  fire  both  when  an  animal  performs  an  action  as  
well  as  when  it  is  observed.    
Although  mirror  neurons  cannot  be  observed  directly  in  the  human  brain  
(Corballis,  2010),  imaging  has  revealed  a  mirror-­‐neuron  system  in  humans  that  also  
activates  when  actions  are  imitated,  that  is  not  present  in  monkeys  (Rizzolatti,  
Fogassi,  &  Gallese,  2001,  Rizzolatti  &  Craighero,  2004).  This  has  implications  for  the  
evolution  of  language  in  that  the  ability  to  actively  mimic  another’s  action  would  have  
been  pivotal  in  learning  and  propagating  an  emerging  gestural  system.    
Further,  the  mirror  neurons  were  found  in  an  area  of  the  macaque  brain  that  
is  homologous  with  Broca’s  area  in  humans,  the  area  traditionally  associated  with  
language  production  (Fig.  3)  (Broca,  1861;  Fogassi  and  Ferrari,  2007).  While  Broca’s  
area  has  traditionally  been  associated  with  the  production  of  speech,  it  is  also  
involved  in  motor  tasks  such  as  complex  finger  and  hand  movements,  sensorimotor  
learning  and  imitating  hand  shapes  (Rizzolatti  &  Craighero,  2004).  This  same  
activation  is  also  observed  when  people  imagine  themselves  making  these  
movements  (Gerardin  et  al,  2000).  This  suggests  a  link  between  the  production  of  
Figure	
  3:	
  A	
  comparison	
  of	
  the	
  macaque	
  (A)	
  and	
  human	
  (B)	
  cerebral	
  cortex.	
  Yellow	
  areas	
  in	
  both	
  are	
  the	
  
primary	
  motor	
  cortex,	
  orange	
  the	
  premotor	
  cortex.	
  The	
  red	
  areas	
  indicate	
  the	
  hypothesised	
  homologue	
  
cortical	
  motor	
  areas	
  that	
  relate	
  to	
  communication	
  and	
  language,	
  F5	
  in	
  the	
  monkey,	
  and	
  areas	
  44	
  in	
  the	
  
human,	
  also	
  known	
  Broca’s	
  area.	
  Taken	
  from	
  Fogassi	
  &	
  Ferrari	
  (2007:2)  
17	
  
language  and  motor  movements  of  the  hands  and  limbs  which  is  strengthened  by  the  
finding  that  signed  language  also  activates  Broca’s  area  (Horwitz  et  al,  2003).    
The  human  mirror  system  differs  from  the  monkey  mirror  neuron  system  in  
certain  aspects:  for  example  while  monkey  mirror  neurons  do  not  fire  in  the  absence  
of  a  goal-­‐less  grasp,  these  ‘intransitive  meaningless  movements’  do  excite  a  response  
in  the  human  mirror  system  (Rizzolatti  &  Craighero,  2004:176).  Corballis  (2012b)  
argues  that  in  this  case,  an  early  language  system  incorporated  symbolic  actions  and  
representations  and  not  simply  objects  in  the  here-­‐and-­‐now.  He  argues  that  this  
system  may  therefore  have  been  involved  in  the  critical  step  in  the  development  of  
language  from  a  capacity  of  simple  communication  to  one  in  which  our  ancestors  
were  capable  of  ‘mental  time  travel’,  the  ability  to  express  events  in  a  separate  time  
and  space  from  the  present  which  Corballis  &  Suddendorf  (2007:310)  view  as  a  
prerequisite  for,  and  uniquely  human  aspect  of,  language.  
Corballis  (2012b:109)  does  not  downplay  the  importance  of  mirror  system  in  
humans:  ‘in  the  course  of  evolution,  the  system  initially  specialised  for  grasping  
provided  the  basis  for  the  subsequent  emergence  of  an  intentional  communication  
system  based  on  manual  gestures’.  This  view  appears  to  be  the  most  likely  based  on  
the  evidence  from  mirror  neurons  in  both  monkeys  and  humans,  where  the  system  
that  allowed  imitation  was  developed  to  allow  mimesis  and  a  basic  gestural  
communicative  system.    
3.1.1	
  Reflections	
  on	
  Mirror	
  Neurons	
  and	
  Theory	
  of	
  Mind	
  
  
Since  the  mirror  system  ‘gives  the  observer  a  first-­‐person  understanding  of…the  goals  
and  intentions  of  other  individuals’  (Rizzolatti  &  Sinigaglia,  2010:264),  mirror  neurons  
have  also  been  cited  as  important  in  the  development  of  ‘theory  of  mind’,  a  critical  
prerequisite  for  co-­‐operative  behaviour  and  language  (Gallese  &  Goldman,  1998).  
Theory  of  mind  is  the  ability  to  empathise  with  another  individual  and  to  
realise  that  they  have  knowledge  and  perspectives  that  are  different  to  one’s  own  
(Premack  &  Woodruff,  1978).  It  has  been  cited  as  a  uniquely  human  ability  (Penn  et  
al,  2008),  is  inextricably  linked  to  the  language  faculty  (Malle,  2002),  and  has  been  
described  as  a  precondition  for  the  acquisition  of  language  (Origgi  &  Sperber,  2000).  
18	
  
Autistic  children,  whose  social  disability  is  characterised  by  a  lack  of  empathy  
and  extreme  difficulty  in  language  learning  (Carpenter  &  Tomasello,  2000),  have  been  
suggested  to  lack  full  theory  of  mind  (Baron-­‐Cohen  et  al,  1985).  Some  suggest  that  a  
dysfunction  in  the  mirror  system  is  responsible  for  this  deficiency,  and  in  turn  this  
affects  the  ability  to  acquire  language  (Williams  et  al,  2001).  Further,  those  with  
autism  consistently  produce  fewer  gestures,  and  these  are  developmentally  less  
advanced  than  those  without  autism  (Buitelaar  et  al,  1991;  Mundy  et  al,  1986).  They  
also  show  difficulty  imitating  the  body  movements  of  others  (Williams  et  al,  2004)  and  
have  a  host  of  motor  deficits  (Ming  et  al,  2007).  If  we  accept  that  the  mirror  system,  
imitation,  language  and  gesture  are  all  interlinked,  then  the  autistic  child  provides  an  
example  of  this  connection  by  the  absence  of  these  features.  
It  is  worth  noting  that  theory  of  mind  may  well  have  been  a  later  addition  to  
language,  as  it  is  not  found  in  apes  (controversially,  Call  &  Tomasello,  2008).  The  
earliest  language  would  not  have  necessarily  involved  taking  into  account  another’s  
mind;  when  simply  referring  in  iconic  expressions,  this  may  simply  have  influenced  
behaviour  in  another  individual  without  the  demonstration  of  joint  attention  (Malle,  
2002)  before  developing  into  a  more  sophisticated  form  in  which  gestures  were  
mutually  made  and  understood.                      
3.2  The  Motor  Theory  of  Speech  Perception  
	
  
Corballis  takes  the  motor  theory  of  speech  perception,  first  posited  by  Liberman  et  al  
(1967)  as  evidence  that  language  was  originally  based  on  a  system  of  gestures.  The  
motor  theory  posits  that  humans  comprehend  speech  based  primarily  on  articulatory  
gestures  of  the  vocal  apparatus  rather  than  an  acoustic  signal.  Corballis  therefore  
argues  that  ‘the  shift  (between  speech  and  sign  language)  is  not  so  much  from  vision  
to  audition  as  from  one  kind  of  gesture  to  another’  (2009:24).  He  links  this  to  the  
mirror  system  in  humans,  and  asserts  that  articulations  are  simply  vocal  gestures.  I  
find  this  argument  largely  unconvincing  however,  and  it  seems  more  likely  that  
speech  may  have  emerged  as  the  result  of  the  ‘expanding  spiral’  that  Arbib  
(2005b:22)  describes.  He  argues  that  H.  Habilis  through  to  H.  sapiens  communicated  
via  a  gestural  protolanguage,  which  provided  the  neurological  scaffolding  for  the  
emergence  of  a  spoken  protolanguage.  These  two  systems  then  developed  
19	
  
simultaneously  in  the  hominid  line  in  an  ‘expanding  spiral’  that  led  to  a  relatively  
complex  gestural  language  before  the  emergence  of  proto-­‐speech.  This,  along  with  
other  possibilities,  is  discussed  in  greater  detail  later  in  section  5.    
3.3  Bipedalism  and  Brain  Growth    
  
Many  argue  that  bipedalism  was  a  crucial  factor  in  the  emergence  of  human  language  
(Corballis,  2002;  Gillespie-­‐Lynch  et  al,  2014).  Although  it  is  difficult  to  date  precisely  
when  our  ancestors  began  to  walk  upright,  fossil  and  genetic  evidence  place  the  date  
at  around  5-­‐7  million  years  ago  (Rosenberg  &  Trevathan,  2014).  This  had  tremendous  
implications  for  the  evolution  of  our  species:  walking  upright  freed  the  hands  for  the  
later  emergence  of  tool  use,  as  well  as  having  implications  for  speech  as  the  larynx  
descended  to  a  position  where  vocal  control  was  possible,  but  perhaps  only  with  the  
emergence  of  Homo  sapiens  (Corballis,  2002).  As  the  feet  became  less  functional  than  
in  our  chimpanzee  relatives,  the  neural  space  for  control  of  the  feet  diminished  in  the  
Homo  line  and  allowed  neural  reorganisation  for  greater  control  of  the  hands.  
Further,  it  has  been  shown  that  control  of  the  hands  is  experience-­‐led,  so  the  more  
the  hands  are  used,  the  greater  neural  space  is  dedicated  to  them  in  comparison  to  
the  feet  (Richards,  1986;  Corballis,  2002).  Donald  (1991:162)  argues  that  later  
obligate  bipedalism  in  the  Homo  genus,  with  an  arboreal  lifestyle  no  longer  necessary,  
would  have  freed  the  hands  and  arms  for  a  variety  of  uses  including  intentional  
communication  and  ‘mimetic  culture’.  This  is  differentiated  from  the  mimicry  that  
some  animals  possess  (e.g.  parrots)  and  imitation,  somewhat  limited  to  apes,  in  that  it  
is  not  literal,  and  involves  ‘the  invention  of  intentional  representations’  (1991:169)  
that  are  creative  and  novel.  Corballis  adds  that  a  feature  of  gestural  communication  
allowed  by  bipedalism  was  the  ability  to  ‘move  in  four  dimensions’  (2009:32),  allowing  
mimetic  displays  of  actual  events  using  the  hands  which  can  incorporate  a  dimension  
of  time,  a  feature  of  mental  time  travel  mentioned  previously.    
Bipedalism  marks  the  split  of  the  Homo  line  from  the  line  of  the  nonhuman  
primates,  and  was  accompanied  by  a  growth  of  the  brain  (Corbalils  2002).  Although  it  
took  roughly  4  million  years  from  the  earliest  onset  of  bipedalism  to  a  marked  
increase  in  brain  size  in  the  hominid  line  (Nelson,  2009),  it  is  possible  that  early  
20	
  
hominids  such  as  Homo  habilis  had  the  capacity  for  a  protolanguage  based  on  manual  
gestures  in  part  due  to  a  significantly  larger  brain  size  in  all  subsequent  species  of  
Homo  than  in  chimpanzees  and  other  extant  apes  (Fig.  4).  This  is  strengthened  by  the  
discovery  of  enlarged  Broca’s  and  Wernicke’s  areas  in  endcocasts  of  Homo  habilis  
skulls  (Tobias,  1998),  which  may  indicate  that  this  species  had  some  semblance  of  
language,  likely  a  system  of  gestures.      
  
3.4  Adaptations  for  Speech  –  A  Modern  Phenomenon?  
  
It  has  been  inferred  that  articulate  speech  would  not  have  been  possible  until  
relatively  late  in  the  hominid  lineage,  due  to  the  extensive  changes  to  the  vocal  tract  
and  neurological  control  of  vocalisation  and  breathing  that  may  not  have  been  
complete  until  the  emergence  of  Homo  sapiens  ~170,000  years  ago  (Lieberman  1998;  
Stokoe,  2001).    
3.4.1	
  Changes	
  to	
  Anatomy	
  –	
  Speech	
  Came	
  Later	
  
	
  
The  vocal  tract  of  chimpanzees  is  incredibly  limited  in  comparison  to  modern  humans;  
while  humans  can  articulate  a  vast  array  of  speech  sounds,  chimpanzees  are  limited  
to  a  small  repertoire  of  phonemes  that  is  infinitely  less  flexible  than  in  human  speech  
(Lieberman,  1975).  This  is  due  to  the  shape  of  the  tongue  and  larynx  (fig.5).      
Figure	
  4:	
  Comparison	
  of	
  brain	
  size	
  in	
  extant	
  primates	
  and	
  other	
  species,	
  taken	
  from	
  Corballis	
  (2002:89).	
  
21	
  
The  descent  of  the  larynx  depicted  in  fig.5  played  a  pivotal  role  in  the  
evolution  of  human  speech;  some  suggest  that  this  was  kick-­‐started  by  the  advent  of  
bipedalism  (DuBrul,  1976),  but  this  remains  controversial  (Fitch,  2000).  Nevertheless,  
the  new  shape  of  the  larynx  made  it  possible  to  move  the  tongue  both  vertically  and  
horizontally  inside  the  mouth,  altering  the  shape  of  the  vocal  tract  sufficiently  to  
produce  a  wide  array  of  vowels  and  consonants  pivotal  to  human  speech  that  are  
unavailable  to  chimpanzees.  This  descent  is  also  found  in  the  growth  of  infants  to  
children  to  adults;  while  still  suckling  the  baby  is  capable  of  breathing  and  ingesting  
liquid  simultaneously,  a  capacity  shared  by  apes  (Fitch,  2000),  before  descending  
when  it  reaches  age  3  or  4  (Sasaki  et  al,  1977).  This  is  a  costly  transformation  as  it  
makes  humans  more  susceptible  to  choking  due  to  the  convergence  of  respiratory  
and  digestive  pathways,  but  some  suggest  that  this  was  a  worthwhile  evolutionary  
price  to  pay  when  the  result  is  speech  (Van  Driem,  2005).    
Fossil  records  have  proven  inconclusive  in  attempting  to  show  that  this  
descent  was  also  complete  in  Neanderthals  (Fitch,  2000),  but  from  the  evidence  
available  it  seems  plausible  that  the  position  of  the  larynx  and  hyoid  bone  in  
Neanderthals  led  to  a  basic  phonetic  ability,  more  complex  than  other  primates  but  
less  complex  than  in  modern  Homo  sapiens  (Crelin,  1987).  Lieberman  (1998)  argues  
that  the  adjustments  necessary  for  vocal  language  were  not  complete  in  
Neanderthals,  perhaps  as  recently  as  30,000  years  ago,  due  to  the  absence  of  a  
Figure	
  5:	
  Vocal	
  tracts	
  of	
  chimpanzees	
  (b)	
  and	
  humans	
  (c).	
  Red=	
  Tongue	
  body,	
  Yellow=	
  
Larynx,	
  Blue=	
  Air	
  sacs	
  (distinct	
  to	
  apes).	
  Taken	
  from	
  Fitch	
  (2000:260).  
22	
  
flattened,  human  like-­‐face  to  restrict  the  length  of  the  vocal  tract,  which  in  humans  
makes  it  possible  to  produce  fluent  speech.  Since  Neanderthal  remains  show  signs  of  
tool  making  and  cultural  practices,  it  is  safe  to  assume  that  they  were  neurologically  
capable  of  a  co-­‐operative  form  of  protolanguage,  and  because  they  were  unable  to  
produce  the  fluent  speech  present  in  Homo  sapiens,  but  retain  the  manual  ability  of  
their  and  our  ancestors,  this  was  more  likely  to  be  a  system  reliant  on  gestures  
(Nelson,  2009).    
3.4.2	
  The	
  Hypoglossal	
  Canal,	
  Articulation	
  and	
  Breathing	
  Control	
  
The  nerves  that  allow  articulations  of  the  tongue  pass  through  the  hypoglossal  canal,  
located  at  the  base  of  the  skull.  These  allow  the  fine  control  necessary  for  human  
speech  (Kay  et  al,  1998).  It  has  been  found  that  the  hypoglossal  canals  of  
Australopithecus  as  well  as  Homo  habilis  are  similar  in  size  to  extant  Pan  species,  and  
are  significantly  smaller  than  those  present  in  modern  and  ancient  Homo  sapiens  (Kay  
et  al,  1998).  This  suggests  that  the  vocal  abilities  of  ancient  hominids  were  not  as  
developed  as  modern  humans,  or  indeed  of  Neanderthals,  who  also  had  enlarged  
canals,  although  this  may  have  been  the  result  of  an  overall  larger  stature  in  general.  
Additionally,  evidence  from  Maclarnon  &  Hewitt  (1999)  has  shown  that  breathing  
control,  essential  for  the  production  of  fluent  speech,  would  not  have  been  fully  
evolved  until  around  1.6  million  to  100,000  years  ago.  This  was  surmised  from  an  
examination  of  the  fossilised  thoracic  vertebral  canal,  which  carries  nerves  that  
innervate  the  muscles  involved  in  and  around  the  thorax,  allowing  for  voluntary  
breath  control.  A  human-­‐like  appearance  was  not  present  in  Australopithecines,  
Homo  ergaster,  or  early  Homo  erectus,  whose  thoracic  canals  were  similar  in  size  and  
structure  to  extant  ape  species.    
3.4.3	
  FOXP2	
  
	
  
The  FOXP2  gene  has  largely  been  referred  to  as  ‘the  language  gene’  by  the  media  
(BBC  News,  2009),  after  it  was  discovered  that  a  mutation  of  the  gene  in  many  
members  of  a  family  led  to  severe  language  impairments.  This  reductive  labelling  
reduces  the  complexity  of  the  gene’s  role  in  language:  more  specifically  the  disruption  
of  the  gene  causes  non-­‐activation  in  Broca’s  area  during  verb  generation  and  difficulty  
23	
  
in  coordinating  orofacial  movements,  leading  to  atypical  speech  delivery  (Lai  et  al,  
2001;  Watkins  et  al,  2002;  Liégois  et  al,  2003).  The  import  of  these  finding  is  twofold;  
FOXP2  is  clearly  involved  in  both  the  articulation  of  speech  as  well  as  the  function  of  
Broca’s  area,  both  critical  for  the  delivery  of  speech.  The  FOXP2  gene  has  undergone  
two  mutations  since  the  split  between  hominids  and  chimpanzees  (Corballis,  2009),  
and  while  the  gene  has  supposedly  been  detected  in  a  45,000  year  old  Neanderthal  
fossil,  which  in  turn  suggests  it  may  date  back  700,000  years  (Krause  et  al.  2007;
Noonan  et  al.  2006),  this  finding  has  been  criticised  by  Coop  et  al.  (2008)  who  claim  
that  this  was  more  likely  due  to  contaminated  samples  or  the  result  of  interbreeding  
between  Neanderthals  and  Homo  sapiens.  As  previously  discussed,  Neanderthals  are  
unlikely  to  have  possessed  the  ability  to  speak  anyway.  Nevertheless,  if  this  particular  
variant  of  gene  has  emerged  relatively  recently  in  the  hominid  line,  most  estimates  
range  between  38,000  to  200,000  years  ago  (Enard  et  al,  2002;  Pinker,  2003),  this  
may  have  coincided  with  the  emergence  of  Homo  sapiens.  Corballis  (2004:96)  argues  
that  ‘it  is  possible  that  mutation  of  FOXP2  was  the  most  recent  event  in  the  
incorporation  of  vocalization  into  the  mirror  system,  and  thus  the  refinement  of  vocal  
control  to  the  point  that  it  could  carry  the  primary  burden  of  language’.  The  
emergence  of  FOXP2  therefore  may  have  been  the  crucial  factor  for  linking  gesture  to  
speech:  Broca’s  area,  a  crucial  seat  of  the  mirror  system,  may  have  been  adapted  by  
the  mutation  of  FOXP2  to  allow  articulatory  control  of  vocalisations  in  Homo  sapiens  
after  a  gestural  system  had  already  been  in  place  previously.    
Therefore  it  seems  likely  that  while  hominids  had  developed  the  cognitive  
capacity  to  use  a  form  of  protolanguage,  to  manipulate  their  limbs,  to  use  symbols  
and  mimesis,  their  vocal  and  breathing  apparatus  were  ill-­‐equipped  to  serve  an  
articulate  speech  system  until  the  emergence  of  Homo  sapiens  who  possessed  
greater  control  of  their  vocalisations  and  breathing,  as  well  as  a  proclivity  for  speech  
due  to  the  emergence  of  the  FOXP2  gene.    
4.	
  Sign	
  Language	
  
	
  
So  far  I  have  focused  on  cognitive  preadaptations  for  a  gestural  language,  and  now  I  
turn  to  evidence  from  the  utility  and  naturalness  of  sign,  as  well  as  from  the  
24	
  
formation  of  novel  signed  languages.  This  can  shed  light  on  how  a  gestural  system  
could  have  arisen  in  early  humans,  against  the  argument  of  a  vocal  language  origin.  
While  it  was  previously  thought  that  ‘the  manual  sign  language  must  be  viewed  as  
inferior  to  the  verbal  as  a  language’  (Myklebust  1957:242),  it  has  since  been  proved  
that  sign  languages  are  full  languages,  capable  of  all  the  syntactic  and  abstract  
complexity  present  in  speech  (Stokoe,  1960).  Modern  day  vestiges  of  an  ancient  
gestural  system  can  still  be  observed:  we  gesticulate  as  we  speak,  all  cultures  use  
gestures  in  their  repertoire,  children  gesture  before  they  can  speak  and  even  
congenitally  blind  children  use  both  iconic  and  deictic  gestures  without  ever  seeing  or  
having  the  chance  to  copy  them  (Acredolo  &  Goodwyn,  1988).  This  led  Iverson  &  
Goldin-­‐Meadow  (1997:466)  to  suggest  that  gesture  plays  ‘a  role  for  the  speaker  that  
is  independent  of  its  role  for  the  listener’.  In  addition,  spoken  and  signed  languages,  
despite  the  differences  in  input,  i.e.  the  auditory  versus  the  visual,  are  processed  in  
the  same  areas  of  the  brain  and  the  systems  that  support  them  are  near  identical  
(MacSweeney  et  al,  2008).  All  this  suggests  that  the  capacity  for  signs  and  gestures  to  
communicate  meaning  is  inbuilt,  natural  and  integral  to  language  function.  Below  I  
examine  the  form,  function  and  defining  features  of  various  types  of  languages  
characterised  by  their  use  of  gesture,  from  the  pre-­‐verbal  stage  in  children  to  
spontaneous  languages  created  by  adults  to  show  how  these  contribute  to  the  
discussion  of  the  gestural  theory  of  language  emergence.      
4.1  Lateralisation  of  Language  and  Handedness  
	
  
Language  in  the  brain  is  lateralised  mainly  in  the  left  hemisphere,  a  finding  initially  
posited  by  Paul  Broca  when  he  observed  that  damage  to  the  left  hemisphere  causes  
aphasia  but  damage  to  the  right  does  not  (Broca,  1861).  Recent  studies  have  
confirmed  this  bias    (Knecht  et  al,  2000),  which  in  turn  provides  insight  into  the  
development  of  early  language.  The  population-­‐level  bias  of  right  handedness  and  
left-­‐hemisphere  language  dominance  are  intimately  connected,  and  it  has  been  
suggested  that  this  is  due  to  an  original  right-­‐handed  manual  dominance  which  in  
turn  developed  the  left  side  of  the  brain  in  language  evolution  (Corballis,  2012b;  
McManus,  2002).  
25	
  
Since  language  is  lateralised  in  the  left  hemisphere  of  the  brain  in  more  than  
90%  of  right-­‐handers  (Tzourio-­‐Mazoyer  &  Courtin,  2013)  and  around  88-­‐90%  of  the  
population  have  this  handedness  preference  (Corballis,  2012b:115),  it  is  suggested  
that  the  two  are  intricately  correlated.  This  is  an  ancient  characteristic,  as  right-­‐
handed  dominance  has  been  observed  in  early  hominids  from  at  least  1.5-­‐1.6  million  
years  ago  based  on  skeletal  fossil  evidence  and  observation  of  crafted  tools  (Walker  
and  Leakey,  1993).  The  fact  that  this  kind  of  lateralisation  was  present  at  this  time  
again  suggests  that  brain  specialisation  for  language  was  underway  in  early  hominids  
(Haviland  et  al,  2010).  Similarly,  in  deaf  sign  language  speakers,  linguistic  signs  are  
made  with  the  dominant  hand  (normally  the  right)  while  the  other  plays  a  diminished  
role  in  communication  (Brentari,  1998).  Interestingly,  this  left-­‐handed  role  is  often  
paralinguistic  and  emotional,  typically  right-­‐hemisphere  controlled  functions  
(Lausberg  et  al,  2007).  In  addition,  children  show  a  significant  bias  for  symbolic  
gestures  using  their  right  hand  compared  to  non-­‐symbolic  gestures  for  which  they  
tend  to  use  the  left  (Bates  et  al,  1986).  Children’s  hand  preference  in  signing  precedes  
their  use  of  a  dominant  hand  in  object  manipulation  –  the  hand  they  use  for  signing  is  
significantly  correlated  with  the  hand  that  eventually  becomes  dominant  for  other  
activities  (Bonvillian  &  Richards  1993).  This  again  demonstrates  that  handedness,  
language-­‐like  gestures  and  lateralisation  of  language  in  the  left  hemisphere  of  the  
brain  are  interconnected.  This  correlation  between  hand  and  language  in  both  deaf  
and  hearing  speakers,  bolstered  by  the  fact  that  symbolic  gestures  and  speech  are  
processed  in  the  same  (left  hemisphere)  area  of  the  brain  (Xu  et  al,  2009)  therefore  
lends  credence  to  the  gesture-­‐first  argument.    
4.2  Child  Language  
	
  
Another  of  Bickerton’s  ‘living  fossils’  (1990:105),  child  language,  may  represent  what  
a  protolanguage  may  have  been  like  in  our  forebears.  Following  Haeckel’s  (1866)  
‘ontogeny  repeats  phylogeny’  theory,  in  a  more  modern  sense  applied  to  language  
evolution  by  Bickerton  (1990:15)  where  ‘the  ontogenetic  development  of  language  
partially  replicates  its  phylogenetic  development’,  when  applied  to  both  gesture  and  
speech,  an  analysis  of  the  capabilities  of  deaf  and  hearing  children  can  elucidate  what  
part  gesture  played  in  language  emergence.    
26	
  
4.2.1	
  Manual	
  Babbling	
  	
  
  
Laura  Petitto  (2000:4)  describes  that  both  deaf  and  hearing  children  begin  to  acquire  
their  respective  signed  and  spoken  languages  at  the  same  rate  and  at  the  same  ages  
of  development,  starting  with  babbling  at  around  7  months,  right  through  until  the  2-­‐
word  stage  at  around  16-­‐22  months.  Deaf  children  exposed  to  sign  language  alone  by  
their  sign  language-­‐using  parents  typically  exhibit  a  manual  babbling  stage  involving  
the  performance  of  discrete  elements  of  sign  language  in  much  the  same  way  as  
hearing  children  manipulate  the  spoken  sound  units  of  their  language,  e.g.  ga-­‐ga-­‐ga  
(Petitto,  &  Marentette,  1991).  This  implies  that  gesture  is  a  modality  in  which  
language  is  pre-­‐programmed  to  thrive,  and  is  just  as  natural  and  useful  as  a  vocal  
system.  While  babbling  was  previously  understood  to  have  been  a  precursor  to  
speech,  it  is  now  more  accurate  to  describe  it  as  a  precursor  to  language,  as  it  can  be  
achieved  in  either  modality  (Corballis,  2002).    
4.2.2	
  Children’s	
  Gestures	
  
	
  
Manual  gestures  are  also  observed  in  hearing  children,  and  frequently  occur  before  
they  learn  to  speak:  they  point  to  objects  to  draw  an  adult’s  attention  before  they  
assign  the  object  a  word,  and  the  earlier  this  happens  the  earlier  the  child  will  
produce  a  word  for  the  object,  suggesting  an  association  between  gestures  and  the  
development  of  language  (Özçaliskan  &  Dimitrova,  2013).  These  deictic  gestures  (i.e.  
pointing)  aid  infants  in  understanding  the  association  between  symbols  and  referents,  
as  well  as  establishing  the  beginnings  of  joint  attention  at  around  one  year  of  age-­‐  
children  do  not  just  point  to  objects  for  requests,  they  also  point  to  objects  already  
within  an  adult’s  gaze,  indicating  that  attention  to  the  object  is  shared  (Tomasello,  
2008).  As  mentioned  previously,  joint  attention  is  pivotal  for  language  development,  
and  the  observation  in  children  that  joint  attention  is  observed  in  manual  gestures  
before  speech  manifests  itself  strengthens  the  gestural  argument.    
Children  also  display  the  use  of  iconic  gestures,  which  emerge  slightly  later  
than  deictic  gestures,  around  11-­‐12  months  (Özcaliskan  &  Goldin-­‐Meadow,  2005).  
Although  less  frequent  than  other  gestures,  these  are  far  more  language-­‐like,  assign  
properties  to  referents  and  allow  greater  freedom  than  words  in  describing  and  
assigning  properties  to  objects  in  the  real  world,  much  as  our  mute  ancestors  would  
27	
  
have  had  cause  to  do.  Essentially,  most  argue  that  infants,  provided  with  some  kind  of  
input,  use  gestures  more  frequently  to  refer  to  objects  and  activities  before  they  use  
words  for  the  same  cause  (Bates,  1976;  Özcaliskan  &  Goldin-­‐Meadow,  2005).  Gesture  
use  also  paves  the  way  for  children’s  first  nouns  (Iverson  &  Goldin-­‐Meadow,  2005)  
and  predicts  the  richness  of  their  future  language:  those  who  use  more  iconic  
gestures  earlier  in  life  develop  larger  vocabularies  by  2  years  of  age,  showing  a  strong  
link  between  gesture  use  and  overall  language  ability  (Acredolo  &  Goodwyn,  1988;  
Özçaliskan  &  Dimitrova,  2013).  
Iverson  et  al  (1994)  observed  hearing  Italian  children  between  16  and  20  
months  of  age  to  assess  their  gesture  use;  an  interesting  finding  was  that  while  the  
children  initially  relied  on  agents  to  bolster  their  labelling,  e.g.  drinking  from  a  toy  cup  
instead  of  copying  the  motion  of  drinking  with  the  hand  alone,  this  activity  had  
significantly  diminished  by  20  months.  Instead,  the  children  increasingly  used  
gestures  dependent  on  movement  without  the  use  of  an  agent,  e.g.  flapping  arms  for  
bird,  and  predicate  gestures,  e.g.  holding  the  fingers  close  together  to  signify  small.  
They  argue  that  this  supports  a  theory  in  which  gestures,  over  the  course  of  cognitive  
development  become  decreasingly  context-­‐bound,  with  the  use  of  vehicles  less  
necessary  as  the  child  develops  the  ability  to  represent  objects  symbolically.  This  
supports  Werner  and  Kaplan  (1963)  who  argue  that  gestures  help  establish  a  
framework  for  a  transition  from  object-­‐bound  communication  to  less  object-­‐related  
gestures  through  to  abstract  symbolic  representations  that  are  then  used  in  word-­‐
referent  relationships.  This  brings  to  mind  the  process  of  conventionalisation,  ‘the  
shift  over  tome  from  iconic  gestures  to  arbitrary  symbols’  (Gentilucci  and  Corballis,  
2006:950)  which  is  further  explored  in  the  following  section  in  relation  to  novel  sign  
languages.    
4.3  Novel  Sign  Languages
While  dominant  sign  languages  such  as  ASL  and  BSL  have  become  ubiquitous,  
established  languages  in  modern  culture,  new  sign  languages,  established  over  a  
short  period  of  time  in  differing  contexts  have  been  taken  as  support  for  a  gesture-­‐
first  account  (Fay  et  al,  2014,  Sandler  et  al,  2005).  The  emergence  of  pidgin  and  creole  
sign  languages,  such  as  Nicaraguan  Sign  Language  (LSN)  and  Al-­‐Sayyid  Bedouin  Sign  
28	
  
Language  (ABSL),  as  well  as  the  well-­‐documented,  widespread  phenomenon  of  
‘homesign’  (Goldin-­‐Meadow,  2003)  has  shed  light  on  the  properties  and  evolution  of  
an  embryonic  language.  Greenfield  et  al  (2008:36)  describe  these  ‘languages’  as  ‘the  
linguistic  limit  of  what  can  be  developed  without  a  cultural  environment  provided  by  
language-­‐using  humans.’  In  this  sense,  they  are  the  nearest  equivalent  to  a  system  
that  may  have  been  utilised  by  pre-­‐linguistic  hominids;  a  protolanguage  produced  in  
the  absence  of  an  established  language-­‐enriched  environment.    
4.3.1	
  Homesign	
  in	
  Deaf	
  Children	
  	
  
Deaf  children  who  grow  up  in  homes  with  hearing  parents  who  do  not  use  sign  
language  to  communicate  have  demonstrated  their  own  communicative  system  that  
has  been  coined  ‘homesign’  (Goldin-­‐Meadow  &  Mylander,  1984).  Children  develop  
these  systems  spontaneously  in  an  environment  devoid  of  an  appropriate  language  
community;  in  this  sense  they  have  no  usable  linguistic  input,  and  are  ‘truly  creating  
language  from  scratch’  (Fay  et  al,  2014:9).  Goldin-­‐Meadow  argues  that  ‘[t]he  
children…lack  access  to  a  useable  model  of  language…the  gestures  that  the  deaf  
children  use  to  communicate  are  structured  in  language  like-­‐ways.  The  children  are  
inventing  their  own,  simple  language’  (2003:xvii).  The  claim  that  homesign  constitutes  
a  language  per  se  is  controversial  (Morgan,  2005),  but  it  does  seem  likely  that  this  
idiosyncratic,  simple,  proto-­‐grammatical  system  may  recapitulate  the  features  of  a  
gestural  protolanguage  that  may  have  been  present  in  our  ancestors.  Goldin-­‐Meadow  
(2002:369)  herself  acknowledges  this  potential ‘these  are  forces  that  are  likely  to  play  
a  role  in  language  creation  every  time  it  takes  place,  perhaps  even  the  first  time’.      
Below  is  an  example  of  the  typical  structure  of  homesign,  taken  from  Slobin  
(2004:13):  
Patient  +  act  (e.g.,  CHEESE  EAT)  
Actor  +  act  (e.g.,  YOU  MOVE)  
Patient  +  act  +  agent  (e.g.,  SNACK  EAT  YOU)  
This  displays  a  two  or  three-­‐word  ordering  of  signs,  and  a  kind  of  proto-­‐grammar  of  
the  type  that  has  previously  been  discussed  in  language-­‐trained  apes,  as  well  as  the  
early  language  of  hearing  children.  In  addition,  homesign  displays  noun-­‐verb  
distinction,  considered  a  language  universal  (Smith,  1999).  For  example,  one  of  the  
29	
  
participants  observed  by  Goldin-­‐Meadow  et  al  (1994)  differentiated  between  nouns  
and  verbs  in  different  contexts.  When  using  the  sign  for  ‘twist’  in  the  verb  sense,  e.g.  
‘twist  the  jar  open’,  he  was  more  likely  to  produce  the  sign  with  (i)  without  
abbreviation,  i.e.  performing  the  twisting  gesture  multiple  times,  (ii)  with  inflection,  in  
this  case  gesturing  towards  an  object  to  be  twisted,  and  (iii),  the  gesture  is  performed  
after  indicating  the  object  to  be  twisted.  In  contrast  the  gestural  noun  version  of  this,  
e.g.  ‘a  twistable  object’  is  produced  only  once,  in  a  neutral  position,  normally  near  to  
the  body,  and  before  indicating  the  object  (Goldin-­‐Meadow,  2006).    
   Goldin-­‐Meadow  (2003)  suggests  that  although  homesign  does  exhibit  some  
morphological,  lexical  and  syntactic  complexity,  the  signs  tended  to  be  mainly  
referential  when  the  signer  is  limited  to  a  group,  essentially,  of  one  (themselves).  
However,  she  also  maintains  that  the  most  robust,  essential  features  of  language  
remain,  those  that  are  necessary  for  a  communicative  system  to  work.  Homesign,  left  
to  this  group  of  one,  stagnates  and  does  not  progress  to  full  language  (Slobin,  2005).
   However,  when  this  group  of  homesigners  is  expanded  away  from  parents  
who  do  not  enrich  the  child’s  experience  and  are  put  in  contact  with  like-­‐minded  
interlocutors,  the  possibility  of  novel  sign  languages  to  become  fully-­‐fledged  is  
exponentially  increased.  The  crucial  factor  is  an  interacting  community,  providing  an  
‘alignment  between  speakers  [which]  is  essential  for  a  lexicon  to  stabilize’  (Fay  et  al,  
2014:10).  This  is  the  focus  of  the  following  section.    
4.3.2	
  Nicaraguan	
  Sign	
  Language,	
  (LSN)	
  and	
  Idioma	
  de	
  Signos	
  Nicaragünese	
  (ISN)	
  
The  activity  of  homesign  takes  on  an  increased  significance  when  those  who  use  it  are  
suddenly  removed  from  a  speech-­‐dominated  sphere  and  subsequently  immersed  in  a  
deaf,  sign-­‐dominant  culture.  This  is  precisely  what  happened  when  Nicaragua  opened  
its  first  school  for  the  deaf  in  1978;  the  children,  who  previously  had  no  interaction  
with  other  deaf  people  or  sign  language,  had  each  already  devised  their  own  system  
of  homesign  (Senghas,  1995).  When  they  came  together  at  the  new  school  they  were  
taught  lip  reading  and  Spanish  but  with  limited  success.  However,  when  they  were  
allowed  to  interact  with  each  other  using  their  various  homesign  systems,  which  were  
essentially  pidgins,  they  began  to  converge  on  a  simple  sign  language,  LSN  (Senghas  &  
Coppola,  2001).  This  was  also  essentially  a  pidgin,  with  a  simple  structure  and  little  to  
30	
  
no  grammar,  and  was  used  by  the  first  entrants  to  the  school  in  1978.  Since  then,  the  
younger  children  who  enter  the  school  have  been  exposed  to  LSN  by  the  older  
children,  and  have  consequently  produced  a  more  complex,  compact,  primary  sign  
language  with  grammar,  ISN.  Greenfield,  Lyn  and  Savage-­‐Rumbaugh  assert  that  ‘the  
sign  language  codified  and  became  more  complex  with  each  succeeding  generation’  
(2010:36)  in  this  sense  the  pidgin  become  a  creole  over  time.  The  system,  created  
through  ‘abrupt  creolization’  (Senghas,  1995:1)  contains  inflectional  verb  
morphology,  noun  classifiers  and  other  features  unique  to  fully-­‐fledged  languages.  
Senghas  &  Coppola  (2001:328)  argue  that  ‘[t]he  emergence  of  Nicaraguan  Sign  
Language  offers  an  opportunity  to  examine  the  processes  common  to  language  
learning,  language  change,  and  language  genesis’.  The  ability  of  these  children  to  
essentially  create  a  language  where  none  existed  before,  especially  the  evolution  
from  creating  a  homesign  system  in  the  absence  of  linguistic  input  to  the  creolization  
of  a  new,  fully  fledged  language,  demonstrates  the  capacity  of  language  to  develop  
from  basic,  iconic  gestures  to  a  fully  grammatical  system  in  the  manual  mode.  This  
window  into  early  language  emergence  is  viable  not  only  in  Nicaraguan  sign  language  
and  homesign,  but  also  for  a  more  recently  studied  novel  sign  language,  Al-­‐Sayyid  
Bedouin  Sign  Language.      
4.3.3	
  Al-­‐Sayyid	
  Bedouin	
  Sign	
  Language	
  (ABSL)	
  
  
This  is  another  sign  language  that  has  appeared  de  novo,  in  a  smaller  population  than  
LSN,  in  a  Bedouin  community  in  the  Negev  desert  in  Israel.  The  inhabitants  have  an  
unusual  tendency  for  deafness,  with  around  150  out  of  3,500  members  having  
inherited  a  condition  leaving  them  profoundly  deaf.  The  sign  language  that  has  been  
created  is  now  in  its  third  generation,  having  been  developed  over  approximately  the  
last  70  years  (Senghas,  2005).    
In  this  time  researchers  have  found  that  the  language  is  completely  distinct  
from  both  spoken  and  other  sign  languages  found  nearby  such  as  Israeli  Sign  
Language,  which  has  both  a  different  word  order  and  is  acknowledged  as  different  by  
signers  of  both  languages  (Sandler  et  al,  2005).  ABSL  is  now  recognised  as  a  fully-­‐
fledged  sign  language,  able  to  express  a  variety  of  abstract  ideas  and  events  displaced  
from  the  present  (Fox,  2008).  In  addition,  (Sandler  et  al,  2005:2661)  note  that  ‘In  the  
31	
  
space  of  one  generation  from  its  inception,  systematic  grammatical  structure  has  
emerged  in  the  language’.  This  grammar  emerged  in  the  absence  of  outside  influence  
from  other  languages,  and  was  formed  after  a  conventionalised  set  of  lexical  items  
had  already  been  established,  showing  a  gradual  increase  in  linguistic  complexity  akin  
to  the  way  language  might  have  originally  emerged.    
Sandler  et  al  (2005)  also  found  that  the  word  order  employed  in  ABSL  was  
overwhelmingly  SOV.  This  is  interesting  when  paired  with  research  from  Goldin-­‐
Meadow  et  al  (2008),  which  found  that  hearing  speakers  of  various  languages  all  
abandon  their  language’s  own  word  order  when  asked  to  describe  events  using  
gesture  without  speech  in  favour  of  the  same  SOV  word  order  in  different  non-­‐verbal  
tasks.  This  suggests  that  there  may  be  an  innate,  natural  human  tendency  for  this  
particular  word  order  used  in  gestural  communication,  and  it  ‘may  reflect  a  natural  
disposition  that  humans  exploit  not  only  when  asked  to  represent  events  nonverbally,  
but  also  when  creating  language  anew’  (2008:9167).  This  concurs  with  Newmeyer’s  
(2000)  postulation  that  early  protolanguage  is  likely  to  have  had  an  SOV  word  order.  
Sandler  et  al  (2005:2665)  add:  ‘The  appearance  of  this  conventionalization  at  such  an  
early  stage  in  the  emergence  of  a  language  is  rare  empirical  verification  of  the  unique  
proclivity  of  the  human  mind  for  structuring  a  communication  system  along  
grammatical  lines.’    
4.3.4	
  Creating	
  a	
  New	
  Communication	
  System	
  from	
  Scratch	
  
	
  
Natural  languages  created  from  scratch  have  been  discussed  in  4.3.2  and  4.3.3.  and  
the  below  describes  how  a  new  language  was  created  and  developed  in  a  simulated  
community  over  a  short  period  of  time.    
An  additional  finding  of  Pollick  and  de  Waal’s  ape  gesture  study  (2007),  
discussed  in  2.2,  was  that  bonobos  used  gestures  more  frequently  than  chimpanzees  
to  initiate  a  social  interaction,  78%  of  the  time,  and  that  both  species  used  gestures  
alone  more  frequently  than  vocalisations  or  a  combination  of  the  two  (Fig.  6).    
32	
  
  
  
  
  
  
  
  
  
  
The  success  of  gesture  to  both  initiate  interactions  as  well  as  to  solicit  
responses  in  the  two  groups  echoes  Fay  et  al’s  (2014)  study  in  which  a  group  of  
people  were  tasked  with  creating  a  communication  system  from  scratch.  They  found  
that  gestures  were  the  most  effective  means  of  conveying  meaning  from  one  person  
to  another  where  no  shared  language  was  available  to  them  (Fig.  7).  Even  when  
gesture  was  combined  with  speech,  this  was  found  to  be  distracting  and  was  less  
effective  than  the  use  of  gesture  alone.    
  
  
  
  
  
  
  
  
  
  
  
  
  
  
The  study  reveals  a  crucial  point  that  I  believe  may  have  been  pivotal  in  the  
evolution  of  our  own  language:  ‘participants  initially  use  iconic  signs  to  ground  shared  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
Gestures	
   Facial/	
  Vocal	
   Combination	
  
Percentage	
  of	
  the	
  time	
  
(%)	
  
Initiation	
  of	
  Social	
  Interaction	
  
Chimpanzees	
  
Bonobos	
  
Figure	
  6.	
  Frequency	
  of	
  interaction	
  type.	
  Data	
  from	
  Pollick	
  &	
  de	
  Waal	
  (2007)	
  
Figure	
  6:	
  Success	
  of	
  each	
  type	
  of	
  signal,	
  judged	
  by	
  accuracy	
  of	
  
identification.	
  Taken	
  from	
  Fay	
  et	
  al	
  (2014:5).	
  
33	
  
meanings,  and  over  subsequent  interactions  these  signs  become  increasingly  aligned,  
symbolic  and  language  like’  (Fay  et  al,  2014:3).  This  echoes  the  findings  of  Iverson  et  
al  (1994)  about  conventionalisation  from  the  previous  section,  as  well  as  with  
Corballis’  theory  that  gestural  signals  could  have  ‘eventually  conventionalized  so  that  
other  forms  of  representation,  including  spoken  and  written  words,  as  well  as  more  
abstract  manual  gestures,  could  suffice  to  carry  the  message’.  (Corballis  2009:109).
   Conventionalisation  may  have  been  a  pivotal  process  in  the  emergence  of  
human  language:  manual  gestures  are  the  most  likely  candidate  to  have  been  the  
original  form  of  communication  between  cognitively  evolved  proto-­‐hominids,  as  they  
have  ‘at  least  the  potential  to  represent  concepts  iconically  rather  than  in  abstract  
form.  Once  a  set  of  iconic  representations  is  established,  increasing  usage  can  then  
lead  to  more  stylized  and  ultimately  abstract  representation’  (Corballis,  2000).  This  
process  is  not  a  recent  development  among  the  deaf,  and  has  been  observed  
naturally  for  at  least  hundreds  of  years.  Darwin  (1965/1872:64)  quotes  W.R.  Scott’s  
The  Deaf  and  the  Dumb  (1870:12):  	
  
This  contracting  of  natural  gestures  into  much  shorter  gestures  than  
the  natural  expression  requires  is  very  common  amongst  the  deaf  and  
dumb.  This  contracted  gesture  is  frequently  so  shortened  as  nearly  to  
lose  all  semblance  of  the  natural  one,  but  to  the  deaf  and  dumb  who  
use  it,  it  still  has  the  force  of  the  original  expression.  
De  Waal  (1982)  has  previously  noted  that  primate  gestures  also  become  
conventionalised  over  time,  from  actions  centred  around  objects  to  symbolic  gestures  
on  their  own,  much  like  the  process  that  is  observed  in  homesigning  children  and  
novel  sign  languages.    
The  importance  placed  by  Saussure  on  the  ‘arbitrariness  of  the  sign’  (1916)  as  
a  prerequisite  for  language  has  been  a  stumbling  block  in  the  attempt  to  classify  sign  
languages  as  full  languages,  since  a  large  amount  of  signs  are  iconic  in  nature  
(Corballis,  2012b).  However,  the  examination  of  these  novel  sign  languages  and  the  
process  of  conventionalisation  show  that  iconicity  is  not  a  necessity  for  signed  
languages:  original  signs  may  be  iconic,  but  over  time  these  acquire  aspects  of  
arbitrariness  such  as  in  the  creolization  from  the  more  iconic  LSN  to  the  more  
symbolic  and  language-­‐like  ISN.  Furthermore,  arbitrariness  is  often  achieved  as  the  
34	
  
result  of  a  need  for  expedience  and  convenience:  Corballis  (2009:32)  quotes  Charles  
Hockett  (1978:274-­‐275):  
  
When  a  representation  of  some  four-­‐dimensional  hunk  of  life  has  to  be  
compressed  into  the  single  dimension  of  speech,  most  iconicity  is  
necessarily  squeezed  out.  In  one-­‐dimensional  projections,  an  elephant  is  
indistinguishable  from  a  woodshed.  Speech  perforce  is  largely  
arbitrary…we  have  learned  to  make  a  virtue  of  necessity.  
  
The  need  for  concision,  speed  and  efficiency  may  well  have  been  a  driving  force  in  the  
transition  from  a  primarily  gestural  to  a  primarily  vocal  mode  in  Homo  sapiens,  to  
coincide  with  the  increase  in  complexity  of  human  culture  through  time  (Corballis,  
2009).    
5.	
  But	
  why	
  the	
  switch	
  to	
  speech?	
  
	
  
Michael  Corballis  (2009:24)  acknowledges  the  difficulty  in  explaining  how  if  an  original  
system  of  gestures  existed,  then  why  is  language  today  primarily  spoken.  He  quotes  
Robbins  Burling  (2005:123):    
  
[T]he  gestural  theory  has  one  nearly  fatal  flaw.  Its  sticking  point  has  
always  been  the  switch  that  would  have  been  needed  to  move  from  a  
visual  language  to  an  audible  one.    
  
Corballis  then  argues  that  the  shift  was  a  gradual  process,  and  that  the  motor  theory  
of  speech  perception  and  the  concept  of  ‘speech  as  gesture’  can  go  some  way  to  
explaining  the  shift  from  a  gestural  modality  to  a  spoken  one.  He  cites  evidence  from  
articulatory  phonology,  which  posits  that  speech  is  itself  a  system  of  gestures  of  the  
mouth,  lips  and  so  on,  which  is  bolstered  by  the  discovery  of  the  McGurk  effect  
(McGurk  &  MacDonald,  1976).  This  is  the  phenomenon  that  when  a  sound  is  played  
over  the  top  of  a  video  of  a  person  producing  a  different  speech  sound,  the  viewer  
reports  hearing  a  different  sound  entirely  to  the  one  being  spoken.  However  for  me  
this  particular  aspect  of  his  argument  is  unsatisfactory,  as  the  evidence  against  this  
theory  is  somewhat  insurmountable:  the  McGurk  effect  has  been  found  to  occur  in  
35	
  
non-­‐linguistic  circumstances  (Massaro  1998),  and  the  theory  is  now  generally  seen  as  
false  by  the  majority  of  linguists  (Galantucci  et  al,  2006).  
Nevertheless,  others  have  attempted  to  explain  how  the  transition  may  have  
taken  place  with  greater  success:  Arbib’s  notion  of  an  ‘expanding  spiral’  (2005b:22)  is  
somewhat  convincing:    
  
Homo  habilis  through  to  early  Homo  sapiens  had  a  protolanguage  based  
extensively  on  manual  gestures  (‘protosign’)  which  …  provided  essential  
scaffolding  for  the  emergence  of  a  protolanguage  based  primarily  on  vocal  
gestures  (‘protospeech’)  
  
While  this  is  in  line  with  my  own  argument,  Stokoe  (2002)  elaborates  upon  this  idea  
to  form  a  picture  of  language  emergence:  gestures  were  the  original  signs,  iconically  
representing  animals,  objects,  and  things  in  the  real  world.  Arbitrary  vocalisations  at  
this  point  in  history  would  have  been  useless.  Movements  of  the  body  may  have  
represented  the  actions  of  these  referents,  creating  a  rudimentary  syntax  of  the  type  
seen  in  homesign.  This  is  referred  to  as  ‘semantic  phonology’  (Stokoe,  2002:82),  and  
describes  hand  shapes  being  parsed  into  a  primitive  noun  and  verb  phrase,  i.e.  the  
hand  and  its  movement.  In  this  model,  over  time  the  basic  structure  for  language  
ability  was  therefore  present  in  hominids,  having  built  upon  the  abilities  of  the  LCA,  
and  bolstered  by  the  advent  of  bipedalism.  From  this  base  of  knowledge,  the  mirror  
system  propagated  interaction  between  conspecifics,  until  eventually  vocal  signs  
were  incorporated  into  the  repertoire,  firstly  scaffolding  and  then  replacing  manual  
gestures  as  the  anatomy  of  the  vocal  tract  and  brain  became  more  suited  to  volitional  
speech,  at  around  the  emergence  of  Homo  sapiens.    
Some  also  argue  that  natural  selection  has  its  place  in  a  switch  from  the  
manual  to  vocal  mode  (Pinker  &  Bloom,  1990):  speech  is  less  energy  consuming  than  
manual  gesturing,  provides  a  method  of  communicating  in  the  dark,  and  frees  the  
hands  for  manufacturing  and  pedagogy  (Corballis,  2002).  The  switch  to  speech,  
therefore,  may  have  been  advantageous  in  our  ancestors,  leading  to  the  demise  of  
the  Neanderthals  as  their  language  abilities  languished,  and  the  ‘human  revolution’  of  
Homo  sapiens  that  began  their  domination  of  the  planet.  Kim  Sterelny  (2012:2143)  
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation
My dissertation

More Related Content

Similar to My dissertation

1 Digging Into Data White Paper Trading Consequences
1 Digging Into Data White Paper Trading Consequences1 Digging Into Data White Paper Trading Consequences
1 Digging Into Data White Paper Trading Consequences
Dawn Cook
 
Inventors (1)
Inventors (1)Inventors (1)
Inventors (1)
Yenni Brand
 
BlackRoots Science 2014
BlackRoots Science 2014BlackRoots Science 2014
BlackRoots Science 2014
naigray
 
Neologisms and Other Special Etymological Categories
Neologisms and Other Special Etymological CategoriesNeologisms and Other Special Etymological Categories
Neologisms and Other Special Etymological Categories
Hugo Gordillo
 
Discourse Community Essay Example. Discourse community essay outline - writef...
Discourse Community Essay Example. Discourse community essay outline - writef...Discourse Community Essay Example. Discourse community essay outline - writef...
Discourse Community Essay Example. Discourse community essay outline - writef...
Mimi Williams
 
BLACKROOTS SCIENCE LATEST EDITION PDF
BLACKROOTS SCIENCE LATEST EDITION PDFBLACKROOTS SCIENCE LATEST EDITION PDF
BLACKROOTS SCIENCE LATEST EDITION PDF
BlackRoots Science
 
Into the Universe of Technical Images
Into the Universe of Technical ImagesInto the Universe of Technical Images
Into the Universe of Technical Images
Vapula
 
OverFlow Chart Introduction and Application to Gateway Drugs
OverFlow Chart Introduction and Application to Gateway DrugsOverFlow Chart Introduction and Application to Gateway Drugs
OverFlow Chart Introduction and Application to Gateway Drugs
Tony Smith
 
children_of _postcommunism
children_of _postcommunismchildren_of _postcommunism
children_of _postcommunismMaik' Ckneteli
 
Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...
Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...
Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...
Antropologiavisualuff
 
Cultural Identity Essay
Cultural Identity EssayCultural Identity Essay
Cultural Identity Essay
Ally Gonzales
 
Psicologia consumidor
Psicologia consumidorPsicologia consumidor
Psicologia consumidorRenan Miranda
 
Essay Loneliness
Essay LonelinessEssay Loneliness
Essay Loneliness
Lauren Smith
 
Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate Thats...
Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate  Thats...Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate  Thats...
Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate Thats...
Kimberly Jabbour
 
Book naturoids
Book naturoidsBook naturoids
Book naturoidsJORGE
 
Petr Simon - Procedural Lexical Semantics (PhD Thesis)
Petr Simon - Procedural Lexical Semantics (PhD Thesis)Petr Simon - Procedural Lexical Semantics (PhD Thesis)
Petr Simon - Procedural Lexical Semantics (PhD Thesis)Petr Šimon
 
Biophilately
BiophilatelyBiophilately
Biophilately
João Paulo
 
Autism Essay Topics.pdf
Autism Essay Topics.pdfAutism Essay Topics.pdf
Autism Essay Topics.pdf
Mary Ballek
 

Similar to My dissertation (20)

1 Digging Into Data White Paper Trading Consequences
1 Digging Into Data White Paper Trading Consequences1 Digging Into Data White Paper Trading Consequences
1 Digging Into Data White Paper Trading Consequences
 
Inventors (1)
Inventors (1)Inventors (1)
Inventors (1)
 
BlackRoots Science 2014
BlackRoots Science 2014BlackRoots Science 2014
BlackRoots Science 2014
 
Neologisms and Other Special Etymological Categories
Neologisms and Other Special Etymological CategoriesNeologisms and Other Special Etymological Categories
Neologisms and Other Special Etymological Categories
 
Discourse Community Essay Example. Discourse community essay outline - writef...
Discourse Community Essay Example. Discourse community essay outline - writef...Discourse Community Essay Example. Discourse community essay outline - writef...
Discourse Community Essay Example. Discourse community essay outline - writef...
 
BLACKROOTS SCIENCE LATEST EDITION PDF
BLACKROOTS SCIENCE LATEST EDITION PDFBLACKROOTS SCIENCE LATEST EDITION PDF
BLACKROOTS SCIENCE LATEST EDITION PDF
 
The Digest.Volume 23 - 2015
The Digest.Volume 23 - 2015The Digest.Volume 23 - 2015
The Digest.Volume 23 - 2015
 
Into the Universe of Technical Images
Into the Universe of Technical ImagesInto the Universe of Technical Images
Into the Universe of Technical Images
 
OverFlow Chart Introduction and Application to Gateway Drugs
OverFlow Chart Introduction and Application to Gateway DrugsOverFlow Chart Introduction and Application to Gateway Drugs
OverFlow Chart Introduction and Application to Gateway Drugs
 
children_of _postcommunism
children_of _postcommunismchildren_of _postcommunism
children_of _postcommunism
 
ValdezMAtesis
ValdezMAtesisValdezMAtesis
ValdezMAtesis
 
Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...
Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...
Chorographies of Memory: Everyday Sites and Practices of Remembrance Work in ...
 
Cultural Identity Essay
Cultural Identity EssayCultural Identity Essay
Cultural Identity Essay
 
Psicologia consumidor
Psicologia consumidorPsicologia consumidor
Psicologia consumidor
 
Essay Loneliness
Essay LonelinessEssay Loneliness
Essay Loneliness
 
Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate Thats...
Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate  Thats...Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate  Thats...
Personal Qualifications Essay. 004 Essay On Career Example Joshua Cate Thats...
 
Book naturoids
Book naturoidsBook naturoids
Book naturoids
 
Petr Simon - Procedural Lexical Semantics (PhD Thesis)
Petr Simon - Procedural Lexical Semantics (PhD Thesis)Petr Simon - Procedural Lexical Semantics (PhD Thesis)
Petr Simon - Procedural Lexical Semantics (PhD Thesis)
 
Biophilately
BiophilatelyBiophilately
Biophilately
 
Autism Essay Topics.pdf
Autism Essay Topics.pdfAutism Essay Topics.pdf
Autism Essay Topics.pdf
 

My dissertation

  • 1. 1     Actions speak louder than words? Examining the Evidence for a gestural genesis of human language.         Student  ID:  200604286   Supervisor:  Dr.  Diane  Nelson   Ling  3200  –  Linguistics  Dissertation                     Word  Count:  11,067           The  University  of  Leeds,  29th  April  2015            
  • 2. 2   Abstract   The  prevailing  theory  in  language  emergence  is  that  it  developed  vocally,  either  in  a   continuous  fashion  from  the  calls  of  early  primates,  or  discontinuously  as  the  result  of   a  tremendous  genetic  occurrence  that  endowed  our  forefathers  with  the  gift  of   language.  However,  in  this  dissertation  I  examine  an  alternative,  and  I  believe  more   plausible,  possibility  that  language  emerged  first  from  a  system  of  gestures.  Using   evidence  from  a  combination  of  primate  studies,  neurolinguistics,  child  language  and   sign  languages,  I  form  a  picture  of  language  evolution  that  builds  upon  the  cognitive   and  linguistic  capacities  of  extant  ape  species,  the  capacities  of  which  are  assumed  to   have  been  present  in  the  last  common  ancestor  of  humans  and  apes.  This  begins  with   early  bipedal  hominids  using  their  now  freed  hands  to  use  iconic  gestures  to  shape   and  describe  the  world  around  them,  leading  to  a  proto-­‐language-­‐like  capacity  based   on  manual  gestures,  before  speech  assumed  dominance  perhaps  as  late  as  the   emergence  of  Homo  sapiens  and  the  ‘human  revolution’  35,000-­‐100,000  years  ago.                        
  • 3. 3   Table of Contents LIST  OF  FIGURES  ..............................................................................................................................  4   1.  INTRODUCTION  ...........................................................................................................................  5   2.  PRIMATE  STUDIES  ......................................................................................................................  8   2.1  VOCAL  CONTROL  VS.  MANUAL  CONTROL  ..............................................................................................  8   2.2  PAN  ...............................................................................................................................................................  9   2.3  PRIMATE  LANGUAGE  EXPERIMENTS  ....................................................................................................  12   2.3.1  Washoe  the  Signing  Chimpanzee  .............................................................................................  12   2.3.2  Kanzi’s  Keyboard  ............................................................................................................................  13   2.3.3  A  Critical  Period  for  Ape  Language?  ......................................................................................  14   3.  THE  BRAIN  ..................................................................................................................................  15   3.1  MIRROR  NEURONS  AND  BROCA’S  AREA  ..............................................................................................  15   3.1.1  Reflections  on  Mirror  Neurons  and  Theory  of  Mind  ........................................................  17   3.2  THE  MOTOR  THEORY  OF  SPEECH  PERCEPTION  .................................................................................  18   3.3  BIPEDALISM  AND  BRAIN  GROWTH  .......................................................................................................  19   3.4  ADAPTATIONS  FOR  SPEECH  –  A  MODERN  PHENOMENON?  .............................................................  20   3.4.1  Changes  to  Anatomy  –  Speech  Came  Later  .........................................................................  20   3.4.2  The  Hypoglossal  Canal,  Articulation  and  Breathing  Control  ......................................  22   3.4.3  FOXP2  ...................................................................................................................................................  22   4.  SIGN  LANGUAGE  ........................................................................................................................  23   4.1  LATERALISATION  OF  LANGUAGE  AND  HANDEDNESS  ........................................................................  24   4.2  CHILD  LANGUAGE  .....................................................................................................................................  25   4.2.1  Manual  Babbling  .............................................................................................................................  26   4.2.2  Children’s  Gestures  .........................................................................................................................  26   4.3  NOVEL  SIGN  LANGUAGES  ........................................................................................................................  27   4.3.1  Homesign  in  Deaf  Children  .........................................................................................................  28   4.3.2  Nicaraguan  Sign  Language,  (LSN)  and  Idioma  de  Signos  Nicaragünese  (ISN)  ..  29   4.3.3  Al-­‐Sayyid  Bedouin  Sign  Language  (ABSL)  ...........................................................................  30   4.3.4  Creating  a  New  Communication  System  from  Scratch  ..................................................  31   5.  BUT  WHY  THE  SWITCH  TO  SPEECH?  ..................................................................................  34   6.  CONCLUSION  ..............................................................................................................................  36   7.  REFERENCES  ...............................................................................................................................  38                      
  • 4. 4   List  of  Figures     Fig.  1  Phylogenetic  tree  of  extant  great  ape  species………………………………………………….9   Fig.  2  Flexibility  of  different  communication  types  in  chimpanzees  and  bonobos….…11   Fig.  3  A  comparison  of  the  macaque  and  human  cerebral  cortex…………………………….16   Fig.  4  Brain  size  comparison  of  extant  primates  and  other  species………………………….20   Fig.  5  Comparing  the  human  and  chimpanzee  vocal  tract………………..……………………..21   Fig.  6  Frequency  of  interaction  type  in  chimpanzees  and  bonobos…………………………..32   Fig.  7  Success  of  different  gesture  types  judged  by  identification  accuracy……………..32                                    
  • 5. 5   1.  Introduction     Ever  since  scientists  and  thinkers  began  to  doubt  the  traditional,  religious  stance  on   language  as  a  gift  from  God,  scattered  from  the  mythical  Tower  of  Babel  to  form  the   world’s  myriad  tongues,  language’s  origin  has  enthralled  and  perplexed  generations.   Among  them  are  proponents  of  the  gesture-­‐first  theory,  who  have  put  forward  the   idea  in  various  guises  since  John  Bulwer’s  ‘The  Natural  Language  of  the  Hand’  (1644),   before  Cordemoy  (1668/1972:3)  called  gestures  ‘the  most  natural  way  to  express  our   thoughts...  also  the  first  of  all  the  languages,’  citing  its  ubiquitous  understanding   across  countries  and  cultures  as  a  reason  for  its  feasibility.  The  18th  century   philosopher  Giambattista  Vico  (1953/1744)  imagined  an  original  system  of  mimetic   gestures  which  represented  images  of  the  imagination,  before  de  Condillac   (1971/1746)  proposed  a  similar  idea  demonstrated  by  a  fable  of  two  strangers   communicating  by  sign  alone.  The  19th  century  saw  Darwin  haltingly  acknowledge   that  language  in  its  original  form  was  perhaps  ‘aided  by  signs  and  gestures’  (Darwin,   1871:86).  However,  this  speculation  was  not  well  received  by  bodies  in  both  France   and  England.  The  Linguistics  Society  of  Paris,  founded  in  1865,  banned  from  the   outset  all  debates  that  focused  on  the  origin  of  language,  and  in  1873  the  President  of   the  Philological  Society  admonished:  ‘We  shall  do  more  by  tracing  the  development  of   one  work-­‐a-­‐day  tongue,  than  by  filling  waste-­‐paper  baskets  by  reams  of  paper   covered  with  speculations  on  the  origins  of  all  tongues.’  (McNeill,  2005:11).     Despite  its  troubled  beginnings,  the  gestural  theory  picked  up  speed  in  the   20th  century  with  the  publication  of  Gordon  Hewes’  ‘Primate  Communication  and  the   Gestural  Origin  of  Language’  (1973)  in  which  he  sets  forth  his  argument  with  evidence   from  recently  conducted  primate  language  experiments.  Using  more  modern   technology,  Rizzolatti  et  al  (1998)  published  a  paper  describing  the  presence  and   importance  of  mirror  neurons  in  certain  areas  of  the  brain.  Their  hypothesis  provides   support  for  the  gestural  origin  theory  as  it  evidences  a  strong  relationship  between   action  of  the  arm  and  mouth  in  non-­‐human  primates,  as  well  as  a  crucial  role  in   seeing  and  mimicking  the  actions  of  others  (to  be  discussed  in  more  detail  in  3.1).  This   paved  the  way  for  other  linguists  to  further  examine  its  merit,  notably  Corballis  (2002,  
  • 6. 6   2003,  2012),  Armstrong  &  Wilcox  (1995,  2007),  Pollick  &  de  Waal  (2007)  and   Tomasello  (2008).       Proponents  of  the  vocal  theory  argue  that  language  evolved  not  from  signs   but  from  a  system  evolved  in  the  auditory-­‐vocal  modality  (Dunbar  1996;  Deacon   1997;  Fitch  2000;  Knight  2008).  The  literature  on  the  speech-­‐first  argument  focuses   on  either  a  discontinuous  view  that  language  arose  suddenly  and  in  a  near-­‐perfect   form,  perhaps  by  the  appearance  of  a  new  gene  (FOXP2)  coinciding  with  the  ‘human   revolution’  some  40,000  years  ago  (Chomsky,  1996,  2004;  Lenneberg,  1967),  or  by  a   continuous  evolutionary  process  in  a  similar  way  to  other  adapted-­‐for  traits  (Pinker   and  Bloom,  1990).                     New  evidence  collected  over  the  past  few  decades  bolsters  the  argument  that   the  speech-­‐first  scenario  is  inferior:  the  FOXP2  gene  has  recently  been  shown  to  have   existed  in  Neanderthals  and  has  also  been  seen  to  influence  both  language  processing   and  motor  sequencing  ability,  including  finger  movements  (Peter  et  al,  2011),  giving   compelling  evidence  that  this  gene  may  have  had  an  influence  in  a  gestural  precursor   to  language.  The  idea  that  language  arose  fully  formed  is  also  flawed.  As  Kirby   (2007:674)  argues,  ‘this  is  only  really  plausible  if  language  isn’t  as  complex  as  it   appears.  The  appearance  of  eyes  fully  formed  in  evolution  in  one  step  is  implausible   precisely  because  the  eye  is  a  complex  organ’.  Furthermore  those  who  suggest  that   language  could  have  evolved  from  the  vocal  calls  of  non-­‐human  primates  (Aiello  &   Dunbar,  1993;  Dunbar,  1996;  Zuberbühler,  2005)  do  not  account  for  the  fact  that   these  vocalisations  are  inflexible  and  cannot  be  broken  down  or  combined  into   sequences,  and  that  these  calls  are  primarily  instinctive  and  emotionally-­‐driven:   ‘production  of  sound  in  the  absence  of  the  appropriate  emotional  state  seems  to  be   an  almost  impossible  task  for  a  chimpanzee’  notes  eminent  primatologist  Jane   Goodall  (1986:125).  Despite  a  recent  study  of  putty-­‐nosed  monkeys  that  claimed  they   combine  sounds  to  encode  slightly  different  meanings,  the  compositional,  recursive   power  of  human  language  was  still  lacking  (Arnold  &  Zuberbühler  2006).  However,   this  basic  combinatorial  ability  that  seems  to  be  present  in  these  primates  could  signal   a  rudimentary  precursor  to  a  complex  aptitude  for  syntax  that  may  well  have  been   present  in  the  last  common  ancestor  (‘LCA’  hereafter)  (Fay  et  al,  2014;  Cheney  &   Seyfarth,  2005).  A  final  objection  to  the  theory  is  that  if  gesture  was  the  first  way  in  
  • 7. 7   which  language  was  used,  then  why  do  we  now  exclusively  use  speech  to   communicate?  MacNeilage  suggests  that  a  gestural  system  ‘would  have  proved  so   indispensable  that  we  would  never  have  abandoned  it’  (2011:  434),  however  there   are  several  advantages  that  signed  languages  provide,  as  well  as  other  reasons  as  to   why  a  switch  to  a  vocal  modality  could  have  occurred.       Instinctively,  the  iconic  nature  of  the  majority  of  signs  lends  itself  better  to  the   earliest  form  of  language;  by  describing  the  world  around  them  iconically  and   mimetically,  our  early  bipedal  ancestors  gained  the  ability  to  transfer  meaning  from   one  member  of  the  group  to  another  without  the  use  of  speech.  As  Stokoe  (2001:xii)   puts  it,  ‘who  could  possibly  have  told  the  first  speakers  what  the  sounds  they   produced  were  supposed  to  mean[?]’.  He  argues  that  the  earliest  communicative   system  was  based  on  gestures,  where  hand  shapes  represented  aspects  of  the  visual   world  around  our  early  ancestors:  people,  places,  things,  and  the  movements  of  the   hands  represented  actions  and  changes,  and  that  these  were  the  earliest  form  of   sentences:  ‘The  key  to  this  development  is  that  only  gesture  use  could  have  initiated   syntax,  a  necessary  feature  of  language.’  (2001:xiii)                     In  order  to  examine  the  support  for  the  gestural  theory  of  language  evolution,   it  is  useful  to  turn  to  Bickerton’s  three  aspects  of  linguistic  behaviour  that  he  terms   ‘living  fossils’  (1990:105;  1995)  of  an  earlier  protolanguage.  These  consist  of  (i)  the   Language  of  Trained  Apes,  (ii)  Child  Language  and  (iii)  Pidgin  Communication.   Although  Bickerton  is  a  speech-­‐first  advocate,  he  comments  that  ‘what  form  of  signal   was  first  used  is  relatively  unimportant’  (1990:156),  and  adapting  his  model  to   examine  the  viability  of  the  gestural  equivalents  instead  of  speech  in  language   evolution  can  provide  clues  to  how  language  may  have  emerged  gesturally.  Since   evidence  for  the  gesture  theory  has  broadly  been  taken  from  a  combination  of   primate  language  studies,  analysis  of  child  language  development  and  aspects  of   pidgin  sign  language  (such  as  Nicaraguan  Sign  Language),  Bickerton’s  model  applies   perfectly  to  a  gestural  protolanguage.  This  evidence,  combined  with  an  examination   of  language  in  the  brain  -­‐  including  the  action  of  mirror  neurons-­‐  will  be  the  focus  of   this  dissertation;  the  strength  of  each  of  these  lines  of  inquiry  will  be  evaluated  in  an   attempt  to  answer  the  question:  did  language  emerge  gesturally  in  our  ancestors?  
  • 8. 8   2.  Primate  Studies     Since  no  animal  in  the  wild  has  ever  acquired  the  command  of  anything  approaching   human  language,  it  could  seem  unlikely  to  turn  to  this  source  of  evidence  to  attempt   to  explain  it.  However  some  linguists  argue  that  by  examining  the  abilities  and   shortcomings  of  primate  communication,  the  capabilities  of  the  LCA  can  be   elucidated  (Rizolatti  &  Arbib,  1998).  This  means  it  is  possible  to  track  the   development  of  traits  necessary  for  fully  articulate  language  through  the  Homo  line   that  were  not  present  in  our  cousins’  lineage  over  the  last  ~8  million  years  of   evolution  (Pinker,  2003).     2.1  Vocal  Control  vs.  Manual  Control       Theories  in  support  of  the  gesture-­‐first  argument  have  focused  on  the  inability  of   apes  to  control  their  vocalisations,  compared  to  the  ‘excellent  cortical  control  over   the  hands  and  arms’  (Corballis,  2009:22)  that  nonhuman  primates  demonstrate.  In   primates,  vocalisations  lack  the  range  and  combinatorial  power  of  human  speech,  and   are  controlled  by  the  limbic  system,  an  ancient  area  of  the  brain  associated  with   emotion,  and  are  not  under  the  voluntary  control  of  the  motor  cortex  (Ploog  2002;   Fogassi  &  Ferrari,  2007).  These  primate  vocalisations  are  primarily  a  reaction  to  a   specific  emotion  or  need,  such  as  fear,  hunger  or  sexual  desire  (Deacon,  1997),  and   have  their  evolutionary  human  counterparts  in  primal  sounds  like  moaning,  crying   and  screaming  (Pinker,  1994).  This  is  in  comparison  to  a  large  range  of  voluntary   manual  movements,  which  are  under  the  control  of  the  lateral  motor  cortex  and  are   used  flexibly  (Hurford,  2003;  Corballis,  2009),  a  skill  that  has  been  utilised  in  primate   language  experiments  (Gardner  &  Gardner,  1969;  Savage-­‐Rambaugh  et  al,  1998).   Further,  both  humans  and  nonhuman  primates  are  primarily  visual  creatures,   with  sight  superior  to  hearing  in  both  species,  perhaps  an  evolutionary  adaptation  to   visual  predation.  This  means  that  they  are  better  adapted  for  communication  in  the   visual  modality  than  the  auditory  (Corballis,  2010),  and  thus  early  hominids  may  have   had  the  tools  to  communicate  using  gesture  before  speech.      
  • 9. 9   2.2  Pan     Many  animals  in  the  wild  commonly  communicate  with  vocal  calls,  but  the  manual   gestures  of  humans  and  apes  are  considered  practically  unique  (Maestripieri  2005;   Pollick  &  de  Waal,  2007;  Roberts  et  al,  2012).  Hobaiter  &  Byrne  (2014)  argue  that  ape   gestures  often  have  specific  meanings  and  that  captive  and  wild  gorillas  and   chimpanzees  use  intentional  signs  to  serve  specific  functions.  These  flexible,   intentional  gestures  of  the  hands  and  limbs  provide  evidence  of  an  ancestral  trait   common  to  Homo  sapiens  and  our  great  ape  relatives  that  support  the  gestural   theory  of  language  evolution  (Roberts  et  al,  2012;  Pika  et  al,  2005;  Pollick  &  de  Waal,   2007).  The  studies  below  demonstrate  how  language-­‐trained,  wild,  and  captive  apes   help  to  elucidate  the  gestural  theory  of  language  evolution.     The  phylogenetic  tree  below  displays  the  relationship  between  extant  great   apes  and  humans,  and  is  consistent  with  the  general  estimate  that  the  Pan  line   separated  from  the  Homo  line  around  5-­‐7  million  years  ago  (Kumar  et  al,  2005).     While  all  primates  exhibit  facial  expressions  and  vocalisations,  apes  and   monkeys  differ  in  that  monkeys  lack  the  free,  ritualised  hand  gestures  that  are   present  in  chimpanzees  and  bonobos,  which  include  begging  for  food  with  an   Figure  1.  Phylogenetic  tree  of  extant  great  ape  species    (www-­‐tc.pbs.org)  
  • 10. 10   upturned  palm,  impatient  wrist  shaking,  and  domineering  arm  movements  over  a   subservient  conspecific  (Pollick  et  al,  2008).     Since  bonobos  and  chimpanzees  split  from  the  Homo  line  the  most  recently,   they  are  the  most  closely  related  primates  to  human  beings  and  the  evolutionary   ancestry  we  share  may  shed  light  on  the  kind  of  abilities  present  in  the  LCA  of  humans   and  apes,  and  therefore  on  how  language  may  have  evolved  in  our  species  (Corballis,   2009).  Manual  gestures  have  become  of  particular  interest  as  the  neural  structures   associated  with  them  in  great  apes  are  homologous  with  those  associated  with   language  in  the  human  brain  (Roberts  et  al,  2013)  (examined  further  in  3).  Using  this   logic,  Pollick  and  de  Waal  (2007)  ran  a  study  to  compare  the  flexibility  of  chimpanzee   and  bonobo  manual  gestures  with  orofacial  movements  and  vocalisations.  The  aim  of   the  study  was  to  assess  how  context-­‐driven  these  were,  and  to  what  extent  gestures   were  more  flexible  than  vocalisations.  They  observed  two  groups  of  bonobos  and  two   groups  of  chimpanzees  in  captive  environments,  all  of  which  exhibited  aspects  of   gesture,  broadly  defined  by  Kendon  (2004:14)  as  ‘movements  that…  manifest   deliberate  expressiveness  to  an  obvious  degree’.  By  this  he  means  that  to  qualify  as  a   gesture,  it  must  be  meaningful,  intentional  and  easily  discerned  by  the  audience   (Zlatev,  2015).     Firstly  they  found  that  gestures  were  far  more  flexible  than  either  facial  or   vocal  signals,  in  that  they  were  less  bound  to  being  produced  in  a  particular  context.   Corballis  (2009:554)  asserts  that  ‘freedom  from  context  is  one  of  the  characteristics   of  language’,  and  it  is  with  this  in  mind  that  Pollick  &  de  Waal  enacted  their  study:   they  calculated  the  ‘CTI’,  or  Context-­‐Tie  Index,  which  was  the  percentage  of  times   that  a  signal  was  used  in  its  most  typical  social  context,  e.g.  during  grooming,  to   initiate  sex,  etc.  Fig.  2  shows  that  the  vocalisations  ‘scream’  and  ‘pant  hoot’  had  a   very  high  correlation  across  contexts,  meaning  that  they  were  produced  far  more   commonly  in  their  typical  contexts  in  comparison  to  gestures,  which  did  not  reach  a   high  CTI.  Strikingly,  four  of  the  gestures  correlated  negatively  across  contexts,   suggesting  that  they  are  used  in  vastly  different  contexts  by  both  the  bonobo  and   chimpanzee  groups  (Pollick  &  de  Waal,  2007).     This  discrepancy  between  species  acts  as  further  evidence  that  human   language  may  have  its  roots  in  the  abilities  of  our  primate  cousins;  their  gestures  vary  
  • 11. 11   between  species  just  as  human  gestures  vary  across  cultures  as  a  result  of  cultural   transmission.  In  addition,  human  facial  expressions  tend  to  be  far  more  universal  than   culture-­‐specific  gestures  (Kendon,  1995),  and  apes  also  tend  to  share  facial   movements,  evinced  by  the  high  CTI  ‘silent  bared  teeth’  and  ‘relaxed  open  mouth’   that  is  shared  between  chimps  and  bonobos  (Fig.  2).         A  comparable  study  conducted  by  Roberts  et  al  (2012:466)  garnered  similar   results;  they  studied  a  wild  population  of  chimpanzees  and  found  that  their  gestures   ‘are  perceived  semantically  and  manipulate  the  recipient’s  movements  and  attention,   while  recipients  also  infer  the  broader  goal  of  the  signaller  from  context.’     Overall  gestures  show  greater  contextual  variation  in  both  wild  and  captive   chimpanzees  than  facial  and  vocal  signals,  and  do  not  necessarily  need  to  be  viewed   in  a  particular  context  to  elicit  a  response  unlike  vocalisations,  which  are  closely  tied   to  context.  De  Waal  and  Pollick  (2012)  argue  that  this  makes  gesture  a  likely   candidate  for  the  modality  in  which  symbolic  meaning  may  have  evolved  in  the  early   hominid  population.         Figure  2:  Flexibility  of  different  communication  types  in  chimpanzees  and   bonobos,  taken  from  Pollick  &  de  Waal  (2007:  8187).  
  • 12. 12   2.3  Primate  Language  Experiments       The  language  of  trained  apes  is  one  of  Bickerton’s  (1990:105)  ‘living  fossils’,  aspects  of   language  that  share  some  -­‐  but  not  all-­‐  of  the  characteristics  of  modern  human   language.  Tallerman  argues  that  language  trained  apes  such  as  those  described  below   likely  show  ‘the  type  of  cognition  early  hominins  brought  to  protolanguage’  (2011:   489),  and  thus  can  illuminate  the  aspects  of  cognition  that  were  built  upon  to  develop   language.   2.3.1  Washoe  the  Signing  Chimpanzee     There  have  been  many  attempts  to  teach  primates  language  that  have  largely  focused   on  our  closest  relatives,  chimps  and  bonobos  (Gardner  &  Gardner  1969;  Savage-­‐ Rumbaugh  et  al,  1998).  These  experiments  have  shown  that  nonhuman  primates   have  no  ability  to  speak  whatsoever,  having  been  inhibited  by  the  shape  of  their  vocal   tract  -­‐  the  larynx  is  descended  in  humans,  and  the  greater  flexibility  of  our  tongue   allows  us  to  produce  a  larger  array  of  sounds  (Gillespie-­‐Lynch  et  al,  2014).  Voluntary   cortical  command  over  their  vocalisations  is  also  limited,  and  is  controlled  largely  by   the  ‘cingulate  system’,  an  area  deep  in  the  brain  associated  with  emotion  that  is  not   homologous  with  language  areas  (Vilain  et  al,  2011).  Tellingly,  attempts  to  teach   primates  signed  language  have  been  far  more  successful.     Washoe  the  chimpanzee  was  adopted  by  the  Gardners  at  ten  months  and  was   raised  by  them  as  though  she  were  a  human  child.  She  was  taught  a  variety  of  signs  in   simple  ASL  (American  Sign  Language)  through  imitation  as  well  as  by  instruction.  She   achieved  a  degree  of  proficiency  in  ASL  beyond  any  vocal  ability  that  was   demonstrated  (Gardner  &  Gardner,  1969),  and  after  8  years  had  a  repertoire  of  over   150  signs.  Importantly  she  also  displayed  some  ability  at  creating  spontaneous  signs,   notably  combining  the  signs  for  ‘water’  and  ‘bird’  when  viewing  a  swan,  as  well  as   ‘rock  berry’  for  a  brazil  nut  (Fouts,  1975;  Fouts  &  Rigby,  1977).  This  kind  of   spontaneous  combination  of  gestures  to  create  a  novel  sign  was  taken  as  evidence   that  Washoe  understood  the  meanings  of  the  signs,  and  was  not  simply  producing   them  in  response  to  specific  stimuli.    
  • 13. 13   Furthermore,  a  secondary  experiment  exposed  Washoe’s  adopted  son  Loulis   exclusively  to  the  sign  language  of  four  signing  chimps  (including  Washoe),  and  found   that  he  actively  learnt  the  signs  through  teaching  as  well  as  by  the  moulding  of  his   hands  to  the  correct  configuration  (Fouts  et  al,  1989).  This  mirrors  the  mother-­‐child   interaction,  imitation  and  pedagogy  prerequisite  in  human  language  acquisition.   2.3.2  Kanzi’s  Keyboard       Kanzi  is  considered  the  most  accomplished  of  all  the  language-­‐trained  apes  (Savage-­‐   Rumbaugh  et  al,  1998;  Corballis,  2012a)  and  communicates  by  pointing  to  a  keyboard   with  a  range  of  lexigrams,  as  well  as  with  some  ASL.  He  was  present  while  the   researchers  attempted  to  teach  his  mother  to  use  the  lexical  board  to  no  success,  and   acquired  the  ability  spontaneously  without  implicit  teaching  or  rewards  (Savage-­‐ Rumbaugh  et  al,  1986).  Kanzi  used  the  keyboard  to  string  together  combinations  of   two  or  three  symbols  to  create  simple  phrases,  as  well  as  inventing  his  own  gestures   to  add  to  his  repertoire  when  he  outstripped  the  300  symbols  available  to  him  on  the   lexical  board.  The  keyboard  required  fine  control  to  operate,  and  he  also  combined   pointing  with  other  gestures  to  elucidate  meaning.  The  combinations  he  put  together   showed  some  capacity  for  English  word  order,  as  well  as  basic  ability  to  assign   grammatical  rules  (Greenfield  &  Savage-­‐Rumbaugh,  1990).     Strikingly,  Kanzi’s  ability  to  perceive  human  speech  was  more  developed  than   his  production,  and  he  frequently  acted  on  complex,  novel  sentences  even  when  the   requests  were  unusual  or  counterintuitive.  For  example,  using  toy  equivalents  he   correctly  performed  ‘make  the  doggie  bite  the  snake’,  as  well  as  completing  the  task   with  the  animals’  roles  reversed  (Savage-­‐Rumbaugh  et  al,  1993:  96).    His   comprehension  was  compared  to  that  of  Alia,  a  human  child  at  a  similar  age  of   linguistic  development,  and  was  found  to  outstrip  hers  when  tested  on  a  variety  of   sentence  types.  Kanzi  responded  correctly  on  74%  of  occasions  compared  to  Alia’s   65%  (Savage-­‐Rumbaugh  et  al,  1993:76).  While  Savage-­‐Rumbaugh  argues  that  ‘more   than  any  previous  ape,  the  nature  and  the  scope  of  Kanzi's  language  acquisition  has   paralleled  that  of  the  human  child’  (1993:  12).  This  is  not  to  say  that  Kanzi  displayed   human  levels  of  intelligence,  or  even  an  extraordinary  aptitude  for  human  language.   His  production  was  limited  to  simple  phrases  and  requests,  and  showed  little  of  the  
  • 14. 14   boundless  expression  that  children  express  a  little  later  in  their  development.  Further,   96%  of  his  ‘utterances’  were  requests,  a  far  larger  percentage  than  would  be  normal   for  a  human  child.  Towards  the  end  of  the  study  Alia’s  production  and  comprehension   leapt  far  beyond  Kanzi’s  (1993:567).  This  suggests  that  Kanzi’s  abilities,  although   impressive,  are  limited,  and  they  resemble  a  large  lexicon  coupled  with  a  very  basic   ‘proto-­‐grammar’  that  is  not  akin  to  human  language  (Pinker,  1994;  Tallerman,  2011;   Fitch,  2010,  who  argues  that  this  is  no  more  than  word  order)  and  a  good  perception   of  complex  strings  of  lexical  items.  However  there  is  little  evidence  to  suggest  that  he   truly  understands  the  more  complex  grammar  that  he  hears.  Tallerman  (2011:  453)   provides  the  example  ‘Go  get  the  balloon  that’s  in  the  microwave’-­‐  and  argues  that   there  is  no  way  of  telling  that  Kanzi  understands  the  relative  clause  and  is  instead   acting  on  the  basic  lexical  items  in  the  phrase  ‘get  –  balloon  –  microwave’,  and  infers   the  rest  from  context.  This  type  of  processing,  a  kind  of  telegraphic  connecting  of   gestures  with  basic  understanding  of  objects  and  actions  without  complex  grammar   in  the  manual  mode,  seems  the  most  likely  candidate  to  have  been  a  precursor  for   language  in  the  LCA  and  early  hominids.             2.3.3  A  Critical  Period  for  Ape  Language?     A  largely  under-­‐addressed  finding  from  the  study  was  that  of  the  nine  apes  that  were   reared  together,  those  who  were  not  exposed  to  language  until  after  the  age  of  2½   did  not  acquire  the  use  of  signs  without  prolonged,  explicit  language  training   (Rumbaugh,  1977;  Savage-­‐Rumbaugh  et  al,  1993).  Their  comprehension  too  was   greatly  diminished,  and  by  9  years  of  age  the  late-­‐exposed  apes  only  understood  a   few  words  compared  to  the  early-­‐exposed  chimps  that  all  understood  at  least  40   different  spoken  words  by  2½  years.  The  fact  that  humans  also  have  a  critical  window   for  language  acquisition  (Penfield  &  Roberts,  1959;  Lenneberg,  1967)  strengthens  the   gesture-­‐first  argument  in  that  humans  and  apes  share  similar  neural  traits,  such  as   brain  plasticity  in  language  learning,  which  may  therefore  have  been  present  in  the   LCA.  It  also  weakens  the  musical  protolanguage  theory  (Mithen,  2011),  as  human   song  transmission  has  no  such  critical  period  (Tallerman,  2007).       While  these  attempts  at  teaching  and  monitoring  apes’  language  have  been   somewhat  successful,  their  actual  language  ability  has  barely  progressed  past  the  
  • 15. 15   capability  of  a  2½-­‐year-­‐old  girl.  There  is  no  doubt  that  apes  can  assign  meaning  to  a   sign  in  hundreds  of  pairs  (Fitch  2010),  but  the  real  merit  in  these  studies  is  that  they   show  that  the  more  likely  scenario  for  language  emergence  is  that  it  was  based  on  a   system  of  manual  gestures  rather  than  vocalisations.  They  demonstrate  an  ability  to   assign  a  symbol  to  a  real-­‐world  referent  in  the  manual  domain,  as  well  as  a  capacity   for  a  ‘proto-­‐grammar’  (Greenfield  &  Savage-­‐Rumbaugh,  1990:  572)  in  the  perception   of  basic  syntax.  Further,  they  show  that  ape  gestures  are  susceptible  to  both  social   learning  and  the  attentional  state  of  the  recipient,  which  are  both  prerequisites  for   language  (Corballis,  2009).  ‘Communicative  capacities  observed  across  members  of  a   clade  (sibling  species  with  a  common  ancestor,  such  as  humans,  chimpanzees,  and   bonobos)  are  likely  inherited  from  a  common  ancestor’  (Gillespie-­‐Lynch  et  al,  2014:2).   Hence,  these  abilities  are  likely  to  be  present  in  the  LCA  and  our  hominin  ancestors   were  likely  to  have  been  better  preadapted  for  control  of  limbs  and  hand  movements   than  for  vocal  control.  This  was  shown  by  the  success  of  our  great  ape  relatives  in   types  of  sign  language  learning,  as  well  as  the  greater  flexibility  of  gesture  in   communication  than  vocal  calls.   3.  The  Brain       I  have  described  the  likely  cognitive  and  linguistic  capabilities  of  our  hominid   ancestors,  as  well  as  the  similarities  and  differences  between  the  Homo  and  Pan   branch  of  the  Hominidae.  The  following  is  an  examination  of  the  brain’s  role  in   language  and  its  evolution,  and  specifically  how  the  visuo-­‐manual  modality  was   crucial  in  the  emergence  and  evolution  of  language.  By  studying  both  the  human  and   nonhuman  primate  brain  in  tandem,  as  well  as  the  varying  brain  structures  and   capacities  of  modern  and  ancient  humans,  a  picture  of  how  gesture  could  have  been   the  origin  of  language  is  elucidated.   3.1  Mirror  Neurons  and  Broca’s  Area     At  the  simplest  level,  in  order  for  language  to  evolve  it  is  crucial  that  a  sender  and   receiver  of  a  message  are  both  able  to  produce  and  perceive  a  signal.  Rizzolatti  &   Craighero  (2004:183)  argue  that  mirror  neurons  are  central  in  the  development  of  
  • 16. 16   this  ability:  ‘Mirror  neurons  represent  the  neural  basis  of  a  mechanism  that  creates  a   direct  link  between  the  sender  of  a  message  and  its  receiver…actions  done  by  other   individuals  become  messages  that  are  understood  by  an  observer  without  any   cognitive  mediation.’  Thus,  mirror  neurons  have  provided  a  fresh  perspective  on  the   gesture  theory.  First  observed  in  macaques  (Rizzolatti  et  al,  1998),  and  further   elaborated  in  the  discovery  of  a  mirror  system  (Arbib,  2005a;  Rizzolatti  &  Sinigaglia,   2008),  these  are  motor  neurons  that  fire  both  when  an  animal  performs  an  action  as   well  as  when  it  is  observed.     Although  mirror  neurons  cannot  be  observed  directly  in  the  human  brain   (Corballis,  2010),  imaging  has  revealed  a  mirror-­‐neuron  system  in  humans  that  also   activates  when  actions  are  imitated,  that  is  not  present  in  monkeys  (Rizzolatti,   Fogassi,  &  Gallese,  2001,  Rizzolatti  &  Craighero,  2004).  This  has  implications  for  the   evolution  of  language  in  that  the  ability  to  actively  mimic  another’s  action  would  have   been  pivotal  in  learning  and  propagating  an  emerging  gestural  system.     Further,  the  mirror  neurons  were  found  in  an  area  of  the  macaque  brain  that   is  homologous  with  Broca’s  area  in  humans,  the  area  traditionally  associated  with   language  production  (Fig.  3)  (Broca,  1861;  Fogassi  and  Ferrari,  2007).  While  Broca’s   area  has  traditionally  been  associated  with  the  production  of  speech,  it  is  also   involved  in  motor  tasks  such  as  complex  finger  and  hand  movements,  sensorimotor   learning  and  imitating  hand  shapes  (Rizzolatti  &  Craighero,  2004).  This  same   activation  is  also  observed  when  people  imagine  themselves  making  these   movements  (Gerardin  et  al,  2000).  This  suggests  a  link  between  the  production  of   Figure  3:  A  comparison  of  the  macaque  (A)  and  human  (B)  cerebral  cortex.  Yellow  areas  in  both  are  the   primary  motor  cortex,  orange  the  premotor  cortex.  The  red  areas  indicate  the  hypothesised  homologue   cortical  motor  areas  that  relate  to  communication  and  language,  F5  in  the  monkey,  and  areas  44  in  the   human,  also  known  Broca’s  area.  Taken  from  Fogassi  &  Ferrari  (2007:2)  
  • 17. 17   language  and  motor  movements  of  the  hands  and  limbs  which  is  strengthened  by  the   finding  that  signed  language  also  activates  Broca’s  area  (Horwitz  et  al,  2003).     The  human  mirror  system  differs  from  the  monkey  mirror  neuron  system  in   certain  aspects:  for  example  while  monkey  mirror  neurons  do  not  fire  in  the  absence   of  a  goal-­‐less  grasp,  these  ‘intransitive  meaningless  movements’  do  excite  a  response   in  the  human  mirror  system  (Rizzolatti  &  Craighero,  2004:176).  Corballis  (2012b)   argues  that  in  this  case,  an  early  language  system  incorporated  symbolic  actions  and   representations  and  not  simply  objects  in  the  here-­‐and-­‐now.  He  argues  that  this   system  may  therefore  have  been  involved  in  the  critical  step  in  the  development  of   language  from  a  capacity  of  simple  communication  to  one  in  which  our  ancestors   were  capable  of  ‘mental  time  travel’,  the  ability  to  express  events  in  a  separate  time   and  space  from  the  present  which  Corballis  &  Suddendorf  (2007:310)  view  as  a   prerequisite  for,  and  uniquely  human  aspect  of,  language.   Corballis  (2012b:109)  does  not  downplay  the  importance  of  mirror  system  in   humans:  ‘in  the  course  of  evolution,  the  system  initially  specialised  for  grasping   provided  the  basis  for  the  subsequent  emergence  of  an  intentional  communication   system  based  on  manual  gestures’.  This  view  appears  to  be  the  most  likely  based  on   the  evidence  from  mirror  neurons  in  both  monkeys  and  humans,  where  the  system   that  allowed  imitation  was  developed  to  allow  mimesis  and  a  basic  gestural   communicative  system.     3.1.1  Reflections  on  Mirror  Neurons  and  Theory  of  Mind     Since  the  mirror  system  ‘gives  the  observer  a  first-­‐person  understanding  of…the  goals   and  intentions  of  other  individuals’  (Rizzolatti  &  Sinigaglia,  2010:264),  mirror  neurons   have  also  been  cited  as  important  in  the  development  of  ‘theory  of  mind’,  a  critical   prerequisite  for  co-­‐operative  behaviour  and  language  (Gallese  &  Goldman,  1998).   Theory  of  mind  is  the  ability  to  empathise  with  another  individual  and  to   realise  that  they  have  knowledge  and  perspectives  that  are  different  to  one’s  own   (Premack  &  Woodruff,  1978).  It  has  been  cited  as  a  uniquely  human  ability  (Penn  et   al,  2008),  is  inextricably  linked  to  the  language  faculty  (Malle,  2002),  and  has  been   described  as  a  precondition  for  the  acquisition  of  language  (Origgi  &  Sperber,  2000).  
  • 18. 18   Autistic  children,  whose  social  disability  is  characterised  by  a  lack  of  empathy   and  extreme  difficulty  in  language  learning  (Carpenter  &  Tomasello,  2000),  have  been   suggested  to  lack  full  theory  of  mind  (Baron-­‐Cohen  et  al,  1985).  Some  suggest  that  a   dysfunction  in  the  mirror  system  is  responsible  for  this  deficiency,  and  in  turn  this   affects  the  ability  to  acquire  language  (Williams  et  al,  2001).  Further,  those  with   autism  consistently  produce  fewer  gestures,  and  these  are  developmentally  less   advanced  than  those  without  autism  (Buitelaar  et  al,  1991;  Mundy  et  al,  1986).  They   also  show  difficulty  imitating  the  body  movements  of  others  (Williams  et  al,  2004)  and   have  a  host  of  motor  deficits  (Ming  et  al,  2007).  If  we  accept  that  the  mirror  system,   imitation,  language  and  gesture  are  all  interlinked,  then  the  autistic  child  provides  an   example  of  this  connection  by  the  absence  of  these  features.   It  is  worth  noting  that  theory  of  mind  may  well  have  been  a  later  addition  to   language,  as  it  is  not  found  in  apes  (controversially,  Call  &  Tomasello,  2008).  The   earliest  language  would  not  have  necessarily  involved  taking  into  account  another’s   mind;  when  simply  referring  in  iconic  expressions,  this  may  simply  have  influenced   behaviour  in  another  individual  without  the  demonstration  of  joint  attention  (Malle,   2002)  before  developing  into  a  more  sophisticated  form  in  which  gestures  were   mutually  made  and  understood.                 3.2  The  Motor  Theory  of  Speech  Perception     Corballis  takes  the  motor  theory  of  speech  perception,  first  posited  by  Liberman  et  al   (1967)  as  evidence  that  language  was  originally  based  on  a  system  of  gestures.  The   motor  theory  posits  that  humans  comprehend  speech  based  primarily  on  articulatory   gestures  of  the  vocal  apparatus  rather  than  an  acoustic  signal.  Corballis  therefore   argues  that  ‘the  shift  (between  speech  and  sign  language)  is  not  so  much  from  vision   to  audition  as  from  one  kind  of  gesture  to  another’  (2009:24).  He  links  this  to  the   mirror  system  in  humans,  and  asserts  that  articulations  are  simply  vocal  gestures.  I   find  this  argument  largely  unconvincing  however,  and  it  seems  more  likely  that   speech  may  have  emerged  as  the  result  of  the  ‘expanding  spiral’  that  Arbib   (2005b:22)  describes.  He  argues  that  H.  Habilis  through  to  H.  sapiens  communicated   via  a  gestural  protolanguage,  which  provided  the  neurological  scaffolding  for  the   emergence  of  a  spoken  protolanguage.  These  two  systems  then  developed  
  • 19. 19   simultaneously  in  the  hominid  line  in  an  ‘expanding  spiral’  that  led  to  a  relatively   complex  gestural  language  before  the  emergence  of  proto-­‐speech.  This,  along  with   other  possibilities,  is  discussed  in  greater  detail  later  in  section  5.     3.3  Bipedalism  and  Brain  Growth       Many  argue  that  bipedalism  was  a  crucial  factor  in  the  emergence  of  human  language   (Corballis,  2002;  Gillespie-­‐Lynch  et  al,  2014).  Although  it  is  difficult  to  date  precisely   when  our  ancestors  began  to  walk  upright,  fossil  and  genetic  evidence  place  the  date   at  around  5-­‐7  million  years  ago  (Rosenberg  &  Trevathan,  2014).  This  had  tremendous   implications  for  the  evolution  of  our  species:  walking  upright  freed  the  hands  for  the   later  emergence  of  tool  use,  as  well  as  having  implications  for  speech  as  the  larynx   descended  to  a  position  where  vocal  control  was  possible,  but  perhaps  only  with  the   emergence  of  Homo  sapiens  (Corballis,  2002).  As  the  feet  became  less  functional  than   in  our  chimpanzee  relatives,  the  neural  space  for  control  of  the  feet  diminished  in  the   Homo  line  and  allowed  neural  reorganisation  for  greater  control  of  the  hands.   Further,  it  has  been  shown  that  control  of  the  hands  is  experience-­‐led,  so  the  more   the  hands  are  used,  the  greater  neural  space  is  dedicated  to  them  in  comparison  to   the  feet  (Richards,  1986;  Corballis,  2002).  Donald  (1991:162)  argues  that  later   obligate  bipedalism  in  the  Homo  genus,  with  an  arboreal  lifestyle  no  longer  necessary,   would  have  freed  the  hands  and  arms  for  a  variety  of  uses  including  intentional   communication  and  ‘mimetic  culture’.  This  is  differentiated  from  the  mimicry  that   some  animals  possess  (e.g.  parrots)  and  imitation,  somewhat  limited  to  apes,  in  that  it   is  not  literal,  and  involves  ‘the  invention  of  intentional  representations’  (1991:169)   that  are  creative  and  novel.  Corballis  adds  that  a  feature  of  gestural  communication   allowed  by  bipedalism  was  the  ability  to  ‘move  in  four  dimensions’  (2009:32),  allowing   mimetic  displays  of  actual  events  using  the  hands  which  can  incorporate  a  dimension   of  time,  a  feature  of  mental  time  travel  mentioned  previously.     Bipedalism  marks  the  split  of  the  Homo  line  from  the  line  of  the  nonhuman   primates,  and  was  accompanied  by  a  growth  of  the  brain  (Corbalils  2002).  Although  it   took  roughly  4  million  years  from  the  earliest  onset  of  bipedalism  to  a  marked   increase  in  brain  size  in  the  hominid  line  (Nelson,  2009),  it  is  possible  that  early  
  • 20. 20   hominids  such  as  Homo  habilis  had  the  capacity  for  a  protolanguage  based  on  manual   gestures  in  part  due  to  a  significantly  larger  brain  size  in  all  subsequent  species  of   Homo  than  in  chimpanzees  and  other  extant  apes  (Fig.  4).  This  is  strengthened  by  the   discovery  of  enlarged  Broca’s  and  Wernicke’s  areas  in  endcocasts  of  Homo  habilis   skulls  (Tobias,  1998),  which  may  indicate  that  this  species  had  some  semblance  of   language,  likely  a  system  of  gestures.         3.4  Adaptations  for  Speech  –  A  Modern  Phenomenon?     It  has  been  inferred  that  articulate  speech  would  not  have  been  possible  until   relatively  late  in  the  hominid  lineage,  due  to  the  extensive  changes  to  the  vocal  tract   and  neurological  control  of  vocalisation  and  breathing  that  may  not  have  been   complete  until  the  emergence  of  Homo  sapiens  ~170,000  years  ago  (Lieberman  1998;   Stokoe,  2001).     3.4.1  Changes  to  Anatomy  –  Speech  Came  Later     The  vocal  tract  of  chimpanzees  is  incredibly  limited  in  comparison  to  modern  humans;   while  humans  can  articulate  a  vast  array  of  speech  sounds,  chimpanzees  are  limited   to  a  small  repertoire  of  phonemes  that  is  infinitely  less  flexible  than  in  human  speech   (Lieberman,  1975).  This  is  due  to  the  shape  of  the  tongue  and  larynx  (fig.5).       Figure  4:  Comparison  of  brain  size  in  extant  primates  and  other  species,  taken  from  Corballis  (2002:89).  
  • 21. 21   The  descent  of  the  larynx  depicted  in  fig.5  played  a  pivotal  role  in  the   evolution  of  human  speech;  some  suggest  that  this  was  kick-­‐started  by  the  advent  of   bipedalism  (DuBrul,  1976),  but  this  remains  controversial  (Fitch,  2000).  Nevertheless,   the  new  shape  of  the  larynx  made  it  possible  to  move  the  tongue  both  vertically  and   horizontally  inside  the  mouth,  altering  the  shape  of  the  vocal  tract  sufficiently  to   produce  a  wide  array  of  vowels  and  consonants  pivotal  to  human  speech  that  are   unavailable  to  chimpanzees.  This  descent  is  also  found  in  the  growth  of  infants  to   children  to  adults;  while  still  suckling  the  baby  is  capable  of  breathing  and  ingesting   liquid  simultaneously,  a  capacity  shared  by  apes  (Fitch,  2000),  before  descending   when  it  reaches  age  3  or  4  (Sasaki  et  al,  1977).  This  is  a  costly  transformation  as  it   makes  humans  more  susceptible  to  choking  due  to  the  convergence  of  respiratory   and  digestive  pathways,  but  some  suggest  that  this  was  a  worthwhile  evolutionary   price  to  pay  when  the  result  is  speech  (Van  Driem,  2005).     Fossil  records  have  proven  inconclusive  in  attempting  to  show  that  this   descent  was  also  complete  in  Neanderthals  (Fitch,  2000),  but  from  the  evidence   available  it  seems  plausible  that  the  position  of  the  larynx  and  hyoid  bone  in   Neanderthals  led  to  a  basic  phonetic  ability,  more  complex  than  other  primates  but   less  complex  than  in  modern  Homo  sapiens  (Crelin,  1987).  Lieberman  (1998)  argues   that  the  adjustments  necessary  for  vocal  language  were  not  complete  in   Neanderthals,  perhaps  as  recently  as  30,000  years  ago,  due  to  the  absence  of  a   Figure  5:  Vocal  tracts  of  chimpanzees  (b)  and  humans  (c).  Red=  Tongue  body,  Yellow=   Larynx,  Blue=  Air  sacs  (distinct  to  apes).  Taken  from  Fitch  (2000:260).  
  • 22. 22   flattened,  human  like-­‐face  to  restrict  the  length  of  the  vocal  tract,  which  in  humans   makes  it  possible  to  produce  fluent  speech.  Since  Neanderthal  remains  show  signs  of   tool  making  and  cultural  practices,  it  is  safe  to  assume  that  they  were  neurologically   capable  of  a  co-­‐operative  form  of  protolanguage,  and  because  they  were  unable  to   produce  the  fluent  speech  present  in  Homo  sapiens,  but  retain  the  manual  ability  of   their  and  our  ancestors,  this  was  more  likely  to  be  a  system  reliant  on  gestures   (Nelson,  2009).     3.4.2  The  Hypoglossal  Canal,  Articulation  and  Breathing  Control   The  nerves  that  allow  articulations  of  the  tongue  pass  through  the  hypoglossal  canal,   located  at  the  base  of  the  skull.  These  allow  the  fine  control  necessary  for  human   speech  (Kay  et  al,  1998).  It  has  been  found  that  the  hypoglossal  canals  of   Australopithecus  as  well  as  Homo  habilis  are  similar  in  size  to  extant  Pan  species,  and   are  significantly  smaller  than  those  present  in  modern  and  ancient  Homo  sapiens  (Kay   et  al,  1998).  This  suggests  that  the  vocal  abilities  of  ancient  hominids  were  not  as   developed  as  modern  humans,  or  indeed  of  Neanderthals,  who  also  had  enlarged   canals,  although  this  may  have  been  the  result  of  an  overall  larger  stature  in  general.   Additionally,  evidence  from  Maclarnon  &  Hewitt  (1999)  has  shown  that  breathing   control,  essential  for  the  production  of  fluent  speech,  would  not  have  been  fully   evolved  until  around  1.6  million  to  100,000  years  ago.  This  was  surmised  from  an   examination  of  the  fossilised  thoracic  vertebral  canal,  which  carries  nerves  that   innervate  the  muscles  involved  in  and  around  the  thorax,  allowing  for  voluntary   breath  control.  A  human-­‐like  appearance  was  not  present  in  Australopithecines,   Homo  ergaster,  or  early  Homo  erectus,  whose  thoracic  canals  were  similar  in  size  and   structure  to  extant  ape  species.     3.4.3  FOXP2     The  FOXP2  gene  has  largely  been  referred  to  as  ‘the  language  gene’  by  the  media   (BBC  News,  2009),  after  it  was  discovered  that  a  mutation  of  the  gene  in  many   members  of  a  family  led  to  severe  language  impairments.  This  reductive  labelling   reduces  the  complexity  of  the  gene’s  role  in  language:  more  specifically  the  disruption   of  the  gene  causes  non-­‐activation  in  Broca’s  area  during  verb  generation  and  difficulty  
  • 23. 23   in  coordinating  orofacial  movements,  leading  to  atypical  speech  delivery  (Lai  et  al,   2001;  Watkins  et  al,  2002;  Liégois  et  al,  2003).  The  import  of  these  finding  is  twofold;   FOXP2  is  clearly  involved  in  both  the  articulation  of  speech  as  well  as  the  function  of   Broca’s  area,  both  critical  for  the  delivery  of  speech.  The  FOXP2  gene  has  undergone   two  mutations  since  the  split  between  hominids  and  chimpanzees  (Corballis,  2009),   and  while  the  gene  has  supposedly  been  detected  in  a  45,000  year  old  Neanderthal   fossil,  which  in  turn  suggests  it  may  date  back  700,000  years  (Krause  et  al.  2007; Noonan  et  al.  2006),  this  finding  has  been  criticised  by  Coop  et  al.  (2008)  who  claim   that  this  was  more  likely  due  to  contaminated  samples  or  the  result  of  interbreeding   between  Neanderthals  and  Homo  sapiens.  As  previously  discussed,  Neanderthals  are   unlikely  to  have  possessed  the  ability  to  speak  anyway.  Nevertheless,  if  this  particular   variant  of  gene  has  emerged  relatively  recently  in  the  hominid  line,  most  estimates   range  between  38,000  to  200,000  years  ago  (Enard  et  al,  2002;  Pinker,  2003),  this   may  have  coincided  with  the  emergence  of  Homo  sapiens.  Corballis  (2004:96)  argues   that  ‘it  is  possible  that  mutation  of  FOXP2  was  the  most  recent  event  in  the   incorporation  of  vocalization  into  the  mirror  system,  and  thus  the  refinement  of  vocal   control  to  the  point  that  it  could  carry  the  primary  burden  of  language’.  The   emergence  of  FOXP2  therefore  may  have  been  the  crucial  factor  for  linking  gesture  to   speech:  Broca’s  area,  a  crucial  seat  of  the  mirror  system,  may  have  been  adapted  by   the  mutation  of  FOXP2  to  allow  articulatory  control  of  vocalisations  in  Homo  sapiens   after  a  gestural  system  had  already  been  in  place  previously.     Therefore  it  seems  likely  that  while  hominids  had  developed  the  cognitive   capacity  to  use  a  form  of  protolanguage,  to  manipulate  their  limbs,  to  use  symbols   and  mimesis,  their  vocal  and  breathing  apparatus  were  ill-­‐equipped  to  serve  an   articulate  speech  system  until  the  emergence  of  Homo  sapiens  who  possessed   greater  control  of  their  vocalisations  and  breathing,  as  well  as  a  proclivity  for  speech   due  to  the  emergence  of  the  FOXP2  gene.     4.  Sign  Language     So  far  I  have  focused  on  cognitive  preadaptations  for  a  gestural  language,  and  now  I   turn  to  evidence  from  the  utility  and  naturalness  of  sign,  as  well  as  from  the  
  • 24. 24   formation  of  novel  signed  languages.  This  can  shed  light  on  how  a  gestural  system   could  have  arisen  in  early  humans,  against  the  argument  of  a  vocal  language  origin.   While  it  was  previously  thought  that  ‘the  manual  sign  language  must  be  viewed  as   inferior  to  the  verbal  as  a  language’  (Myklebust  1957:242),  it  has  since  been  proved   that  sign  languages  are  full  languages,  capable  of  all  the  syntactic  and  abstract   complexity  present  in  speech  (Stokoe,  1960).  Modern  day  vestiges  of  an  ancient   gestural  system  can  still  be  observed:  we  gesticulate  as  we  speak,  all  cultures  use   gestures  in  their  repertoire,  children  gesture  before  they  can  speak  and  even   congenitally  blind  children  use  both  iconic  and  deictic  gestures  without  ever  seeing  or   having  the  chance  to  copy  them  (Acredolo  &  Goodwyn,  1988).  This  led  Iverson  &   Goldin-­‐Meadow  (1997:466)  to  suggest  that  gesture  plays  ‘a  role  for  the  speaker  that   is  independent  of  its  role  for  the  listener’.  In  addition,  spoken  and  signed  languages,   despite  the  differences  in  input,  i.e.  the  auditory  versus  the  visual,  are  processed  in   the  same  areas  of  the  brain  and  the  systems  that  support  them  are  near  identical   (MacSweeney  et  al,  2008).  All  this  suggests  that  the  capacity  for  signs  and  gestures  to   communicate  meaning  is  inbuilt,  natural  and  integral  to  language  function.  Below  I   examine  the  form,  function  and  defining  features  of  various  types  of  languages   characterised  by  their  use  of  gesture,  from  the  pre-­‐verbal  stage  in  children  to   spontaneous  languages  created  by  adults  to  show  how  these  contribute  to  the   discussion  of  the  gestural  theory  of  language  emergence.       4.1  Lateralisation  of  Language  and  Handedness     Language  in  the  brain  is  lateralised  mainly  in  the  left  hemisphere,  a  finding  initially   posited  by  Paul  Broca  when  he  observed  that  damage  to  the  left  hemisphere  causes   aphasia  but  damage  to  the  right  does  not  (Broca,  1861).  Recent  studies  have   confirmed  this  bias    (Knecht  et  al,  2000),  which  in  turn  provides  insight  into  the   development  of  early  language.  The  population-­‐level  bias  of  right  handedness  and   left-­‐hemisphere  language  dominance  are  intimately  connected,  and  it  has  been   suggested  that  this  is  due  to  an  original  right-­‐handed  manual  dominance  which  in   turn  developed  the  left  side  of  the  brain  in  language  evolution  (Corballis,  2012b;   McManus,  2002).  
  • 25. 25   Since  language  is  lateralised  in  the  left  hemisphere  of  the  brain  in  more  than   90%  of  right-­‐handers  (Tzourio-­‐Mazoyer  &  Courtin,  2013)  and  around  88-­‐90%  of  the   population  have  this  handedness  preference  (Corballis,  2012b:115),  it  is  suggested   that  the  two  are  intricately  correlated.  This  is  an  ancient  characteristic,  as  right-­‐ handed  dominance  has  been  observed  in  early  hominids  from  at  least  1.5-­‐1.6  million   years  ago  based  on  skeletal  fossil  evidence  and  observation  of  crafted  tools  (Walker   and  Leakey,  1993).  The  fact  that  this  kind  of  lateralisation  was  present  at  this  time   again  suggests  that  brain  specialisation  for  language  was  underway  in  early  hominids   (Haviland  et  al,  2010).  Similarly,  in  deaf  sign  language  speakers,  linguistic  signs  are   made  with  the  dominant  hand  (normally  the  right)  while  the  other  plays  a  diminished   role  in  communication  (Brentari,  1998).  Interestingly,  this  left-­‐handed  role  is  often   paralinguistic  and  emotional,  typically  right-­‐hemisphere  controlled  functions   (Lausberg  et  al,  2007).  In  addition,  children  show  a  significant  bias  for  symbolic   gestures  using  their  right  hand  compared  to  non-­‐symbolic  gestures  for  which  they   tend  to  use  the  left  (Bates  et  al,  1986).  Children’s  hand  preference  in  signing  precedes   their  use  of  a  dominant  hand  in  object  manipulation  –  the  hand  they  use  for  signing  is   significantly  correlated  with  the  hand  that  eventually  becomes  dominant  for  other   activities  (Bonvillian  &  Richards  1993).  This  again  demonstrates  that  handedness,   language-­‐like  gestures  and  lateralisation  of  language  in  the  left  hemisphere  of  the   brain  are  interconnected.  This  correlation  between  hand  and  language  in  both  deaf   and  hearing  speakers,  bolstered  by  the  fact  that  symbolic  gestures  and  speech  are   processed  in  the  same  (left  hemisphere)  area  of  the  brain  (Xu  et  al,  2009)  therefore   lends  credence  to  the  gesture-­‐first  argument.     4.2  Child  Language     Another  of  Bickerton’s  ‘living  fossils’  (1990:105),  child  language,  may  represent  what   a  protolanguage  may  have  been  like  in  our  forebears.  Following  Haeckel’s  (1866)   ‘ontogeny  repeats  phylogeny’  theory,  in  a  more  modern  sense  applied  to  language   evolution  by  Bickerton  (1990:15)  where  ‘the  ontogenetic  development  of  language   partially  replicates  its  phylogenetic  development’,  when  applied  to  both  gesture  and   speech,  an  analysis  of  the  capabilities  of  deaf  and  hearing  children  can  elucidate  what   part  gesture  played  in  language  emergence.    
  • 26. 26   4.2.1  Manual  Babbling       Laura  Petitto  (2000:4)  describes  that  both  deaf  and  hearing  children  begin  to  acquire   their  respective  signed  and  spoken  languages  at  the  same  rate  and  at  the  same  ages   of  development,  starting  with  babbling  at  around  7  months,  right  through  until  the  2-­‐ word  stage  at  around  16-­‐22  months.  Deaf  children  exposed  to  sign  language  alone  by   their  sign  language-­‐using  parents  typically  exhibit  a  manual  babbling  stage  involving   the  performance  of  discrete  elements  of  sign  language  in  much  the  same  way  as   hearing  children  manipulate  the  spoken  sound  units  of  their  language,  e.g.  ga-­‐ga-­‐ga   (Petitto,  &  Marentette,  1991).  This  implies  that  gesture  is  a  modality  in  which   language  is  pre-­‐programmed  to  thrive,  and  is  just  as  natural  and  useful  as  a  vocal   system.  While  babbling  was  previously  understood  to  have  been  a  precursor  to   speech,  it  is  now  more  accurate  to  describe  it  as  a  precursor  to  language,  as  it  can  be   achieved  in  either  modality  (Corballis,  2002).     4.2.2  Children’s  Gestures     Manual  gestures  are  also  observed  in  hearing  children,  and  frequently  occur  before   they  learn  to  speak:  they  point  to  objects  to  draw  an  adult’s  attention  before  they   assign  the  object  a  word,  and  the  earlier  this  happens  the  earlier  the  child  will   produce  a  word  for  the  object,  suggesting  an  association  between  gestures  and  the   development  of  language  (Özçaliskan  &  Dimitrova,  2013).  These  deictic  gestures  (i.e.   pointing)  aid  infants  in  understanding  the  association  between  symbols  and  referents,   as  well  as  establishing  the  beginnings  of  joint  attention  at  around  one  year  of  age-­‐   children  do  not  just  point  to  objects  for  requests,  they  also  point  to  objects  already   within  an  adult’s  gaze,  indicating  that  attention  to  the  object  is  shared  (Tomasello,   2008).  As  mentioned  previously,  joint  attention  is  pivotal  for  language  development,   and  the  observation  in  children  that  joint  attention  is  observed  in  manual  gestures   before  speech  manifests  itself  strengthens  the  gestural  argument.     Children  also  display  the  use  of  iconic  gestures,  which  emerge  slightly  later   than  deictic  gestures,  around  11-­‐12  months  (Özcaliskan  &  Goldin-­‐Meadow,  2005).   Although  less  frequent  than  other  gestures,  these  are  far  more  language-­‐like,  assign   properties  to  referents  and  allow  greater  freedom  than  words  in  describing  and   assigning  properties  to  objects  in  the  real  world,  much  as  our  mute  ancestors  would  
  • 27. 27   have  had  cause  to  do.  Essentially,  most  argue  that  infants,  provided  with  some  kind  of   input,  use  gestures  more  frequently  to  refer  to  objects  and  activities  before  they  use   words  for  the  same  cause  (Bates,  1976;  Özcaliskan  &  Goldin-­‐Meadow,  2005).  Gesture   use  also  paves  the  way  for  children’s  first  nouns  (Iverson  &  Goldin-­‐Meadow,  2005)   and  predicts  the  richness  of  their  future  language:  those  who  use  more  iconic   gestures  earlier  in  life  develop  larger  vocabularies  by  2  years  of  age,  showing  a  strong   link  between  gesture  use  and  overall  language  ability  (Acredolo  &  Goodwyn,  1988;   Özçaliskan  &  Dimitrova,  2013).   Iverson  et  al  (1994)  observed  hearing  Italian  children  between  16  and  20   months  of  age  to  assess  their  gesture  use;  an  interesting  finding  was  that  while  the   children  initially  relied  on  agents  to  bolster  their  labelling,  e.g.  drinking  from  a  toy  cup   instead  of  copying  the  motion  of  drinking  with  the  hand  alone,  this  activity  had   significantly  diminished  by  20  months.  Instead,  the  children  increasingly  used   gestures  dependent  on  movement  without  the  use  of  an  agent,  e.g.  flapping  arms  for   bird,  and  predicate  gestures,  e.g.  holding  the  fingers  close  together  to  signify  small.   They  argue  that  this  supports  a  theory  in  which  gestures,  over  the  course  of  cognitive   development  become  decreasingly  context-­‐bound,  with  the  use  of  vehicles  less   necessary  as  the  child  develops  the  ability  to  represent  objects  symbolically.  This   supports  Werner  and  Kaplan  (1963)  who  argue  that  gestures  help  establish  a   framework  for  a  transition  from  object-­‐bound  communication  to  less  object-­‐related   gestures  through  to  abstract  symbolic  representations  that  are  then  used  in  word-­‐ referent  relationships.  This  brings  to  mind  the  process  of  conventionalisation,  ‘the   shift  over  tome  from  iconic  gestures  to  arbitrary  symbols’  (Gentilucci  and  Corballis,   2006:950)  which  is  further  explored  in  the  following  section  in  relation  to  novel  sign   languages.     4.3  Novel  Sign  Languages While  dominant  sign  languages  such  as  ASL  and  BSL  have  become  ubiquitous,   established  languages  in  modern  culture,  new  sign  languages,  established  over  a   short  period  of  time  in  differing  contexts  have  been  taken  as  support  for  a  gesture-­‐ first  account  (Fay  et  al,  2014,  Sandler  et  al,  2005).  The  emergence  of  pidgin  and  creole   sign  languages,  such  as  Nicaraguan  Sign  Language  (LSN)  and  Al-­‐Sayyid  Bedouin  Sign  
  • 28. 28   Language  (ABSL),  as  well  as  the  well-­‐documented,  widespread  phenomenon  of   ‘homesign’  (Goldin-­‐Meadow,  2003)  has  shed  light  on  the  properties  and  evolution  of   an  embryonic  language.  Greenfield  et  al  (2008:36)  describe  these  ‘languages’  as  ‘the   linguistic  limit  of  what  can  be  developed  without  a  cultural  environment  provided  by   language-­‐using  humans.’  In  this  sense,  they  are  the  nearest  equivalent  to  a  system   that  may  have  been  utilised  by  pre-­‐linguistic  hominids;  a  protolanguage  produced  in   the  absence  of  an  established  language-­‐enriched  environment.     4.3.1  Homesign  in  Deaf  Children     Deaf  children  who  grow  up  in  homes  with  hearing  parents  who  do  not  use  sign   language  to  communicate  have  demonstrated  their  own  communicative  system  that   has  been  coined  ‘homesign’  (Goldin-­‐Meadow  &  Mylander,  1984).  Children  develop   these  systems  spontaneously  in  an  environment  devoid  of  an  appropriate  language   community;  in  this  sense  they  have  no  usable  linguistic  input,  and  are  ‘truly  creating   language  from  scratch’  (Fay  et  al,  2014:9).  Goldin-­‐Meadow  argues  that  ‘[t]he   children…lack  access  to  a  useable  model  of  language…the  gestures  that  the  deaf   children  use  to  communicate  are  structured  in  language  like-­‐ways.  The  children  are   inventing  their  own,  simple  language’  (2003:xvii).  The  claim  that  homesign  constitutes   a  language  per  se  is  controversial  (Morgan,  2005),  but  it  does  seem  likely  that  this   idiosyncratic,  simple,  proto-­‐grammatical  system  may  recapitulate  the  features  of  a   gestural  protolanguage  that  may  have  been  present  in  our  ancestors.  Goldin-­‐Meadow   (2002:369)  herself  acknowledges  this  potential ‘these  are  forces  that  are  likely  to  play   a  role  in  language  creation  every  time  it  takes  place,  perhaps  even  the  first  time’.       Below  is  an  example  of  the  typical  structure  of  homesign,  taken  from  Slobin   (2004:13):   Patient  +  act  (e.g.,  CHEESE  EAT)   Actor  +  act  (e.g.,  YOU  MOVE)   Patient  +  act  +  agent  (e.g.,  SNACK  EAT  YOU)   This  displays  a  two  or  three-­‐word  ordering  of  signs,  and  a  kind  of  proto-­‐grammar  of   the  type  that  has  previously  been  discussed  in  language-­‐trained  apes,  as  well  as  the   early  language  of  hearing  children.  In  addition,  homesign  displays  noun-­‐verb   distinction,  considered  a  language  universal  (Smith,  1999).  For  example,  one  of  the  
  • 29. 29   participants  observed  by  Goldin-­‐Meadow  et  al  (1994)  differentiated  between  nouns   and  verbs  in  different  contexts.  When  using  the  sign  for  ‘twist’  in  the  verb  sense,  e.g.   ‘twist  the  jar  open’,  he  was  more  likely  to  produce  the  sign  with  (i)  without   abbreviation,  i.e.  performing  the  twisting  gesture  multiple  times,  (ii)  with  inflection,  in   this  case  gesturing  towards  an  object  to  be  twisted,  and  (iii),  the  gesture  is  performed   after  indicating  the  object  to  be  twisted.  In  contrast  the  gestural  noun  version  of  this,   e.g.  ‘a  twistable  object’  is  produced  only  once,  in  a  neutral  position,  normally  near  to   the  body,  and  before  indicating  the  object  (Goldin-­‐Meadow,  2006).       Goldin-­‐Meadow  (2003)  suggests  that  although  homesign  does  exhibit  some   morphological,  lexical  and  syntactic  complexity,  the  signs  tended  to  be  mainly   referential  when  the  signer  is  limited  to  a  group,  essentially,  of  one  (themselves).   However,  she  also  maintains  that  the  most  robust,  essential  features  of  language   remain,  those  that  are  necessary  for  a  communicative  system  to  work.  Homesign,  left   to  this  group  of  one,  stagnates  and  does  not  progress  to  full  language  (Slobin,  2005).   However,  when  this  group  of  homesigners  is  expanded  away  from  parents   who  do  not  enrich  the  child’s  experience  and  are  put  in  contact  with  like-­‐minded   interlocutors,  the  possibility  of  novel  sign  languages  to  become  fully-­‐fledged  is   exponentially  increased.  The  crucial  factor  is  an  interacting  community,  providing  an   ‘alignment  between  speakers  [which]  is  essential  for  a  lexicon  to  stabilize’  (Fay  et  al,   2014:10).  This  is  the  focus  of  the  following  section.     4.3.2  Nicaraguan  Sign  Language,  (LSN)  and  Idioma  de  Signos  Nicaragünese  (ISN)   The  activity  of  homesign  takes  on  an  increased  significance  when  those  who  use  it  are   suddenly  removed  from  a  speech-­‐dominated  sphere  and  subsequently  immersed  in  a   deaf,  sign-­‐dominant  culture.  This  is  precisely  what  happened  when  Nicaragua  opened   its  first  school  for  the  deaf  in  1978;  the  children,  who  previously  had  no  interaction   with  other  deaf  people  or  sign  language,  had  each  already  devised  their  own  system   of  homesign  (Senghas,  1995).  When  they  came  together  at  the  new  school  they  were   taught  lip  reading  and  Spanish  but  with  limited  success.  However,  when  they  were   allowed  to  interact  with  each  other  using  their  various  homesign  systems,  which  were   essentially  pidgins,  they  began  to  converge  on  a  simple  sign  language,  LSN  (Senghas  &   Coppola,  2001).  This  was  also  essentially  a  pidgin,  with  a  simple  structure  and  little  to  
  • 30. 30   no  grammar,  and  was  used  by  the  first  entrants  to  the  school  in  1978.  Since  then,  the   younger  children  who  enter  the  school  have  been  exposed  to  LSN  by  the  older   children,  and  have  consequently  produced  a  more  complex,  compact,  primary  sign   language  with  grammar,  ISN.  Greenfield,  Lyn  and  Savage-­‐Rumbaugh  assert  that  ‘the   sign  language  codified  and  became  more  complex  with  each  succeeding  generation’   (2010:36)  in  this  sense  the  pidgin  become  a  creole  over  time.  The  system,  created   through  ‘abrupt  creolization’  (Senghas,  1995:1)  contains  inflectional  verb   morphology,  noun  classifiers  and  other  features  unique  to  fully-­‐fledged  languages.   Senghas  &  Coppola  (2001:328)  argue  that  ‘[t]he  emergence  of  Nicaraguan  Sign   Language  offers  an  opportunity  to  examine  the  processes  common  to  language   learning,  language  change,  and  language  genesis’.  The  ability  of  these  children  to   essentially  create  a  language  where  none  existed  before,  especially  the  evolution   from  creating  a  homesign  system  in  the  absence  of  linguistic  input  to  the  creolization   of  a  new,  fully  fledged  language,  demonstrates  the  capacity  of  language  to  develop   from  basic,  iconic  gestures  to  a  fully  grammatical  system  in  the  manual  mode.  This   window  into  early  language  emergence  is  viable  not  only  in  Nicaraguan  sign  language   and  homesign,  but  also  for  a  more  recently  studied  novel  sign  language,  Al-­‐Sayyid   Bedouin  Sign  Language.       4.3.3  Al-­‐Sayyid  Bedouin  Sign  Language  (ABSL)     This  is  another  sign  language  that  has  appeared  de  novo,  in  a  smaller  population  than   LSN,  in  a  Bedouin  community  in  the  Negev  desert  in  Israel.  The  inhabitants  have  an   unusual  tendency  for  deafness,  with  around  150  out  of  3,500  members  having   inherited  a  condition  leaving  them  profoundly  deaf.  The  sign  language  that  has  been   created  is  now  in  its  third  generation,  having  been  developed  over  approximately  the   last  70  years  (Senghas,  2005).     In  this  time  researchers  have  found  that  the  language  is  completely  distinct   from  both  spoken  and  other  sign  languages  found  nearby  such  as  Israeli  Sign   Language,  which  has  both  a  different  word  order  and  is  acknowledged  as  different  by   signers  of  both  languages  (Sandler  et  al,  2005).  ABSL  is  now  recognised  as  a  fully-­‐ fledged  sign  language,  able  to  express  a  variety  of  abstract  ideas  and  events  displaced   from  the  present  (Fox,  2008).  In  addition,  (Sandler  et  al,  2005:2661)  note  that  ‘In  the  
  • 31. 31   space  of  one  generation  from  its  inception,  systematic  grammatical  structure  has   emerged  in  the  language’.  This  grammar  emerged  in  the  absence  of  outside  influence   from  other  languages,  and  was  formed  after  a  conventionalised  set  of  lexical  items   had  already  been  established,  showing  a  gradual  increase  in  linguistic  complexity  akin   to  the  way  language  might  have  originally  emerged.     Sandler  et  al  (2005)  also  found  that  the  word  order  employed  in  ABSL  was   overwhelmingly  SOV.  This  is  interesting  when  paired  with  research  from  Goldin-­‐ Meadow  et  al  (2008),  which  found  that  hearing  speakers  of  various  languages  all   abandon  their  language’s  own  word  order  when  asked  to  describe  events  using   gesture  without  speech  in  favour  of  the  same  SOV  word  order  in  different  non-­‐verbal   tasks.  This  suggests  that  there  may  be  an  innate,  natural  human  tendency  for  this   particular  word  order  used  in  gestural  communication,  and  it  ‘may  reflect  a  natural   disposition  that  humans  exploit  not  only  when  asked  to  represent  events  nonverbally,   but  also  when  creating  language  anew’  (2008:9167).  This  concurs  with  Newmeyer’s   (2000)  postulation  that  early  protolanguage  is  likely  to  have  had  an  SOV  word  order.   Sandler  et  al  (2005:2665)  add:  ‘The  appearance  of  this  conventionalization  at  such  an   early  stage  in  the  emergence  of  a  language  is  rare  empirical  verification  of  the  unique   proclivity  of  the  human  mind  for  structuring  a  communication  system  along   grammatical  lines.’     4.3.4  Creating  a  New  Communication  System  from  Scratch     Natural  languages  created  from  scratch  have  been  discussed  in  4.3.2  and  4.3.3.  and   the  below  describes  how  a  new  language  was  created  and  developed  in  a  simulated   community  over  a  short  period  of  time.     An  additional  finding  of  Pollick  and  de  Waal’s  ape  gesture  study  (2007),   discussed  in  2.2,  was  that  bonobos  used  gestures  more  frequently  than  chimpanzees   to  initiate  a  social  interaction,  78%  of  the  time,  and  that  both  species  used  gestures   alone  more  frequently  than  vocalisations  or  a  combination  of  the  two  (Fig.  6).    
  • 32. 32                     The  success  of  gesture  to  both  initiate  interactions  as  well  as  to  solicit   responses  in  the  two  groups  echoes  Fay  et  al’s  (2014)  study  in  which  a  group  of   people  were  tasked  with  creating  a  communication  system  from  scratch.  They  found   that  gestures  were  the  most  effective  means  of  conveying  meaning  from  one  person   to  another  where  no  shared  language  was  available  to  them  (Fig.  7).  Even  when   gesture  was  combined  with  speech,  this  was  found  to  be  distracting  and  was  less   effective  than  the  use  of  gesture  alone.                                 The  study  reveals  a  crucial  point  that  I  believe  may  have  been  pivotal  in  the   evolution  of  our  own  language:  ‘participants  initially  use  iconic  signs  to  ground  shared   0   20   40   60   80   100   Gestures   Facial/  Vocal   Combination   Percentage  of  the  time   (%)   Initiation  of  Social  Interaction   Chimpanzees   Bonobos   Figure  6.  Frequency  of  interaction  type.  Data  from  Pollick  &  de  Waal  (2007)   Figure  6:  Success  of  each  type  of  signal,  judged  by  accuracy  of   identification.  Taken  from  Fay  et  al  (2014:5).  
  • 33. 33   meanings,  and  over  subsequent  interactions  these  signs  become  increasingly  aligned,   symbolic  and  language  like’  (Fay  et  al,  2014:3).  This  echoes  the  findings  of  Iverson  et   al  (1994)  about  conventionalisation  from  the  previous  section,  as  well  as  with   Corballis’  theory  that  gestural  signals  could  have  ‘eventually  conventionalized  so  that   other  forms  of  representation,  including  spoken  and  written  words,  as  well  as  more   abstract  manual  gestures,  could  suffice  to  carry  the  message’.  (Corballis  2009:109).   Conventionalisation  may  have  been  a  pivotal  process  in  the  emergence  of   human  language:  manual  gestures  are  the  most  likely  candidate  to  have  been  the   original  form  of  communication  between  cognitively  evolved  proto-­‐hominids,  as  they   have  ‘at  least  the  potential  to  represent  concepts  iconically  rather  than  in  abstract   form.  Once  a  set  of  iconic  representations  is  established,  increasing  usage  can  then   lead  to  more  stylized  and  ultimately  abstract  representation’  (Corballis,  2000).  This   process  is  not  a  recent  development  among  the  deaf,  and  has  been  observed   naturally  for  at  least  hundreds  of  years.  Darwin  (1965/1872:64)  quotes  W.R.  Scott’s   The  Deaf  and  the  Dumb  (1870:12):     This  contracting  of  natural  gestures  into  much  shorter  gestures  than   the  natural  expression  requires  is  very  common  amongst  the  deaf  and   dumb.  This  contracted  gesture  is  frequently  so  shortened  as  nearly  to   lose  all  semblance  of  the  natural  one,  but  to  the  deaf  and  dumb  who   use  it,  it  still  has  the  force  of  the  original  expression.   De  Waal  (1982)  has  previously  noted  that  primate  gestures  also  become   conventionalised  over  time,  from  actions  centred  around  objects  to  symbolic  gestures   on  their  own,  much  like  the  process  that  is  observed  in  homesigning  children  and   novel  sign  languages.     The  importance  placed  by  Saussure  on  the  ‘arbitrariness  of  the  sign’  (1916)  as   a  prerequisite  for  language  has  been  a  stumbling  block  in  the  attempt  to  classify  sign   languages  as  full  languages,  since  a  large  amount  of  signs  are  iconic  in  nature   (Corballis,  2012b).  However,  the  examination  of  these  novel  sign  languages  and  the   process  of  conventionalisation  show  that  iconicity  is  not  a  necessity  for  signed   languages:  original  signs  may  be  iconic,  but  over  time  these  acquire  aspects  of   arbitrariness  such  as  in  the  creolization  from  the  more  iconic  LSN  to  the  more   symbolic  and  language-­‐like  ISN.  Furthermore,  arbitrariness  is  often  achieved  as  the  
  • 34. 34   result  of  a  need  for  expedience  and  convenience:  Corballis  (2009:32)  quotes  Charles   Hockett  (1978:274-­‐275):     When  a  representation  of  some  four-­‐dimensional  hunk  of  life  has  to  be   compressed  into  the  single  dimension  of  speech,  most  iconicity  is   necessarily  squeezed  out.  In  one-­‐dimensional  projections,  an  elephant  is   indistinguishable  from  a  woodshed.  Speech  perforce  is  largely   arbitrary…we  have  learned  to  make  a  virtue  of  necessity.     The  need  for  concision,  speed  and  efficiency  may  well  have  been  a  driving  force  in  the   transition  from  a  primarily  gestural  to  a  primarily  vocal  mode  in  Homo  sapiens,  to   coincide  with  the  increase  in  complexity  of  human  culture  through  time  (Corballis,   2009).     5.  But  why  the  switch  to  speech?     Michael  Corballis  (2009:24)  acknowledges  the  difficulty  in  explaining  how  if  an  original   system  of  gestures  existed,  then  why  is  language  today  primarily  spoken.  He  quotes   Robbins  Burling  (2005:123):       [T]he  gestural  theory  has  one  nearly  fatal  flaw.  Its  sticking  point  has   always  been  the  switch  that  would  have  been  needed  to  move  from  a   visual  language  to  an  audible  one.       Corballis  then  argues  that  the  shift  was  a  gradual  process,  and  that  the  motor  theory   of  speech  perception  and  the  concept  of  ‘speech  as  gesture’  can  go  some  way  to   explaining  the  shift  from  a  gestural  modality  to  a  spoken  one.  He  cites  evidence  from   articulatory  phonology,  which  posits  that  speech  is  itself  a  system  of  gestures  of  the   mouth,  lips  and  so  on,  which  is  bolstered  by  the  discovery  of  the  McGurk  effect   (McGurk  &  MacDonald,  1976).  This  is  the  phenomenon  that  when  a  sound  is  played   over  the  top  of  a  video  of  a  person  producing  a  different  speech  sound,  the  viewer   reports  hearing  a  different  sound  entirely  to  the  one  being  spoken.  However  for  me   this  particular  aspect  of  his  argument  is  unsatisfactory,  as  the  evidence  against  this   theory  is  somewhat  insurmountable:  the  McGurk  effect  has  been  found  to  occur  in  
  • 35. 35   non-­‐linguistic  circumstances  (Massaro  1998),  and  the  theory  is  now  generally  seen  as   false  by  the  majority  of  linguists  (Galantucci  et  al,  2006).   Nevertheless,  others  have  attempted  to  explain  how  the  transition  may  have   taken  place  with  greater  success:  Arbib’s  notion  of  an  ‘expanding  spiral’  (2005b:22)  is   somewhat  convincing:       Homo  habilis  through  to  early  Homo  sapiens  had  a  protolanguage  based   extensively  on  manual  gestures  (‘protosign’)  which  …  provided  essential   scaffolding  for  the  emergence  of  a  protolanguage  based  primarily  on  vocal   gestures  (‘protospeech’)     While  this  is  in  line  with  my  own  argument,  Stokoe  (2002)  elaborates  upon  this  idea   to  form  a  picture  of  language  emergence:  gestures  were  the  original  signs,  iconically   representing  animals,  objects,  and  things  in  the  real  world.  Arbitrary  vocalisations  at   this  point  in  history  would  have  been  useless.  Movements  of  the  body  may  have   represented  the  actions  of  these  referents,  creating  a  rudimentary  syntax  of  the  type   seen  in  homesign.  This  is  referred  to  as  ‘semantic  phonology’  (Stokoe,  2002:82),  and   describes  hand  shapes  being  parsed  into  a  primitive  noun  and  verb  phrase,  i.e.  the   hand  and  its  movement.  In  this  model,  over  time  the  basic  structure  for  language   ability  was  therefore  present  in  hominids,  having  built  upon  the  abilities  of  the  LCA,   and  bolstered  by  the  advent  of  bipedalism.  From  this  base  of  knowledge,  the  mirror   system  propagated  interaction  between  conspecifics,  until  eventually  vocal  signs   were  incorporated  into  the  repertoire,  firstly  scaffolding  and  then  replacing  manual   gestures  as  the  anatomy  of  the  vocal  tract  and  brain  became  more  suited  to  volitional   speech,  at  around  the  emergence  of  Homo  sapiens.     Some  also  argue  that  natural  selection  has  its  place  in  a  switch  from  the   manual  to  vocal  mode  (Pinker  &  Bloom,  1990):  speech  is  less  energy  consuming  than   manual  gesturing,  provides  a  method  of  communicating  in  the  dark,  and  frees  the   hands  for  manufacturing  and  pedagogy  (Corballis,  2002).  The  switch  to  speech,   therefore,  may  have  been  advantageous  in  our  ancestors,  leading  to  the  demise  of   the  Neanderthals  as  their  language  abilities  languished,  and  the  ‘human  revolution’  of   Homo  sapiens  that  began  their  domination  of  the  planet.  Kim  Sterelny  (2012:2143)