This document provides an overview of Markov chain Monte Carlo (MCMC) methods. It begins with motivations for using MCMC, such as computational difficulties that arise in models with latent variables like mixture models. It then discusses likelihood-based and Bayesian approaches, noting limitations of maximum likelihood methods. Conjugate priors are described that allow tractable Bayesian inference for some simple models. However, conjugate priors are not available for more complex models, motivating the use of MCMC methods which can approximate integrals and distributions of interest for more complex models.